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Abstract

The present state of QFT is analysed from a new viewpoint whose mathematical

basis is the modular theory of von Neumann algebras. Its physical consequences

suggest new ways of dealing with interactions, symmetries, Hawking-Unruh thermal

properties and possibly also extensions of the scheme of renormalized perturbation

theory. Interactions are incorporated by using the fact that the S-matrix is a relative

modular invariant of the interacting- relative to the incoming- net of wedge algebras.

This new point of view allows many interesting comparisions with the standard

quantization approach to QFT and is shown to be �rmly rooted in the history of

QFT. Its radical \change of paradigm" aspect becomes particularily visible in the

quantum measurement problem.

Key words:Quantum Field Theory, S-matrix Theory, Tomita-Takesaki Modular
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1 Looking at the Past with Hindsight

To a contemporary observer the area which half a century ago was very appropriately

called particle- or high-energy- physics with QFT being its main theoretical tool, has

gradually lost its homogeneous presentation and appears presently somewhat fractured

into several highly specialized regions whose mutual relations are often lost. Beyond vage

analogies one would be very hard-pressed to interpret e.g. the standard perturbative

formulation (especially of gauge theory), conformal �eld theory and massive factorizing

d=1+1 models as manifestations of the same physical principles. For this reason the

value of controllable low-dimensional models of QFT as a theoretical laboratory to un-

derstand and explore the general principles of Local Quantum Physics [1] has remained

opaque, despite the considerable sophistication of their formalism which went into their

presentation. As no other previous theory in its long history, including Relativity and

Quantum Mechanics, QFT has resisted construction (apart from some low-dimensional

superrenormalizable models) to the degree that we do not know up to this day whether

those operators and their correlation functions which one postulates and perturbatively

\approximates" really exists in the presence of 4-dim. nontrivial interactions1. The coex-

istence of such a curious state of a�airs for almost 70 years with a set of perturbatively

consistent rules and recipes of stunning predictive power is the most remarkable enigmatic

heritage and a gift of the 20th century particle physics to the 21st:

In thid context we will have little to say about string theory which has separated from

the S-matrix aspects of QFT more than 3 decades ago and still undergoes rapid changes.

The reason is that in addition to the absence of any tangible contact with the nature of

particle physics, string theory has failed to compare its underlying principles with those

of QFT or even to formulate its own principles. A theory which claims to transcend

QFT without o�ering at the same time new physical principles by which its underlying

philosophy can be secured against physical equivalence [2] with �eld theoretic principles

is di�cult to position. and here we will not even try.

1Despite numerous attempts to convert this problem into a small nuisance which will be repaired at

the future Plank length physics, the problem did not go away. The problem of mathematical consistency

of physical principles cannot be solved by referring it to the next still unknown layer of physical reality.
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A di�erent and potentially more productive kind of dissatisfaction with the present

state of particle theory results from theories with impressive predictive power but whose

conceptual basis leaves too much to be desired in order to be considered in the long run as

completed and mature theories. Here the very successful Bohr-Sommerfeld theory could

serve as an example if its incorporation into QM which showed its transitory character

would not have happened so swiftly. Potential contemporary candidates are electro-weak

theory and quantum chromodynamics. Most of their theoretical discoveries and crucial

theoretical developments occurred in the �rst 5 years starting in the late 60ies; although

some of the important experimental veri�cations came much later: Compared with the

speed of theoretical progress during a good part of the 20th century, the time from the

middle 70ies up to now begins to appear more and more as a time of stagnation. The fact

that an increasing number of renown theoretical particle physicist have uneasy feelings to

accept the present gauge theoretic models extended by the Higgs mechanism as a mature

description which constitute a closed chapter in particle physics, shows that this is more

than a overcritical interpretation on my part.

Experience with past crisis in particle theory (vis. the ultraviolet divergency crisis of

the 40ies solved by the renormalization theory of the 50ies) suggests to use a combination

of conservative adherence to physical principles and leave the revolutionary changes on

the side of concepts and mathematical formalism.

Most of the remedies which for the last two decades enjoy popularity (as e.g. string

theory and physics based on noncommutative geometry) were revolutionary on the side

of physical principles as well2. As the history which led up to renormalization theory

has shown, it is easier to be revolutionary if one allows modi�cations of principles (e.g.

postulating an elementary length or fundamental cuto�, abandoning QFT in favor of a

pure S-matrix approach) than to maintain principles and limit the changes to new concepts

(physical reparametrization, changing the canonical formalism for causal perturbations).

It is indicative that even when a change of principles became unavoidable, as in the case

2A closer look reveals that they are in fact amazingly conservative the side of formalism (e.g. the use

of functional integral representations of the Lagrangian quantization approach or ad hoc noncommutative

modi�cations thereof).
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of relativity and quantum theory, there was an intense conceptual struggle with the old

principles including the use of sophisticated Gedankenexperiments. It seems that this

intellectually demanding art has been lost in the last quarter of the 20th century.

In the following I would like to expose some recent ideas which maintain a strictly

conservative attitude on the side of physical principles. So our wanderlust to step into the

\blue yonder" (to borrow a phrase used by Feynman) will be controlled by the valuable

compass of physical principles underlying local quantum physics and not primarily by the

extension of existing formalisms. The scheme which allows the most natural and clear

formulation for our purposes is nowadays referred to as algebraic QFT (AQFT) or local

quantum physics (LQP) [1]. Its impractical and non-constructive aspects of which it often

stood accused fortunately are increasingly a matter of the past, and in the following we

will go a long way to demonstrate this. LQP as enriched by modular theory contains

both of the two most successful aspects of past particle physics: the formalism of local

quantum physics but blended and controlled with the Wigner particle concept and a new

modular role of the S-matrix.

Since I do not want to pose too many technical/mathematical barriers around these

new ideas, I use the more exible essay style (\statements" instead of theorems). I also

assume that the reader is familiar with the standard framework of QFT ([3]).

For motivation I will �rst present some weak spots in the standard textbook approach

to QFT. Most of the presentations start with the canonical formalism (Heisenberg-Pauli)

or with the (Euclidean) path-integral formalism (Feynman). Both of them are closely re-

lated quantization procedures. This means that they are based on a classical parallelism

starting from a classical Lagrangian or Hamiltonian3 in analogy to the way quantum me-

chanical systems are de�ned (and named after their classical Hamiltonian). But there

is one signi�cant di�erence to the quantum mechanical case. Whereas in the latter the

canonical formalism and the Feynman-Kac path-integral representation have a �rm math-

ematical status even in the presence of interactions, the use of these quantization methods

in QFT is (with the already mentioned exception of free �elds and superrenormalizable in-

3In the case of Fermions it has been standard praxis (Berezin) to invent a classical reality in form of

Grassmann dynamical variables in order to extend the quantization parallelism.
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teractions) what one may call more of an \artistic" nature. This means that although the

quantization requirements o�er enough guiding power to start perturbative calculations,

the �nal renormalized answers do not ful�l the original requirements: the renormalized

physical correlation functions simply do not obey the canonical commutation relations

nor are they Feynman-Kac representable! The only generically remaining structure un-

a�ected by renormalization is Einstein causality/locality i.e. the statement of mutual

(anti)commutation of �elds separated by spacelike distances. In view of this delicate fact

and despite the resulting lack of a logical conceptual balance between the quantization

requirement and the physical renormalized answers, quantization in this sense became an

accepted fait accompli. The remarkable success swept aside worries for what appeared

just small mathematical imperfections.

What enhanced the willingness of many physicists to live comfortably with this con-

ceptual aw of the formulation of QFT was the fact that their mathematical friends also

became attracted to the di�erential-geometric appeal of path integral quantization and

often succumbed to its delicate artistic fascination to such a degree that its conceptual and

mathematical aws were ignored and the artistic computational tools became accepted as

a kind of experimental mathematics (and in several cases even received the admirations

and blessings of mathematicians). There is a lot of irony in the present state of a�airs

where QM (for which the Feynman-Kac setting is rigorous but in praxis too di�cult and

time-consuming) is presented with operator methods, and on the other hand QFT (for

which the method is a nice but artistic device to get calculations started) is done almost

exclusively in path-integral formulation. Anybody who tried to give a physically balanced

course on QM using path integrals knows at least one side of these problems.

There exists an alternative method of deforming free �elds with interaction Wick-

polynomials within the setting of causal perturbation [4] which uses the above mentioned

fact that causality (and not the Feynman-Kac representability) survives renormalization.

The interaction polynomials in terms of free �elds enter the causality- and unitarity- based

equation for time-ordered or retarded function as a perturbative input. All iterative steps

are then shown to be uniquely �xed by the mentioned principle and minimality require-

ments for an order-independent minimal scale dimension. The mathematical problem is
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the extension of time-ordered distributions from a certain subspace of test functions with

nondiagonal support to such containing supports with coalescing points. There is no ac-

tual in�nity and the di�erence renormalizable/nonrenormalizable is the implementability

of such a minimality requirement (which is tantamount to a unique theory with a �nite

number of physical parameters). This method explains the in�nities of many of the text-

book quantization method as a result of their unwarranted relation to classical structures.

In other words the in�nities of the old classical particle models of Poincar�e and Lorentz

enter nolens volens via quantization (which remains too close to classical ideas) and rep-

resent a technical nuisance 4 which needs repair analogous to the mentioned selfenergy

problems of the classical particle models (as was �rst pointed out by Kramers). Despite

di�erences in the conceptual setting the renormalized results of all approaches (with or

without intermediate in�nities) are identical and the apparent restrictive relation between

the possible existence and renormalizability of a theory and the \good short distance be-

havior" of those particular \�eld coordinatizations" in terms of which the interaction

density was de�ned is common to all approaches which use pointlike �elds.

With this remark we have come to the point of departure of the new framework

from the old setting: the substitution of individual �elds by nets of algebras corresponding

to spacetime regions. This step is to be seen in analogy to the spirit underlying the

transition of old fashioned geometry in terms of coordinates to modern coordinate-free

intrinsic di�erential geometry.

There were strong historical indications pointing towards a �eld-coordinate-free for-

mulation of local quantum physics5; one of the earliest was the observation about the

insensitivity of the (on-shell) scattering matrix with respect to changes of the interpolat-

ing local �elds. In the traditional setting of Lagrangian this was done by carrying out

extremely formal �eld transformations. As in geometry one meets of course also preferred

4According to Wigner's analysis particles in QFT enter (to the degree that the QFT possesses them)

automatically via the representation theory of the Poicar�e group; there is no room for seperate particle

models ala Poincar�e/Lorentz.
5Since it is quite awkward to use the terminology \QFT without pointlike �elds", we follow Haag [1]

and use Local Quantum Physics or algebraic QFT, in particular whenever we want the reader not to

think in terms of the standard textbook methods.



{ 6 { CBPF-NF-019/00

�eld-coordinates which have characteristic intrinsic properties; notably conserved Noether

currents and other natural local objects which result from the localization of (global) sym-

metries or have a direct relation to superselected charges. I would even go as far as saying

that it was basically the arbitrary ad hoc nature of selection of particular �elds in parti-

cle physics which led to the sometimes fanatical \cleansing" attitude against QFT which

even entered the publications of some S-matrix purists and is hard to understand from a

contemporary point of view. Our modular localization approach will demonstrate, that

also the opposite ideology against S-matrix theory (for quotations of famous sayings see

[22]) is unwarranted. Since S is an important relative modular invariant, a constructive

method based on modular theory should use it together with the local algebras already

in the construction and not only after the purely �eld theoretic calculations have been

�nished. Our approach combines on- and o�- shell aspects in one formalism and in partic-

ular presents the construction of the observable algebras from an S-matrix point of view

without introducing individual �elds; hence it accomplishes those steps which in the old

S-matrix theory were missing or even thought to be impossible.

In fact this coordinate-free formulation already exists for quite some time [1]. Up to

very recently it was limited to structural questions and contributed little in the direction of

classi�cations and investigations of concrete models (a fact which perhaps also explains the

widespread ignorance about it). The main motivation for this essay is to inform the reader

about two new constructive ideas, both related to the Tomita-Takesaki modular theory for

wedge-localized algebras. The �rst idea uses \polarization- free generators" of the wedge

algebra whose structure is closely related to the scattering matrix. This structure is e.g.

behind the bootstrap-formfactor program for d=1+1 factorizing theories. The second idea

is to relate a higher dimensional massive QFT to a �nite number of isomorphic copies of

one chiral conformal �eld theory whose relative positions in one Hilbert space are de�ned

in terms of \modular inclusions and intersections". In picturesque terms this should be

thought of as some sort of \chiral scanning" or AQFT-holography. One encodes the rather

complex structure of higher-dimensional massive QFT into a family of very simple chiral

conformal QFT and their relative modular position. Such modular reformulations may

also shed new light on the existence problem of higher dimensional QFT since there is
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good control of existence of their chiral conformal building blocks.

The organization of the content is as follows. As a \warm up" we explain in the next

section a presentation of interaction-free systems without the use of �eld coordinates.

We than use this formalism for a presentation of the Hawking-Unruh thermal aspects

of modular localization. The section continues with a totally intrinsic characterization

of what one means by interactions. These results suggest to look at wedge algebras as

the smallest spacetime regions which o�er the best compromise between particles and

�elds; in fact if the often cited "particle-�eld dualism" makes any sense at all, it is in

this context of wedge localization. In the third section we explain the relative modular

invariance of the S-matrix. The crucial concept here are certain wedge-localized operators

which if applied once to the vacuum even in the presence of interactions do not generate

particle/antiparticle vacuum polarization clouds but just pure one-particle vectors. By

specialization to 2-dim. models without real particle creation, they are identi�ed with

Zamolodchikov-Faddeev operators which in this way acquire for the �rst time a profound

spacetime interpretation. We also comment on wedge-localized states and operators in

the presence of real pair creation away from factorizing models. The section ends with a

modular extension of standard symmetries to \hidden" symmetries.

Section 3 presents the \re-conquest" of notions known from basic quantum mechanics

within LQP with the help of the \split property". In this section the conceptual change of

paradigm of the new approach becomes most evident. A closely related aspect for which

the split property turns out to be essential is the \localization-entropy", the other thermal

manifestation of localization in addition to localization-temperature which in the special

case of wedge localization is the same up to an acceleration factor as the temperature in

the Unruh Gedankenexperiment involving uniformly accelerated observers..

In the futuristic last section I mention some potential areas of applications where one

expects the modular ideas to enlarge the conceptual realm of models in the direction

of what would be called ordinarily \nonrenormalizable". We also present various other

poorely studied consequences of modular theory, including an LQP version of \hologra-

phy" and \chiral conformal scanning".

This essay is intended to �ll some of the space left between two other major articles in
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this issue of JMP on the present state of Local Quantum physics; one is a broadly-based

paper with a strong emphasis on recalling the history and the spirit of times of particle

physics during a good part of the 20th century [5], and the other [6] presents an exhaustive

account of more recent developments about modular stuctures of LQP. In fact our �ndings

add additional weight to the the word \revolutionary" used by Borchers in reference to

the recent development of modular theory in local quantum physics.

2 Modular Structure of LQP

For pedagogical explanations of the new modular concepts, the interaction free theories

are still the simplest. As in some of the textbooks (Haag, Weinberg), one starts from the

Wigner approach which assigns a unique irreducible representation of the Poincar�e group

with every admissable value of the mass and spin/helicity (m,s). The Wigner theory also

preempts the statistics of particles and assigns in the case of d=3+1, where the particles

can only be Fermions/Bosons (with the exception of the essentially unexplored case of

continuous spin), unique momentum space creation and annihilation operators acting in a

multiparticle Fock space. The uniqueness is lost at the moment one uses a manifestly local

formalism in terms of pointlike �elds. The covariant �eld construction is synonymous with

the introduction of intertwiners between the unique Wigner (m; s) representation and the

multitude of Lorentz-covariant momentum dependent spinorial (dotted and undotted)

tensors which under the homogenous L-group transform with the irreducible D[A;B](�)

matrices.

u(p)D(s)(R(�; p)) = D[A;B](�)u(��1p) (1)

The only restriction imposed by this intertwining is:

j A�B j� s � A+B (2)

which leaves in�nitely many A;B (half integer) choices for a given s. Here the u(p) inter-

twiner is a rectangular matrix consisting of 2s+1 column vectors u(p; s3); s3 = �s; :::;+s
of length (2A+ 1)(2B + 1). Its explicit construction using Clebsch-Gordan methods can
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be found in Weinberg's book [3]. Analogously there exist antiparticle (opposite charge)

v(p) intertwiners: D(s)�(R(�; p) �! D[A;B](�). The covariant �eld is then of the form:

 [A;B](x) =
1

(2�)3=2

Z
(e�ipx

X
s3

u(p1; s3)a(p1; s3) + (3)

+ eipx
X
ss

v(p1; s3)b
�(p1; s3))

d3p

2!

Since the range of the A and B (undotted/dotted) spinors is arbitrary apart from the

fact that they must ful�l the inequality with respect to the given physical spin s6, the

number of covariant �elds is countably in�nite. Fortunately it turns out that this loss

of uniqueness does not cause any harm in particle physics. If one de�nes the algebras

P(O) as the operator algebras generated from the smeared �eld with supp f 2 O [18],

one realises that these localized algebras do not depend on the representative covariant

�eld chosen from the (m,s) class. In fact all the di�erent covariant �elds which originate

from the (m; s) representation share the same creation/annihilation operators. This gave

rise to the linear part of the Borchers equivalence classes of relatively local �elds. The full

Borchers class [18] generalized the family of Wick p�olynomials to the realm of interactions

and gave a structural explanation of the insensitivity of the S-operator.

2.1 Modular Aspects of Wigner Particle Theory

The conceptually and mathematically natural way to implement the idea of independence

of physics from di�erent �eld coordinatizations is to use instead of smeared unbounded

�elds (with their technically di�cult domain properties) the associated von Neumann

algebras of bounded operators [1] which have lost there reference to particular �eld co-

ordinates. In the case at hand of the Wigner particle theory of free particles this step

recovers the Wigner uniqueness of (m,s) particle representations (which got lost as a result

of the introduction of covariant �elds as explained in the previous section). The obvious

question is therefore: is it possible to extract the spacetime indexed net of algebras directly

from the Wigner theory without the intermediate appearance of �elds? A question like this

6For the massless case the helicity inequalities with respect to the spinorial indices are more restrictive,

but one Wigner representation has still a countably in�nite number of covariant representations.
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was probably on Wigner's mind when he was looking (without success) for a relativistic

localization concept within his representation-theoretical framework.

Recently this question of covariant localizaton received a positive answer as a result of

the introduction of \modular localization" [7][8]. The idea can be traced back to a seminal

paper of Bisognano and Wichmann in which it was shown that the modular Tomita-

Takesaki theory [1] of von Neumann algebras has not only some deep use in quantum

statistical mechanics (as was already known from the Haag-Hugenholtz-Winnink work

which appeared at the same time as Tomita's notes [1]), but is also an inexorable part

of �eld theoretic wedge-localization7. What one needs here is in some sense the inverse

of the Bisognano-Wichmann arguments namely the use of modular theory for the actual

construction of a net of wedge algebras and their smaller descendents via intersections.

Its adaptation to the case at hand would look for a kind of pre-Tomita theory which

can be formulated within the Wigner theory and with the help of CCR/CAR functors

preempts the net structure of the interaction-free LQP. This is indeed feasible and the

resulting formalism is mathematically not more complicated than the formalism of free

�elds. Since it has appeared in di�erent publications, a short description should su�ce

for the purpose of this essay.

The pre-modular theory alluded to is a generalization of the Tomita theory to real

Hilbert spaces positioned within a complex Hilbert space. For its adaptation to the

Wigner theory one starts with the boost transformation associated with a wedge and

its reection transformation along the rim of the wedge. For the standard x-t wedge

these are the �x�t(�) Lorentz boost and the x-t reection rx�t : (x; t)! (�x,�t) which
according to well-known theorems is represented antiunitarily in the Wigner theory8. One

then starts from the unitary boost group u(�(�) and forms by the standard functional

7It is important to emphasize that physicists have a signi�cant share in the discovery of modular

theory in particular with physicists whose only contact with this theory arose through \non-commutative

geometry" without revealing the natural physical origin.
8In case of charged particles the Wigner theory should be suitably extended by a particle/antiparticle

doubling.
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calculus the unbounded \analytic continuation". In terms of modular notation we de�ne

s = j�
1

2 (4)

j = U(r)

�it = u(�(�2�t))

where u(�(�) and u(r) are the unitary/antiunitary representations of these geometric

transformations in the (if necessary doubled) Wigner theory. Note that U(r) is apart

from a �-rotation around the x-axis the one-particle version of the TCP operator. On the

other hand s is a very unusual object namely an unbounded antilinear operator which on

its domain is involutive s2 = 1: The real subspace

s =  (5)

which consists of momentum space wave functions which are boundary values of analytic

functions in the lower i��strip of the rapidity variable �: The -1 eigenvalues of S do not

give rise to a new problem since multiplication of the +1 eigenfunctions with i convert

them into the -1 eigenfunctions. The real subspaceHR(W ) is closed in the complexHilbert

space topology but the complexi�cation HR(W ) gives a space which is only dense in the

complex Wigner space. This surprising fact (which is the Wigner one-particle analogue of

the Reeh-Schlieder denseness of local �eld states in full quantum �eld theory) has no par-

allel in any other area of quantum physics. It suggests that the above mentioned unusual

property of the s-operator may be the vehicle by which geometric physical properties

of space time localization are encoded into the abstract domain properties of unbounded

operators. Some rather straightforward checks reveal that this interpretation is consistent

namely in the present setting this localization interpretation gives consistency with the

net properties of the spaces HR(O)'s

HR(O) � \W�OHR(W ) (6)

as well as with the conventional �eld theoretic construction using pointlike �elds where it

agrees with localized covariant functions de�ned in terms of support properties of Cauchy

initial data. The relation of Wigner subspaces and localized subalgebras is accomplished
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with the help of the CCR or CAR functors which map real subspaces HR(O) into von

Neumann A(HR(O)) subalgebras and which de�ne a limited but rigorous meaning of the

word \quantization"

J;�; S = �(j; �; s) (7)

where the functorial map � carries the functions of the Wigner theory into the Weyl

operators in Fock space (for the fermionic CAR-algebras there is an additional modi�ca-

tion). Whereas the \pre-modular" operators denoted by small letters act on the Wigner

space, the modular operators J;� have an Ad action on the von Neumann algebras which

are functorially related to the subspaces and which makes them objects of the Tomita-

Takesaki modular theory

SA
 = A�
; S = J�
1

2 (8)

Ad�itA = A (9)

AdJA = A0

This time the S-operator is that of Tomita i.e. the unbounded densely de�ned operator

which relates the dense set A
 to the dense set A�
 and gives J and �
1

2 by polar decom-

position. The nontrivial miraculous properties of this decomposition are the existence of

an automorphism �!(t) = Ad�it which propagates operators within A and only depends

on the state ! (and not on the implementing vector 
) and a that of an antiunitary invo-

lution J which maps A onto its commutant A0: The theory of Tomita assures that these

objects exist in general if only 
 is a cyclic and separating vector with respect to A: Our
special case at hand, in which the algebras and the modular objects are constructed func-

torially from the Wigner theory, suggest that the modular structure for wedge algebras

may always have a geometrical signi�cance with a fundamental physical interpretation in

any QFT. This is indeed true, and within the Wightman framework this was established

by Bisognano and Wichmann [1].

The existence of this coordinate-free formulation for interaction free theories has im-

mediate consequences. Although in the present form it is not yet suited to incorporate

interactions without the use of �eld coordinates, it does shed an additional helpful light on
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the standard causal perturbation theory. Among other things it formally explains why an

interaction which has been de�ned in terms of concrete free �elds can be rewritten without

change of content in terms of any other �eld coordinates and that moreover Euler-Lagrange

coordinates which associate free �elds with a bilinear zero order Lagrangians L 0 are not

necessary in a real time operator formulation.. Of course since an Euler-Lagrangian �eld

coordinatization exists for each Wigner (m; s) representation, the physical results remain

the same if on properly tranforms the interaction density into this Euler-Lagrange de-

scription. Hence the use of such �eld is not a restriction of generality.

2.2 Thermal Aspects of Modular Localization

Another valuable suggestion which can be abstracted from the pre-modular structure of

the Wigner theory concerns thermal aspects which originate from localization. In modular

theory the dense set of vectors which are obtained by applying (local) von Neumann

algebras in standard position to the standard (vacuum) vector forms a core for the Tomita

operator S: The domain of S can then be described in terms of the +1 (or -1) closed real

subspace of S: In terms of the \pre-modular" objects s in Wigner space and the modular

Tomita operators S in Fock space we introduce the following nets of wedge-localized dense

subspaces:

HR(W ) + iHR(W ) = dom(s) � HWigner (10)

HR(W ) + iHR(W ) = dom(S) � HFock (11)

These dense subspaces become Hilbert spaces in their own right if we use the graph

norm (the thermal norm) of the Tomita operators. For the s-operators in Wigner space

we have:

(f; g)Wigner ! (f; g)G � (f; g)Wig + (sf; sg)Wig (12)

= (f; g)Wig + (f; �g)Wig
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This graph topology insures that the wave functions are strip-analytic in the wedge ra-

pidity �:

p0 = m(p?) cosh �; p1 = m(p?) sinh �; m(p?) =
q
m2 + p2? (13)

strip : 0 < Imz < �; z = �1 + i�2

where the "G-�niteness" (12) is precisely the analyticity prerequisite for the validity of

the KMS property for the two-point function. In this way one �nally arrives at (for scalar

Bosons):

(f; g)WWig � (f; g)K;T=2� (14)

where on the left hand side the Wigner inner product is restricted to HR(W ) + iHR(W )

and the right hand side is the thermal inner product which contains the characteristic

thermal �
1��

factor where � = e2�K with K9 the in�nitesimal generator of the L-boost.

The fact that the boost K with a two-sided spectrum appears instead of the one-sided

bounded Hamiltonian H reveals one di�erence between the two situations. For the heat

bath temperature of a Hamiltonian dynamics the modular operator � = e�2�H is bounded

on one particle wave functions, whereas the unboundedness of � = e2�K enforces the

localization (strip analyticity) of the Wigner wave functions i.e. the two-sidedness of

the spectrum does not permit a KMS state on the full algebra. In fact localization-

temperatures are inexorably linked with unbounded modular symmetry operators. With

the localization-temperature T = 2� in this way having been made manifest, the only

di�erence between localization-temperatures and heat bath temperatures (for a system

enclosed in a box described by a Gibbs formula) on the level of �eld algebras in Fock space

corresponds to the di�erence between hyper�nite type III1 and type I von Neumann

algebras. But even this distinction disappears if one passes from the Gibbs box situation

to the in�nite volume thermodynamic limit: the GNS reconstruction using the limiting

correlation functions reveals that the algebra has become hyper�nite type III1:

Passing from Wigner one-particle theory to free �eld theory we may now consider ma-

trix elements of wedge-localized operators between wedge-localized multiparticle states.

9The Unruh Hamiltonian is di�erent from the boost K by a factor 1

a
where a is the Unruh acceleration.
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Then the KMS property allows to move the wedge-localized particle state as an antipar-

ticle with the analytically continued rapidity �+ i� from the ket to the bra. The simplest

illustration is the two-particle matrix element of a free current of a charged scalar �eld

j�(x) =: �
�
$

@�� : . The analytic relation

hp0 jj�(0)j pi = anal:cont:
z!�+i�

h0 jj�(0)j p; �p0(z)i (15)

where �p0(z) represents the analytic rapidity parametrization of the antiparticle is the

simplest form of a crossing relation. It is an identity which is known to hold also in

each perturbative order of renormalizable interacting theories and which together with

TCP-symmetry constitutes the most profound property of QFT. But it has never been

derived in su�cient generality within a nonperturbative framework of QFT nor (di�erent

from TCP) has its relation to the causality and positive energy property of QFT been

adequately understood. It is often thought of as a kind of on shell momentum space

substitute for Einstein causality and its strengthened form, called Haag duality.

If crossing symmetry is really a general property of local QFT, then it should be the on

shell manifestation of the o� shell KMS property for modular wedge localization not only

in the previous free case but also in the presence of interactions. In fact we will show in

the next section that the main step towards a deeper understanding of crossing symmetry

is the existence of certain on-shell operators
R
F (x)f(x)dx (suppf 2 W ) which generate

the wedge algebra and upon application to the vacuum create a one-particle state vector

without the vacuum polarization clouds which are characteristc for interacting operators

in smaller than wedge lovalization regions. We will call them polarization-free generators

or PFG's. In the case of d=1+1 factorizing models their mass shell Fouriertransforms

satisfy the Zamolodchikov-Faddeev algebraic relations10 in the momentum space rapidity

[10], and the derivation of crossing symmetry is similar (albeit more involved) to the

previously mentioned case of formfactors in free theories.

10As will become clear in the next section, although these operators are nonlocal, they generate the

wedge localized algebra, and as a consequence the modular KMS formalism is applicable to them.
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2.3 Wedge Localization for Special Interactions

A major challenge to ones conceptual abilities is the generalization of these modular at-

tempts to the realm of interactions. Here the �rst step should be a clear intrinsic de�nition

of what one means by interactions without the use of e.g. Lagrangians, Feynman rules or

other ways of computing but solely based on intrinsic properties of correlation functions

or nets of local algebras . The example of Wick polynomials in the free Borchers class,

which despite their complicated looking vacuum correlation functions still represent only

free theories in the veil of di�erent �eld coordinates, gives a �rst taste of the magnitude

of the problem. This will be addressed in the next subsection.

We start with the Fock space of free massive Bosons or Fermions. In order to save

notation we will explain the main ideas �rst in the context of selfconjugate (neutral)

scalar Bosons. Using the Bose statistics we will use for our de�nitions the \natural"

rapidity-ordered notation for n-particle state vectors

a�(�1)a
�(�2):::a

�(�n)
; �1 > �2 > ::: > �n (16)

and de�ne new creation operators Z�(�) in case of �i > � > �i+1 and with the previous

convention

Z�(�)a�(�1):::a
�(�i):::a

�(�n)
 = (17)

S(� � �1):::S(�� �i)a
�(�1):::a

�(�i)a
�(�):::a�(�n)


With Z(�) as the formal adjoint one �nds the following two-particle commutation relations

Z�(�)Z�(�0) = S(� � �0)Z�(�0)Z�(�) (18)

Z(�)Z�(�0) = S(�0 � �)Z�(�0)Z(�) + �(� � �0)

where the formal Z adjoint of Z� is de�ned in the standard way. The �-algebra property
requires S(�) = S(�)� = S(�)�1 = S(��): Although our notation already preempted the

relation with the Zamolodchikov-Faddeev algebra, the conceptual setting here is quite

di�erent. We do not demand that the structure function S is the crossing symmetric S-

matrix where certain poles represent bound states of particles. Rather we will show that
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all these properties including their physical interpretation are consequences of modular

wedge localization of PFG's formed from the Z 0s: This structure leads in particular to

Z�(�1):::Z
�(�n)
 = a�(�1):::a

�(�n)
 (19)

Z�(�n):::Z
�(�1)
 =

Y
i>j

S(�i � �j)a
�(�1):::a

�(�n)


for the natural/opposite order with all other cases between these extreme orders. Note

that for momentum space rapidities it is not necessary to say something about coinciding

rapidities since only the L2 measure-theoretical sense and no continuity is relevant here.

In fact the mathematical control of these operators i.e. the norm inequalities involving

the number operator hold as for the standard creation/annihilation operators. Let us

now imitate the free �eld construction and ask about the localization properties of these

F-�elds

F (x) =
1p
2�

Z
(e�ipxZ(�) + h:c:) (20)

This �eld has all the standard properties of operator-valued tempered distributions, but

it cannot be local if S depends on � since the on-shell property together with locality

leads to the free �eld formula. In fact it will turn out (see next section) that the smeared

operators F (f) =
R
F (x)f(x)d2x with

suppf 2 W0 =
n
x; x1 >

���x0���o (21)

have their localization in the standard wedge W and that, contrary to smeared pointlike

localized �elds, the wedge localization cannot be improved by improvements of the test

function support inside W: Instead the only way to come to a local net of algebras (and,

if needed, to their pointlike �eld generators) is by intersecting oppositely localized wedge

algebras (see below). Anticipating their wedge localization properties these operators are

our �rst examples of polarization free generators (PFG). Like free �elds their one-time

application to the vacuum creates a one-particle state without a (vacuum) polarization

cloud admixture.

We want to show that the operators F (f) are generators of a wedge localized algebra

A(W ) = alg fF (f); suppf 2 Wg (22)
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As in the case of free �elds the algebra may be de�ned as the weak closure of the C�-

algebra generated by the spectral projection operators in the spectral resolution

F (f) =
Z
�dEf (�) (23)

We �rst show that n-point functions of the F (f)0s obey a KMS condition with respect

to the Lorentz-boost subgroup which leaves the wedge W0 invariant if and only if the

commutation functions (in addition to their holomorphy properties in the �-strip) are

crossing symmetric which is the symmetry of reections through the point � = i�
2
(with

the additional appearance of the charge conjugation for non-neutral particles). One can

show the following statement

Statement:([7]) The KMS-thermal property of the wedge algebra generated by the

PFG's is equivalent to the crossing symmetry of the S-matrix

(
; F (f10 )F (f20)F (f2)F (f1)
) � hF (f10)F (f20 )F (f2)F (f1)itherm (24)

KMS
=

D
F (f20 )F (f2)F (f1)F (f

�2�i
10

)
E
therm

, S(�) = S(i� � �) (25)

Here we only used the cyclic KMS property (the second line containing the imaginary

2�-shift) for the four-point function. The relation is established by Fouriertransformation

and contour shift �! � � i�: One computes

F (f̂2)F (f̂1)
 =
Z Z

f2(�2 � i�)f1(�1 � i�)Z�(�1)Z
�(�2)
 + c:t: (26)

=
Z Z

f2(�2 � i�)f1(�1 � i�)f�12a�(�1)a�(�2)
 +

+ �21S(�2 � �1)a
�(�2)a

�(�1)
g + c
 (27)

where the � are the characteristic function for the di�erently permuted �-orders. The

analogous formula for the bra-vector is used to de�ne the four-point function as an inner

product. If S has a crossing symmetric pole in the in the physical strip of S the contour

shift will produce an unwanted terms which wrecks the KMS relation. The only way out
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is to modify the previous relation

F (f̂2)F (f̂1)
 = (F (f̂2)F (f̂1)
)scat (28)

+
Z
d�f1(�1 + i�b)f2(�2 � i�b) j�; bi h�; b jZ�(� � i�b)Z

�(� + i�b)j
i
(29)

The second contribution is compensated by the pole contribution from the contour shift.

In general the shift will produce an uncompensated term from a crossed pole whose

position is obtained by reecting in the imaginary axis around i�
2
: which creates the

analogous crossed bound state contribution. In our simpli�ed selfconjugate model it is

the same term as above. In the presence of one or several poles one has to look at higher

point functions. Despite the di�erent conceptual setting one obtains the same formulas

as those for the S-matrix bootstrap of factorizing models and hence one is entitled to

make use of the bootstrap technology in this modular program. What is behind is the

so-called GNS construction which converts the numerical poles in S and its higher bound

versions into new states i.e. the original Fock-space structure has to be enlarged if we

initially forgot to include the b-particles. Even though the description of the wedge algebra

appears like QM, there is one important di�erence which is worthwhile noticing. This

is the principle of \nuclear democracy" between particles. In QM there is a hierarchy

between fundamental and bound: elementary states do not reappear as boundstates of

others and in particular not of composites of themselves. We will see in the following

that this realization of nuclear democracy for double cone algebras is not any more with

particles and their binding, but rather with charges and their fusion. The reason is

of course the appearance of polarization clouds below wedge localization. This nuclear

democracy idea was the basis of the S-matrix bootstrap approach and was �rst made to

work in special two-dimensional situations in [12][13][14].

With the derivation of crossing symmetry and the bound state and fusion structure of

S we achieved our aim to present an example of the constructive power of the modular

localization method. In fact our fusion formulas for multi F-vectors correctly interpret the

Z-formulas in [10] [11] which if taken literally are not true. As an unexpected grati�cation

we also obtained the equivalence between the crossing symmetry of particle physics and

the thermal KMS properties of the Hawking-Unruh e�ect.
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Strictly speaking the check of the KMS property with the Lorentz-boost as the auto-

morphism of the wedge algebra does not yet prove that the modular theory is completely

geometric. If we could show that the Tomita involution is equal to the TCP operator, we

would be done. For this to hold, we de�ne

J = SsJ0 (30)

This relation between the incoming Tomita involution J0 for the free wedge algebra and

that of the interacting theory J is nothing else as a reformulation of the TCP transfor-

mation for the scattering matrix in a general QFT. We can now directly check

Ẑ�(�) := JZ�(�)Jh
Ẑ�(�); Z�(�0)

i
= 0 (31)h

Ẑ(�); Z�(�0)
i
= �(� � �0) (32)

In other words the two operators Ẑ#(�) and Z#(�0) have relative canonical commutation

relations which in turn leads to the relative commutativity

h
F̂ (f̂); F (g)

i
= 0; suppf̂ 2 W opp; suppg 2 W (33)

The F and F̂ PFG's generate algebras A(W ) and A(W )0 = alg
n
F̂ (f̂ ); suppf̂ 2 W opp

o
=

JA(W )J and one easily checks

J�
1

2F (f1):::F (fn)
 = (F (f1):::F (fn))
�
 (34)

�it = U(�(2�i))

which is the de�ning relation for the Tomita operator S = J�
1

2 :

The KMS computation can be extended to \formfactors" i.e. mixed correlation func-

tions containing in addition to F's one generic operator A 2 A(W ) so that the previous

calculation results from the specialization A = 1: This is so because the connected parts of

the mixed correlation function is related to the various (n;m) formfactors obtained by the

di�erent ways of distributing n+m particles in and out states using the relation between

Z 0s and Fock space creation and annihilation operators. These di�erent formfactors are

described by di�erent boundary values of one analytic master function which is in turn
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related to the various forward/backward on shell values which appear in one mixed A-F

correlation function. We may start from the correlation function with one A to the left

and say n F's to the right and write the KMS condition as

D
AF (f̂n):::F (f̂2)F (f̂1)

E
=
D
F (f̂2�i1 )AF (f̂n):::F (f̂2)

E
(35)

The n-fold application of the F's to the vacuum on the left hand side creates besides an

n-particle term involving n operators Z� to the vacuum (or KMS reference state vector)


 also contributions from a lower number of Z�0s together with Z-Z� contractions. As

with free �elds, the n-particle contribution can be isolated by Wick-ordering11

D
A : F (f̂n):::F (f̂2)F (f̂1) :

E
=
D
F (f̂2�i1 )A : F (f̂n):::F (f̂2) :

E
(36)

Rewritten in terms of Z 0s and using the denseness of the f 0s this relation reads

h
; AZ�(�n):::Z�(�2)Z�(�1 � 2�i)
i (37)

= h
; Z(�1 + i�)AZ�(�n):::Z
�(�2)
i

= hZ�(�1 � i�)
; AZ�(�n):::Z
�(�2)Z

�(�)
i

The analytic continuation by 2�i refers to the correlation function and not to the oper-

ators. For the natural order of rapidities �n > :: > �1 this yields the following crossing

relation (assuming absence of boundstates)

h
; Aa�in(�n):::a�in(�2)a�in(�1 � �i)
i (38)

= ha�out(�1)
; Aa�in(�n):::a�in(�2)
i

The out scattering notation on the bra-vectors becomes only relevant upon iteration of

the KMS condition since the bra Z 0s have the opposite natural order. By iteration one

�nally obtains the general mixed matrix elements

ha�out(�k):::a�out(�1)
; Aa�in(�n):::a�in(�k�1)
i (39)

as analytic continuations from h
; AZ�(�n):::Z�(�2)Z�(�1)
i which a posteriori justi�es

the use of the name formfactors in connection with the mixed A-F correlation functions.
11Note that as a result of the Z-F commutation relation the change of order within the Wick-ordered

products will produce rapidity dependent factors
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The upshot of this is that such an A must be of the form

A =
X 1

n!

Z
C
:::

Z
C
an(�1; :::�n) : Z(�1):::Z(�n) : (40)

where the an have a simple relation to the various formfactors of A (including bound

states) whose di�erent in-out distributions of momenta correspond to the di�erent contri-

butions to the integral from the upper/lower rim of the strip bounded by C consisting of

two contributions, which are related by crossing. The transcription of the an coe�cient

functions into physical formfactors (39) complicates the notation, since in the presence

of bound states there is a larger number of Fock space particle creation operators than

the initial PFG wedge generators F: It is comforting to know that the wedge generators,

despite their lack of vacuum polarization clouds, nevertheless contain the full (bound

state) particle content. The wedge algebra structure for factorizing models is like a rela-

tivistic QM, but as soon as one sharpens the localization beyond wedge localization, the

�eld theoretic vacuum structure will destroy this simple picture and replace it with the

appearance of the characteristic virtual particle structure which separates local quantum

physics from quantum mechanics.

In order to see by what mechanism the quantum mechanical picture is lost in the

next step of localization, let us consider the construction of the double cone algebras as a

relative commutants of shifted wedge (shifts by a inside the standard wedge)

A(Ca) := A(Wa)
0 \ A(W ) (41)

Ca = W opp
a \W

For A 2 A(Ca) � A(W ) and Fa(f̂i) 2 A(Wa) � A(W ) the KMS condition for the W-

localization reads as before, except that whenever a Fa(f̂i) is crossed to the left side of

A; we may commute it back to the right side since
h
A(Ca); Fa(f̂i)

i
= 0: The new relation

resulting from the compact localization of A is

D
AFa(f̂1) : Fa(f̂n):::Fa(f̂2) :

E
(42)

=
D
A : Fa(f̂n):::Fa(f̂2)Fa(f̂

2�i
1 ) :

E

Note that the Fa(f̂1) in the �rst line is outside the Wick-ordering. Since it does neither act

on the bra nor the ket vacuum, it contains both frequency parts. The creation part can be
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combined with the other F 's under one common Wick-ordering whereas the annihilation

part via contraction with one of the Wick-ordered F 's will give an expectation value of

one A with (n�2) F 's. Using the density of the f 's and going to rapidity space we obtain

([15]) the so-called kinematical pole relation [16]

Res�12=i� hAZ�(�n):::Z�(�2)Z�(�1)i = 2iC12 hAZ�(�n):::Z�(�3)i (1� S1n:::S13) (43)

Here the product of two-particle S-matrices results from commuting the Z(�1) to the

right so that it stands to the left of Z�(�2); whereas the charge conjugation matrixC only

appears if we relax our assumption of selfcongugacy.

It is remarkable that this kinematical pole relation does not contain the size of the

localization region for A: It is a relation which characterizes all operator spaces A(O);
O 2 W down to the pointlike limits. The individual localization sizes only inuence the

Payley-Wiener exponents in asymptotic imaginary repidity directions.

The existence problem for the QFT associated with an admissable S-matrix (unitary,

crossing symmetric, correct physical residua at one-particle poles) of a factorizing theory

is the nontriviality of the relative commutant algebra i.e. A(Ca) 6= C � 1: Intuitively the
operators in double cone algebras are expected to behave similar to pointlike �elds applied

to the vacuum; namely one expects the full interacting polarization cloud structure. For

the case at hand this is in fact a consequence of the above kinematical pole formula

since this formula leads to a recursion which for nontrivial two-particle S-matrices is

inconsistent with a �nite number of terms in (40). Only if the bracket containing the

S-products vanishes, the operator A is a composite of a free �eld.

The modular method has therefore converted the existence problem, which hith-

erto was dominated by the well-known ultraviolet behavior of special (Lagrangian) �eld-

coordinates, into the problem of nontriviality of algebraic intersections or in more applied

terms to the nontriviality of formfactor spaces. For special �elds which have an intrinsic

meaning as conserved currents and their related order/disorder structure (example: the

conserved current and its Sine-Gordon potential in the massive Thirring model) one ex-

pects to be able to identify them individually and to compute their formfactors as well as

their correlation function. The considerations in the next section will propose arguments

that this modular construction method is not limited to factorizing models.
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The determination of a relative commutant or an intersection of wedge algebras is even

in the context of factorizing models not an easy matter. We expect that the use of the

following \holographic" structure signi�cantly simpli�es this problem. We �rst perform

a lightlike translation of the wedge into itself by letting it slide along the upper light ray

by the amount given by the lightlike vector a+: We obtain an inclusion of algebras and

an associated relative commutant

A(Wa�) � A(W ) (44)

A(Wa�)
0 \ A(W )

The intuitive picture is that the relative commutant lives on the a�interval of the up-

per/lower light ray, since this is the only region inside W which is spacelike to the interior

of the respective shifted wedges. This relative commutant subalgebra is a light ray part

of the above double cone algebra, and it has an easier mathematical structure. One only

has to take a generic operator in the wedge algebra which formally can be written as a

power series in the generators Z and �nd those operators [7][9] which commute with the

shifted F's

[A;U(e+)F (f)U
�(e+)] = 0 (45)

Since the shifted F's are linear expressions in the Z's, the nth order polynomial contribution

to the commutator comes from only two adjacent terms in A namely from an+1 and an�1

which correspond to the annihilation/creation term in F. The result is precisely the same

as the one from the KMS property: the above kinematical pole formula (43), so we do not

learn anything new beyond what was already observed with the KMS technique. However

as will be explained below, the net obtained from the algebra

A(R�) := _b�AdU(b�)
n
_a�A(Wa�)

0 \ A(W )
o

(46)

(in words the net of von Neumann algebras created by translating the relative commutants

of size a� with b� along the upper/lower light rays) is a chiral conformal net on the

respective subspace H� = A�
 which is indexed by intervals on the light ray: If our initial

algebra were d=1+1 conformal theories, the total space would factorize H = H+ �
H� =
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(A+ �
A�)
; and we would recover the well-known fact that two-dimensional local theories

factorize into the two light ray theories. For massive theories we expectH = A+
 = A�
;
i.e. the Hilbert space obtained from one light ray horizon already contains all state vectors:

This would correspond to the di�erence in classical propagation of characteristic massless

versus massive data in d=1+1. There it is known that although for the massless case

one needs the characteristic data on the two light rays, the massive case requires only

one light ray. In fact there exists a rigorous proof that this classical behavior carries over

to free quantum �elds: with the exception of m=0 massless theories, in all other cases

(including light-front data for higher dimensional m=0 situations) the vacuum is cyclic

with respect to one light front H = A�
 [17]. The proof is representation-theoretical

and holds for all cases except the d=1+1 massless case. The result may be written as an

identity of global algebras

A(W ) = A(R>
+) (47)

where the superscript refers to the fact that we are considering the right half of the

upper light ray (with the same relation for the lower light ray). This identity of global

algebras, which we consider as an AQFT version of holography, does not extend to the

natural net structure which consists of double cones in W resp. intervals on R>
+: This

means that certain geometric actions as the lower light cone translation U(a�) on the

W-net will be extremely nonlocal in their action on A(R>
+): The appearance of these

\hidden symmetries" is the prize one has to pay for the simpli�cations of lower dimensional

holographic images. More remarks on holography for higher dimensional QFT can be

found in a later part.

It almost goes without saying that the various restrictions we have imposed for ped-

agogical reasons on the Z-algebra structure (as diagonal structure of S and absence of

poles) can easily be lifted.
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2.4 Case with Real Particle Creation

For models with real particle creation it is not immediately clear how to construct PFG's,

in fact it is not obvious whether they exist. On the other hand it is quite easy to see

that for any smaller localization region (whose causal completion will not be as big as a

wedge) there can be no PFG-like operators unless the theory is trivial (i.e. free in the sense

of no interaction). This means that PFG's are ideal indicators for interactions because

only polarization caused by interactions will appear12. With other words any operator

with compact or even spacelike cone localization which couples the one-particle state with

the vacuum if applied once to the vacuum will generate a polarization cloud on top of

the one-particle state unless the particles are noninteracting. The proof of this theorem

uses similar analytic techniques as that of the Jost-Schroer theorem[18]. In fact the

proof follows almost literally the arguments of Mund [19] where these analytic techniques

were recently used to show that the d=2+1 braid-group particles even in their \freest"

form cannot be quantum mechanical objects i.e. they cannot be described by localized

operators which carry a de�ned (incoming) particle number like free Bosons/Fermions

and hence a nonrelativistic limit which maintains the plektonic spin-statistic connection

will also maintain the vacuum polarization structure and hence be outside of quantum

mechanics. In terms of a representation-theoretical setting of multi-particle states one

looses the tensor product structure of n-particle scattering states in terms if Wigner one-

particle states. For a more remarks on the \No-Go theorem for interacting PFG's with

smaller than wedge localization" I refer to a forthcoming paper [20].

An existence proof of wedge-localized PFG which as unbounded operators associated

with A(W ) (i.e. the proper PFG's for the purpose of this essay) is simple if one allows

also unbounded PFG operators associated with the von Neumann algebras can be given.

One �rst studies the wedge-localization spaces i.e. the vectors spanning the domain of

�
1

2 which are the vectors in the thermal subspace HR(W )+ iHR(W ) where HR(W ) is the

closed real subspace of solutions of the localization equation

S =  ; S = J�
1

2 ; J = SscatJ0 (48)

12The vacuum polarization clouds which are responsible for the localization entropy in the later section

are also present in the free case.
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This space has a nontrivial intersection with the one-particle subspace

HR(W ) \H(1)
Wigner 6= 0 (49)

which is a consequence of the fact that the modular operator �it is shared with that of

the wedge algebra generated by the free asymptotic (incoming) �elds. The possibility of

representing each vector as an unbounded operator associated with A(W ) is guarantied

by modular theory and this applies in particular to a dense set of one-particle vectors.

In order to get a clue for the construction of the spaces we look at d=1+1 theories

which do not have any transversal extension to wedges. Furthermore we assume that there

is only one kind of particle (absence of particle poles in the S-matrix) so that in terms of

incoming particles one is in the situation of a Fock space with one kind of particle.

>From the previous discussion we take the idea that we should look for a relation

between the ordering of rapidities and the action of the scattering operator. Therefore we

de�ne a subspace indexed by two-particle wave functions as follows (omitting again the

scat subscript):

	f2;f1 �
Z Z

d�1d�2f2(�2)f1(�1)	(�2; �1) (50)

	(�2; �1) � �21a
�(�2)a

�(�1)
 + �21Sa
�(�1)a

�(�2)


It is easy to check that this vector ful�ls (48) if the f's have the properties of the previous

section. The J0 sends the S into a S� and the f's into their complex conjugate whereas the

S together with the unitarity reproduces the linear combination. Finally the �
1

2 makes

a i� shift in the �0s which may be absorbed into the f�0s with the result that the original

f 0s are reproduced.

The generalization to states indexed by 3 f 0s contain 6 contributions which correspond

to the 6 permutations

	f3f2f1 �
Z Z Z

d�1d�2d�3f3(�3)f2(�2)f1(�1)	(�3; �2; �1)

	(�3; �2; �1)~�321a
�(�3)a

�(�2)a
�(�1)
 + �312S21a

�(�3)a
�(�2)a

�(�1)


+ �231S32a
�(�3)a

�(�2)a
�(�1)
 + �123S321a

�(�3)a
�(�2)a

�(�1)


+ �132S321 � S�23a�(�3)a�(�2)a�(�1)
 + �213S321 � S�12a�(�3)a�(�2)a�(�1)
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This expression results from writing each permutation as the nonoverlapping product of

\mirror permutations". The smallest mirror permutations are transpositions of adjacent

factors as in the third and fourth term. For those one replaces the action of the permu-

tation by the action of the S-matrix restricted to the adjacent transposed tensor factors

(which is used as a subscript of S). An example for an overlapping product of trans-

positions is the product of two transpositions which have one element in common e.g.

123 ! 132 ! 312; this sequence of mirror permutations can not be associated with sub-

sequent S-matrix actions on tensor products. However the composition 123! 213 ! 312

has a meaningful S-matrix counterpart: namely S �S12a�(�1)a�(�2)a�(�3)
 where S12 leaves

the third tensor factor unchanged. The resulting vector under the S12 action has no well-

de�ned incoming particle number and can also be written in tensor product notation as

(Sa�(�1)a�(�2)
)
 a�(�3)
: The third particle has remained a spectator and only enters

the process when the �nal S is applied (which corresponds to the mirror permutation of

all 3 objects). This action of nested mirror transformations is well-de�ned. In general

if one mirror permutation is completely inside a larger one the scattering corresponding

nested product of S0s is a well-de�ned physical meaning. The last two terms correspond

are such nested mirror contributions. The inner products of such vectors with themselves

will lead to matrix elements of the form

h�03; �02; �01 jS � S�12j �3; �2; �1i (51)

In a graphical scattering representation particle 1 and 2 would scatter �rst and produce ar-

bitrarily many particles (subject to the conservation laws for the total energy-momentum)

which together with the third incoming particle (which hitherto was only a spectator) en-

ter an additional scattering process of which only the 3-particle outgoing component is

separated out by the matrix element in (51). The dot means summation over all admiss-

able intermediate states and could be represented by e.g. a heavy line in the graphical

representation in order to distinguish it from the one-particle lines. Whereas in the calcu-

lation of cross sections the summation over intermediate states lead to diagonal inclusive

processes, the nested structure of the localized vectors correspond to non-diagonal inclu-

sive processes. The proof that the space of vectors of the above form 	fn :::f1 ful�l (48) is

analogous to the previous case: the �rst and the fourth term change their role as well as
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the second and third terms change role with the two nested terms.

For a 4- f labeled state vector 	f4f3f2f1 there is the new possibility of having two

-particle S's acting on two nonoverlapping pairs of in-particles before the action of either

the identity or the full S-matrix is applied. For further details we refer to [21]. The full

real wedge localization space is de�ned as the real closure of all the labeled spaces (labeled

by wedge localized one-particle wave functions)

HR(W ) = real closure
n
	f ;	f2f1 ;	f3f2f1;	f4f3f2f1; :::j8fi 2 H(1)(W )

o
(52)

The remaining problem is whether one can generate the wedge localization spaces

by the iterated application of PFG operators. The check of the equivalence between

KMS and on-shell crossing symmetry would then proceed as before by forming inner

products between these vectors. The understanding of the precise mathematical status

of these PFG's was still an open problem at the time of writing. It is clear that in

the case of real particle creation one looses the uniformization aspect in the rapidity

in which the S-matrix and formfactors were meromorphic functions. In de�ning PFG's

via inner products berween localized vectors, we tacitely assume that the PFG"s F(x)

admit the usual interpretation of opertor-valued tempered distributions since without

being permitted to use the standard computational tools PFG"s would be less useful.

Here we confront a very curious situation in the relation mathematics/physics. Although

mathematically PFG"s always exist in LQP, the temperateness assumption and together

with the translation invariance of their domain limit the PFG formalism to the d=1+1

case without real particle creation. In some intuitive sense the presence of creation requires

a strong weight at the in�nitely remote regions which leads to the loss of temperateness.

For more informations on this unexpected behaviour we refer to a forthcoming publication

[20].

There are several reasons why constructions based on modular localization could be

important for particle physics. Besides the improvement in the understanding the struc-

ture of interacting QFT one expects that they could lead to a perturbation theory of local

nets which bypasses the use of the nonintrinsic �eld coordinatizations and also the appear-

ance of short-distance ultraviolet divergencies. The perturbative construction of vacuum

expectations of PFG's which generate wedge algebras is reminiscent to a the revival of the
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perturbative version of the old dream to construct an S-matrix just using crossing sym-

metry (and the analyticity which is required for its formulation) in addition to unitarity.

The old S-matrix bootstrap program failed, even on a perturbative level no formulation

without the use of �elds was found. But thanks to modular wedge localization we can now

formulate a similar but structurally richer program which already showed its power in the

case of factorizing models. It is clear now that the weak point of the old S-matrix boot-

strap was not primarily in its concepts but rather in its almost ideological and unfounded

stance against QFT and anything \o�-shell". For a recent review of S-matrix theory I

refer to [22]. Finally the claim that it is a unique theory and that it constituted a \TOE"

(a theory of everything, in this case everything minus quantum gravity) contributed to

its downfall. The present modular localization approach is di�erent on all counts. Even

the avoidance of �eld coordinatizations in favor of nets has entirely pragmatic reasons. In

sharpening the localization beyond wedges via algebraic intersections of wedge algebras

instead of using the local coupling of �elds with its short distance problems and rather

ad hoc resulting separation into renormalizable/nonrenormalizable, one has the chance to

shed an entirely new light on problems which are central to QFT.

2.5 Modular Origin of Quantum Symmetries

Modular theory reproduces all the standard spacetime and internal symmetries, but it

also produces new symmetries which remained hidden to the Lagrangian approach.

Before we look at the hidden symmetries, it is interesting to note that even the stan-

dard symmetries (i.e. those having a classical Noetherian counterpart) reappear in a very

unusual and interesting way. To illustrate this point let us ask how can we characterize a

chiral conformal theory i.e. its algebraic description in terms of a net on the circle. The

well-known answer is: by two algebras which are in the relative position of \ half-sided

modular inclusion" (hsm) [23]. The prototype are two half-circle algebras rotated by �
2

relative to each other (the quarter-circle situation) [24]. The 1
4
-circle of their intersection

is compressed towards one of its endpoints under the action of each of the dilations as-

sociated with the half-circle which are the modular groups of the associated algebras. In

fact the compression only happens for one particular (�)sign of the dilation parameter
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(�hsm). This together with the analytic results by Borchers coming from the energy pos-

itivity within the modular setting [25], inspired Wiesbrock to introduce a general theory

of modular inclusions and modular intersection. With respect to chiral conformal theories

Wiesbrock's result was that the study of abstract \standard hsm-inclusions" is equivalent

to the classi�cation of chiral conformal nets.

Encouraged by this success, this modular inclusion concept was enriched by additional

requirement of a more geometric nature whereupon it became possible to characterize also

higher dimensional nonconformal nets in terms of the modular relations (inclusions, in-

tersections) of a �nite family of von Neumann algebras. The surprising aspects of these

investigation was that both the spacetime symmetries (the Poincar�e or conformal symme-

tries) as well as the physics-encoding net structure follow from abstract relations (modular

inclusions, intersections) between a �nite number of copies of one and the same unique von

Neumann algebra (the hyper�nite III1-factor). In view of the fact that the modular groups

of most causally complete regions act as unknown non-pointlike transformations, it was

interesting to get more information about their interpretation in terms of physical symme-

tries [15]. Again it appeared reasonable to study of this question in the simplest context

of chiral conformal theories. In contrast to higher dimensions chiral theories do have

in�nitely many geometrically acting one-parametric di�eomorphisms which are unitarily

implemented by unitaries which change the vacuum. It turns out that by taking the large

parameter limit (see next section for an example) the transformed correlation functions

stabilize and de�ne a new state over the algebra which is invariant under the respective

subgroup. A closer examination reveals that these states have a modular interpretation

with respect to multi-interval algebras which are cyclic and separating with respect to this

state (but loose this cyclicity upon restriction to one algebra). This explains the modular

aspects of all spacetime regions on the circle, including disconnected ones. By contrast,

in higher dimensions the modular groups of massive theories (with the exception of wedge

regions) are for no choice of states pointlike13; they preserve the causal closure of the

localization region but act nonlocally inside (they would act on localizing test functions

in a support-preserving but otherwise nonlocal fuzzy way). By analogy one should then

13The best one can hope for is that they act asymptoticall pointlike near the causal horizon.
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view a suitably de�ned universal in�nite parametric modular group generated by all the

individual modular groups of spacetime regions as the hidden symmetry analogue of the

chiral di�eomorphism group. The Poincar�e group is the maximal geometric subgroup

and it is generated from a �nite subset of (A(W );
) W 2 W. One also meets \par-

tially hidden" symmetries in the spacetime analysis of modular inclusions/intersections

i.e. automorphisms which act geometrically on subnets.

The present method of analysis based on modular groups is not the only one; a very

interesting alternative approach based on the modular involutions J has been proposed

by [26].

Closely related to the issue of hidden symmetries is the inverse of the Unruh observa-

tion namely the question of existence of a geometrical interpretation \behind the horizon"

of the von Neumann commutant of a thermal heat bath system. Conditions under which

this is possible have been studied in [27][28]

The reduction of LQP to the study of inclusions and intersections has changed the

underlying philosophical basis of particle physics. The di�erent outlook had been occa-

sionally described by Haag in terms of a change from the Newtonian picture of reality

as a manifold �lled with a material content (relativity and quantum mechanics included)

to the world of monades of Leibnitz, which although lacking individuality, create a rich

reality by their interrelations.

The reader is invited to try to translate Leibnitz'es monades into hyper�nite type III1

von Neumann factors. The latter are as structureless entities and like points in geometry

without individuality with one important di�erence: one factor can be included in the

other and both can have nontrivial intersection. One should mention that this mode of

thinking is also quite visible in the mathematics discovered by Alain Connes and in Vaugn

Jones subfactor theory.
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3 Local Quantum Physics versus Quantum Mechan-

ics: a Change of Paradigm

The consequences of modular localization as explained in the previous section are not

the only source of radical conceptual change in QFT. Another equally drastic conceptual

change change of paradigm (however with a strict adherence to the physical principles of

LQP) is the \degree of freedom" or phase space property of QFT and the positioning of

QM versus QFT.

3.1 The LQP Phase Space

Again this has a quite interesting history behind it, although some of its more dramatic

consequences were only noticed in more recent times. It goes back to attempts by Haag

and Swieca to make some of the consequences of the density of local states as expressed in

the Reeh-Schlieder density theorem14more physically acceptable by introducing additional

concepts [1]. Whereas in quantum mechanics the box localization separates the physical

description via tensor-product factorization into an \inside and outside Hilbert space"

(and a corresponding tensor-product of full operator algebras), the long range vacuum

structure due to the omnipresence of vacuum uctuations destroys such a picture and

replaces it by an extreme opposite denseness (cyclicity) property of localized state vectors,

the so-called Reeh-Schlieder property. This denseness property of localized states

A(O)
 = H

has been sometimes provocatively referred to by some of the protagonists of these in-

vestigations as the \particle creation behind the moon"-paradox: by applying appropi-

ate observables localized in spacetime to the vacuum one may approximate any local

change anywhere instantaneously. Even if one (as one learned from the analysis of ERP

14The Reeh-Schlieder denseness theorem [18] is often presented together with the assertion of a one-to

one correspondence between localized operators and vectors in the dense subspace of localized states, the

so called separability property (the \operator-state correspondence") . Modular theory allows a profound

understanding and relates denseness and separability as dual properties in the sense of von Neumann's

commutant notion.
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Gedankenexperiment) is prepared to make a distinction between causal ties of events and

long range correlations in states, this does not explain why there is such an impressive

conceptual di�erence between the tensor factorization of quantummechanical localization

and the localization in LQP.

In an attempt to reconcile the strange-looking aspects with common sense in quantum

theory, Haag and Swieca introduced the notion of phase space into LQP. They restricted

the local vector states by the requirement that PEA(1)(O)
 be a compact set of vectors in

H. Here the superscript on A(O) denotes the unit ball in the operator norm of the local

algebra and PE is the projector on vectors of energy smaller than E which feature in the

spectral representation of the hamiltonian H =
R
EdPE : They argue that the creation of

\behind the moon states" in an earthly laboratory is not possible with a limited supply of

energy i.e. the incredible small vacuum polarization correlations which exist as a matter of

principle even over large distances can not be su�ciently ampli�ed in the desired region

with a limited energy supply. Using the same type of intuition but sharper estimates,

Buchholz and Wichmann proposed a variant of this requirement which became known

under the name nuclearity requirement and has the advantage that it is easier to use in

calculations and closer to properties of thermal states. It reads

PEA(O)
 or e��HA(O)
 is nuclear (53)

This amounts to the nuclearity of the map � : A(O)! e��HA(O)
 i.e. the requirement

that this map has a representation

�A =
X

�i(A) i (54)

where the �i are bounded linear forms on the algebra and the  i are vectors in the Hilbert

space such that

X k�ik k ik <1 (55)

k�k1 := inf
X

�i(A) i (56)

with the norms having the respective natural meaning and the last equation de�nes a

new \nuclear norm" [1]. The requirement implies that the image set in the Hilbert space
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is \nuclear" and a fortiori compact as demanded by Haag-Swieca. In physics terms such

maps are only nuclear if the mass spectrum of LQP is not too accumulative in �nite mass

intervals; the excluded cases are those which in quantum statistical mechanics would

cause the strange appearance of a maximal \Hagedorn" temperature or the complete

loss of thermal concepts, so that one expects a close relation between nuclearity and the

thermal aspects of QFT. Indeed the nuclearity assures that a QFT, which was given in

terms of its vacuum representation, also exists in a thermal state. In fact the nuclearity

index turns out to be the counterpart of the quantum mechanical Gibbs partition function

[29][1] for open systems and behaves in an entirely analogous way to the Gibbs formula

in a closed quantization box. The nuclearity property and the resulting phase space

properties of LQP (localization in spacetime and limitation of energy) goes a long way

to reconcile the local denseness of state property with common sense in that it associates

with an approximating sequence of \particle behind the moon creation" an ever increasing

expenditure in energy.

3.2 The Split Property

Before we link nuclearity with the pivotal \split property", let us motivate the latter

taking a helping hand from the history of QFT. The peculiarities of the above degrees-

of-freedom-counting are very much related to one of the oldest \exotic" and at the same

time characteristic aspects of QFT, namely vacuum polarization. As �rst noticed by

Heisenberg (and later elaborated and used by Euler, Weisskopf and many others), the

partial charge:

QV =
Z
V
j0(x)d

3x =1 (57)

diverges as a result of uncontrolled vacuum particle/antiparticle uctuations near the

boundary. In order to quantify this divergence one acts with more carefully de�ned

partial charges on the vacuum (s=dimension of space)

QR =
Z
j0(x)f(x0)g(

x

R
)dsx (58)
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The vectors QR
 only converge weakly for R! 1 on a dense domain. Their norms

diverge as [30]

(QR
; QR
) � const �Rs�1 (59)

� area

The surface character of this vacuum polarization is reected in the area behavior. Dif-

ferent from the vacuum polarization clouds in the previous sections this surface vacuum

polarization exists even without interactions.

The algebraic counterpart of this age-old observation is the so called \split property",

namely the statement [1] that if one leaves between say the double cone (the inside of a

\relativistic box") observable algebra A(O) and its causal disjoint (its relativistic outside)

A(O0) a \collar" (geometrical picture of the relative commutant) O01 \ O, i.e.

A(O) � A(O1); O � O1 ; properly (60)

then it is possible to construct in a canonical way a type I tensor factor N which extends

in a \fuzzy" manner into the collarA(O)0\A(O1) i.e. A(O) � N � A(O1):With respect

to N the Hilbert space factorizes i.e. as in QM there are states with no uctuations (or no

entanglement) for the \smoothened" operators in N : Whereas the original vacuum will

be entangled from the box point of view, there also exists a disentangled product vacuum

on N : The algebraic analogue of a smoothening of the boundary by a test function is

the construction of a factorization of the vacuum with respect to a suitably constructed

type I factor algebra which uses the above collar extension of A(O): It turns out that
there is a canonical, i.e. mathematically distinguished factorization, which lends itself

to de�ne a natural \localizing map" � and which has given valuable insight into an

intrinsic LQP version of Noether's theorem [1], i.e. one which does not rely on quantizing

classical Noether currents. It is this \split inclusion" which allows to bring back the

familiar structure of pure states, tensor product factorization, entanglement and all the

other properties at the heart of standard quantum theory and the measurement process.

However despite all the e�orts to return to structures known fromQM, the original vacuum

retains its thermal (entanglement) properties with respect to all localized algebras, even

with respect to the \fuzzy" localized N :
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Let us collect in the following some useful mathematical de�nitions and formulas for

\standard split inclusions" [31]

Def.: An inclusion � = (A;B;
) of factors is called standard split if the collar A0\B
as well as A;B together with 
 are standard in the previous sense, and if in addition it

is possible to place a type I1 factor N between A and B.
In this situation there exists a canonical isomorphism of A_B0 to the tensor product

A�
B0 which is implemented by a unitary U(�) : H� ! H1 �
H2 (the \localizing map")

with

U(�)(AB0)U�(�) = A�
B0 (61)

A 2 A; B0 2 B0

U�(�)(
�

) � �� 2 H�

h�� jAB0j ��i = !(A)!(B0) 6= !(AB0)

This map permits to de�ne a canonical intermediate type I factor N� (which may di�er

from the N in the de�nition)

N� := U�(�)B(H1)
 1U(�) � B � B(H�) (62)

It is possible to give an explicit formula for this canonical intermediate algebra in terms

of the modular conjugation J = U�(�)JA
 JBU(�) of the collar algebra (A0 \ B;
) [31]

N� = A_ JAJ = B ^ JBJ (63)

The tensor product representation gives the following equivalent tensor product rep-

resentation formulae for the various algebras

A � A
 1 (64)

B0 � 1
 B0

N� � B(H�)
 1

As explained in [31], the uniqueness of U(�) and N� is achieved with the help of the

\natural cones" P
(A _ B0) and P


(A 
 B0): These are cones in Hilbert space whose
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position in H� together with their facial subcone structures preempt the full algebra

structure on a spatial level. The corresponding marvelous theorem of Connes [32] goes

far beyond the previously mentioned state vector/�eld relation which follows from the

Reeh-Schlieder density theorem.

Returning to our physical problem, we note that we have succeeded to �nd the right

analogue of the QM box for open LQP subsystems. Contrary to the hyper�nite type III1

algebras for causally closed double cone regions with their sharp light cone boundaries

(\quantum horizons"), the \fuzzy box" type I factor N� constructed above (apart from

its fuuzzy geometrical aspects) permits all the properties we know from QM: pure states,

inside/outside tensor-factorization, (dis)entanglement etc. Whereas A as a type III al-

gebra is \intrinsically entangled"15, the fuzzy box is a conventional quantum mechanical

algebra whose only unusual aspect is that the restriction of the vacuum generates entan-

glement and a Hawking-Unruh temperature. Mathematically this means that the state

! jA�
B0represented in the tensor product cone P


(A�
B0) is not the tensor-product of
those of the separate restrictions of ! to A and B0 but rather a highly entangled KMS

temperature state. This is obviously the result of vacuum uctuations i.e. the fact that

a physical vacuum in a LQP, di�erent from the no-particle state of Schr�odinger QM,

correlates spatially separated regions. Note also that the restriction of the product state

! 
 ! to B or B0 is not faithful resp. cyclic on the corresponding vectors and therefore

the application of those algebras to the representative vectors �!
! yields projectors (e.g.

P� = U�(�)B(H1) �
1U(�)):

3.3 Localization-Entropy

Since the fuzzy box algebra N� is of quantum mechanical type I, we are allowed to use

the usual trace formalism based on the density matrix description, i.e. the vacuum state

is a highly entangled density matrix �
 on N� which leads to a well-de�ned von Neumann

15Such algebras have neither pure states nor can they appear as tensor-factors in the factorization of

bigger algebras. Their properties from the quantum measurement point of view are nicely explained in

[33].
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entropy

(
; A
) = tr��A; A 2 A (65)

S(��) = �tr��log�� (66)

It turns out to be quite di�cult to actually compute �� which describes the von Neumann

entropy of the fuzzy box S(��): Taking into account the above historical remarks on the

early observations of vacuum-uctuations near the boundary of a box softened by test

functions (59), we expect that only degrees of freedom in the fuzzy surface around the

horizon contribute to this localization-entropy.

In order to overcome the computational problems one could try to employ similar def-

initions of localization-entropy which have a similar intuitive content and avoid the direct

construction of N�. The de�nition which seems to be most suitable for computations is16

that of the mathematician Kosaki who extended Araki's de�nition of relative entropy17

by a variational formula. Araki's de�nition uses his relative modular theory with respect

to a von Neumann algebra M

S(!1j!2)M = �hlog�!1;!2i (67)

and Kosaki [35] converted this (in the most general setting) into a variational formula

S(!1j!2)M = sup
Z 1

0

"
!(1)

1 + t
� !1(y

�(t)y(t))� 1

t
!2(x

�(t)x(t))
dt

t

#
(68)

x(t) = 1� y(t); x(t) 2 M

where in our case !1 = !�!; !2 = !; M = A_B0: An additional simpli�cation should be

gained by studying these localization entropies �rst in conformal QFT; the reason being

that the modular aspects tend to be more geometrical. They o�er the additional advantage

16The suggestion to use this (or another closely related) de�nition I owe to Heide Narnhofer who was

the �rst to study the issue of localization-entropy [34].
17This entropy concept was recently successfully used by R. Longo [36] in order to generalize some

aspects of the Kac-Wakimoto formula from the special setting of rational conformal theories to the

theory of superselection sectors.
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of reducing the nuclearity (and hence the split-) property to the tracial condition

tre��n
�L� <1 (69)

L� = P� + IP�I (70)

where I denotes the geometric conformal inversion and L� turns out to be an operator

with discrete spectrum (L� are the well-known rotation generators of the d=1+1 chiral

decomposition) with L0 positive de�nite.

Let us �rst look at chiral conformal nets indexed by intervals on a light ray. The

simplest split is obtained by choosing an interval of length 2a symmetrically around the

origin and a slightly bigger one of length 2b enclosing the �rst such that the collar size

of the split situation is d = b � a and A = A(Ia); B = A(Ib). It is easy to see that

the localization-entropy (with any of the possible de�nitions) for this situation can only

depend on the harmonic ratio of these 4 points. The modular group �!�!(t) is the tensor

product of the �0!s and therefore known since the modular group for the vacuum restricted

to A or B0 is geometric.

The nongeometric culprit is the vacuum restricted to the 2-interval algebra A_B0: The
\geometrically natural" state for A _ B0 is not the vacuum but rather that state which

is left invariant under the di�eomorphism which leaves precisely the 4 -endpoints �xed.

This is not a Moebius transformation, but it is closely related. It is well-known that by

the successive application [15]

M�ob2 � (z! p
z) �M�ob � (z ! z2) (71)

where we have used the compact z = ei' coordinates instead if the light ray line, one ob-

tains a well-de�ned di�eomorphism (2nd quasisymmetric deformation ofM�ob) on the circle

(not in the complex plain!). These are precisely the di�eomorphisms mentioned before

in connection with enlarging the realm of geometric modular groups beyond those which

are visible through the vacuum properties. In fact one easily check that e.g. U(Dil2(� ))

which �xes the 4 endpoints 0; 1;�1;�1 and acts geometrically on chiral �elds A(x) (for

simplicity take free �elds) leads to a limit

limt!1 h
 jA(x1; � ):::A(xn; � )j
i � !2(A(x1):::A(xn)) (72)

A(x; � ) � AdU(Dil2(� ))A(x)
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which de�nes a state !2 such that (A _ B0;
2) turns out to have AdU(Dil2(� )) as its

modular group. This state agrees precisely with the one constructed in [15]. The modular

groups of higher dimensional double cone in conformal theories are known and their

proximity to the two-dimensional case (a ! r; x� ! r� = t0 � r) suggest that all the

modular constructions have a higher dimensional generalization.

The calculational idea is now to compute �rst

S(! � !j!2)A_B0 (73)

and then to use the dominance of ! by !2 to bound the original split entropy. Our

conjecture is that for d>2 the split entropy behaves as

S(! � !j!)A_B0 '
�
a

d

�d�2
(74)

a

d
� 1 (75)

for small d or large a such that the ratio becomes large. This would entail the area law of

the localization-entropy (associated with the causality horizon) in conformal �eld theories.

Since massive theories according to common wisdom are short-distance dominated by

conformal theories, the short distance behavior in the size of the uctuation collar d!
0 has the same divergence, and barring the presence of a competing (pathological) m

d

singularity, the short distance divergence remains coupled to the surface dependence.

The main reason for emphasizing this conjecture (analogies are not yet proofs) on

the quantum version associated with the classical Bekenstein area law18 in an essay like

this is that there has been hardly any subject in the last decade which has received

such an amazing amount of speculative attention going as far as postulating some new

degrees of freedom. This is quite surprising in view of the fact that the localization-

temperature has a rather mundane explanation in terms of the KMS properties of the

restricted vacuum on conventional degrees of freedom. The situation resembles that of the

speculative ideas of how to get rid of the ultraviolet divergencies before renormalization.

Although I do not know the result in the present case, I would favor the LQP spirit of

18The causal horizons in Minkowski QFT and the Unruh e�ect is analogous but not identical to black

hole physics. Unruh states and Hartle-Hawking states are di�erent but share the thermal aspects [37].



{ 42 { CBPF-NF-019/00

limiting all revolutionary ideas to physical and mathematical concepts and not to muddle

with physical principles (as it was done without success with QFT in pre-renormalization

times).

3.4 The LQP Paradigm: Quantum Measurement

Despite its conservative way of dealing with physical principles AQFT leads to radical

change of paradigm. This is nowhere more visible than in its relation to quantum mechan-

ics and the measurement process. As we have seen, the standard concepts about purity

and entanglement of states loose their meaning i.e. LQP is quite remote from what is

done in quantum information theory (note that the word \local" there has a very di�erent

meaning). Instead of tensor factorization associated with the inside/outside localization

in quantum mechanics, the sharp relativistic boxes (double cones) do not have pure states

and an attempt to use them together with their causally disjoint outside for the intro-

duction of the entanglement concept along this inside/outside division will fail: all states

are intrinsically entangled vector states thus rendering the distinction meaningless [33].

Even if we use the factorization along fuzzy boxes and their outside, we only recover these

concepts at the expense of a thermally parametrized highly mixed vacuum including all

its local excitations which constitute the natural set of states in particle physics. As a

result, most of the famous Gedankenexperiments as e.g. the \Schr�odinger cat" receive

important qualitative modi�cations. But all e�ects are of the ridiculously small order of

the Unruh temperature (at feasible acceleration values). Thus quite di�erent from the

recently measured decoherence times for \small Schr�odinger cats" (a very small number

of photons in a cavity probed with atoms), the additional e�ects of modular localization

i.e. the di�erence between sharp and fuzzy boxes and the entangled nature of the vac-

uum state with respect to any of them will never be directly accessible. Rather one is

limited to study the indirect manifestations of e.g. the Unruh (wedge) thermality within

particle physics. In the previous section we learned that the crossing symmetry is equiv-

alent to the KMS thermal properties of the Hawking-Unruh e�ect. As such it is a very

large e�ect. Crossing symmetry is a property which was used in disperion theory and the

Kramer-Kronig dispersion relations for particles were experimentally tested a long time
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ago.

4 A Peek at 21st Century Local Quantum Physics

A glance at the future consist mostly of personal expectations and, if one looks at the

many attempts at predictions about the future and the many resulting unful�lled promises

during the last two decades, on gets a little bit discouraged. But just in order to prove that

the modular framework is also capable to lead to interesting conjectures and expectations

let me present some of them.

4.1 Extension of Renormalized Perturbation Theory?

There is certainly general agreement that gauge theories belong to the most important

contributions to 20th century particle physics. But on the other hand they hardly consti-

tute a closed mature chapter in particle physics. In fact it is very indicative that all the

important observations about them have been made within the �rst 5 years after their

(re-)discovery and adaptation to the purposes of particle physics at the end of the 60ies

and that the rate of progress levelled o� steeply afterwards: So it is natural to ask if one

could expect the modular localization method to contribute to their future development.

I believe that this question will have a positive answer.

In order to explain my reasons I �nd it convenient to place the problem behind gauge

theory into the slightly physically more general context of search for renormalizable the-

ories in which massive higher spin particles participate. It is well known that within

the causal perturbative approach (as with any alternative approach based on Lagrangian

quantization) massive theories with spin s � 1 necessarily produce interaction densitiesW

(i.e. scalar Wick-polynomials in free �elds) of at least third degree whose operator short

distance dimension dimW � 5 surpasses the value 4 allowed by renormalizable power

counting. The reason is of course that the operator dimension of physical quantum vector

�elds dimA� = 2 is too high as compared with its classical counterpart dimAclass
� = 1:

In fact this is not a consequence of a bad selection of a covariant �eld associated with

the (m,s) Wigner particle description; any other choice would have given at least a value
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2. Can one think of an had hoc covariantization which reduces this value to 1 and at

the same time does not destroy the hope that the resulting violation of the quantum

aspects of the covariant description the spin1 Wigner particle has permanently wrecked

the physical aspects? To be more speci�c. is it conceivable that the \ghost degrees of

freedom" which achieve such a reduction of the covariantized propagation degree act like

a mysterious kind of catalyzer which are not visible in the original problem and leave no

traces in the �nal physical answer but nevertheless play a bene�cial intermediate role?

Everybody knows that the answer is positive and that this is formally done with BRS

ghosts in Fock space. The reason why this mathematical trick preempts the �nal return

to physics is the fact that it amounts to a cohomological representation. In fact, and this

is our new addition [38], in the massive case this can already be implemented on the level

of the (m,s) one-particle Wigner space

HWig =
kers

ims
(76)

where s is a cohomological operator s2 = 0 which acts on the ghost-extended Wigner

space HWig (not to be confused with the pre-Tomita operator19: The Fock space operator

version of this cohomological Wigner space representation for the operator algebras

Aphys =
kerQ

imQ
(77)

(where the formal operator Q acts on the extended algebra by commutation) of is nothing

but a special version of the BRST formalism in which the position of the physical space

with respect to the ghost-extended space does not change with the perturbative order.

This simple formalism would not have been available with vanishing mass because in

that case the free �elds in zero order would not have been interpretable as the in-�elds

in the sense of time-dependent scattering theory (appearance of infrared-divergencies).

Massive �eld theories, even if analytically more complicated, are conceptually simpler.

The �ndings of this way of looking at spin=1 interactions can be described as follows [38]

� Physical consistency within the renormalizability requirement demands the exis-

tence of additional physical degrees of freedom which in their simplest (and probably

19This should be viewed as an operator version of the Faddeev-Popov trick.
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only) realizations are scalar particles as in the Higgs mechanism of gauge theories

but without vacuum condensates which was characteristic of that mechanism. The

intrinsic role of this �eld is the implementation of the Schwinger-Swieca charge

screening.

� Some of the \elementary" physical �elds (i.e. those which interpolate the perturba-

tive particles) appear composite in the extended formalism. The rules for a direct

characterization of physical �elds remain presently complicated and their intrinsic

nature is essentially not understood; they certainly do not follow simple invariance

rules as the �xpoint algebras under a group symmetry, rather their representation

in the extended formalism lead to ever changing linear combinations of composites.

� Apart from the renormalization induced self-interaction of the scalar Higgs ana-

logues, the renormalization requirement is more restrictive20 than expected and

governed by just one coupling strength. In this sense the renormalization within

the causal setting leads to gauge structure of the coupling: the gauge groups are

not put in but result from the assumed particle multiplicities in conjunction with

the cohomological trick which is part of renormalization and has nothing to do with

group symmetry. In the standard presentation this appears the other way around

and goes with the dictum: local gauge symmetry implies renormalizability.

Here we have tacitly assumed that there are several mutually interacting spin one

objects in order to avoid the abelian case. In the case of abelian vectormesons there are

two renormalizablemodels: the above one in which all physical matter �elds (including the

new scalar degree of freedom) have their expected short-distance dimension, and \massive

QED" for which e.g. the physical spinor matter �eld has an ever increasing short distance

behavior (i.e. it is an unrenormalizable �eld within a otherwise renormalizable theory) or a

renormalizable representation in its unphysical (\gauge dependent") extended realization.

This last remark suggests the following question: is it conceivable that there are the-

ories which are partially renormalizable i.e. in which suitably restricted observable sub-

20Classically the appearance of more Lorentz indices for increasing spin would enlarge the possibilities

of invariant couplings



{ 46 { CBPF-NF-019/00

algebras have a normal short-distance behavior? Could it be that Lagrangian �eld co-

ordinates (in particular if they belong to higher spin) are not minimal in the sense of

short distances i.e. the same theory allows better behaved �eld coordinatizations which

are not Lagrangian? What at all is the physical meaning of \short distance" in a �eld-

coordinatization-free formulation in the LQP spirit; short distance behavior of what?

Especially this last question brings us back to the main theme of this essay: the

modular localization approach. Since the wedge-localized algebra is a �eld-coordinate

independent object and the local net of spaces and algebras is obtained by intersection

of wedge-localized situations, such a procedure would directly confront these questions.

There is no worry about ghosts reappearing in such a setting since the short distance

behavior of pointlike objects has gone which was their reason d'etre.

In fact the modular formalism can be interpreted as an extension of the Wigner the-

ory to the realm of interactions. Its starting point, the wedge algebra is on-shell21 The

improvement of localization i.e. the transition to o�-shell double cone subspaces and

algebras is done by intersections and in no way calls for ghosts or touches in any other

way the standard short-distance issue. So the interesting remaining problem is: can these

ideas be supplemented with some new perturbative technology which extends the realm

of the standard renormalization theory. This implies in particular the reproduction of the

correct old results.

Looking back to the particle physics of the 60ies; one even gets the impression that the

ill-fated S-matrix bootstrap approach was an attempt in this direction [22]. For an outside

observer as the present author it is very hard to �nd out why the program of perturbative

constructions of crossing symmetric S-matrices by pure on-shell methods failed. Techni-

cally speaking it had to do with the generalization of the Mandelstam representation to

more than 4 points. But physically these technical points remained obscure because there

was a lot of rampant analyticity (guessed on the basis of extrapolation from low order per-

turbation theory) which conceptually was unaccounted for. Not even the conceptual basis

of crossing symmetry was properly understood. On the other hand the analyticity which

21The fact that on-shell quantities are free of ghosts has been used in the tree approximation unitarity

S-matrix arguments in favour of a gauge theoretic description of vectormesons.
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enters the present modular approach has a well-understood conceptual position in terms

of the principles of LQP. The new modular framework is therefore expected to do much

better. Indeed the transition from crossing symmetry to the thermal KMS properties for

the correlations of PFG's as in section 2 is expected to give a physically richer and formally

more systematic starting point than the old bootstrap approach since it uses �eld theo-

retic concepts and formalism already for the introduction of the on-shell wedge-localized

algebras. Needless to say that the modular approach does not support the \cleansing ide-

ology" of the S-matrix bootstrap approach against o�-shell concepts from QFT. To the

contrary, the modular structure, more than any other method of particle physics, places

causality and spacetime localization back onto the centre of the stage. In doing this it

sheds new and quite unexpected light on the old on-shell/o�-shell dichotomy of particle

physics which remained unaccessible to di�erential geometric methods. It promises to

elevate the intrinsic spirit of Wigner's 1939 quantum theory of free relativistic particles

to the level of interacting local quantum physics. On the perturbative level one expects

the feasibility of a deformation theory of �eld-coordinatization-free wedge-localized nets

with the o�-shell steps following suit via intersections.

It is well-known that infrared problems indicate a change of the Wigner particle picture

[39]. In the present proposal this shows up in the appearance of violent (o�-shell) infrared

divergencies due to the breakdown of the Fock-space structure and the loss of physically

de�ned (by scattering theory) reference (free) �elds. In terms of the above BRST-like

cohomological extension in the setting of point-like �elds this means that e.g. the physical

 - �elds (describing the spinor matter) which are equal to the original  -�elds, do not

have zero mass limits. This is a manifestation of of charge liberation which is the inverse

mechanism to the afore-mentioned Schwinger-Swieca charge screening. From general LQP

structure results we expect that charge-carrying �elds in QED-like theories do not admit

compact localization since the accompanying photon clouds are necessarily semiin�nite

noncompact objects22. Therefore one must modify the physical  -�elds before taking

the massless limit in such a way that the worsening of localization is preempted. It

22The photon clouds require semiin�nite spacelike cone regions for their localization. This is preempted

on a formal level by the spacelike Mandelstam strings of gauge theory.
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is interesting to note that this must go together with the expected de-coupling of the

Higgs-like degrees of freedom. Both phenomena should show up after projection to the

physical perturbation theory. The infrared issue and the resulting modi�cation of particle

structure can also be dealt with in the standard gauge approach by seperating the algebraic

aspects from those due to states [40]. Finally one should also mention that there are other

less conservative ideas which promise to adjust the (semi)classical gauge idea directly to

the noncommutative setting. Their motivation is di�erent from the above attempts of

extending renormalized perturbation theory beyond its present borders (and keeping the

existing renormalized results unchanged).

4.2 Conformal Scanning?

For the analysis of nonperturbative aspects modular theory o�ers a di�erent method which

was already alluded to before, namely the reduction of a complicated higher dimensional

massive theory to a �nite number of copies of a simpler chiral conformal theory which

reside in a commonHilbert space and have a carefully tuned relative position to each other.

This use of chiral \holography" or \scanning" for general QFT is possible because the

LQP version of chiral conformal theory is more general than the standard framework which

ties chiral theories to the representation theory of a two-dimensional energy-momentum

tensor with zero physical mass. As we have seen in section 2 the wedge algebra of a

higher dimensional theory with its light ray translations and the Lorentz-boost is naturally

encoded into the half light ray algebra. By its construction via modular inclusion the light

ray theory has automatically a conformal rotation i.e. is fully M�obius-covariant, i.e. the

more general version leads to the same vacuum structure as the standard.. The spectrum

of the light ray translation is gapless as it should be in a chiral conformal theory, since

light cone momenta are always gapless. The abstract chiral light ray theory does however

not possess an energy-momentum tensor with a Ln Virasoro algebra structure which is

the hall-mark of an autonomous two-dimensional conformal �eld theory. The physical

mass-gap spectrum can be recovered in the chiral light-ray holography of the wedge by a

careful re-interpretation of the geometric transformations in the wedge. In this way the

light ray translation on the lower wedge horizon becomes a \hidden symmetry", namely a
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totally nonlocal (\fuzzy") transformation; whereas the transversal translations generated

by ~P? are presenting themselves in the light ray world as a kind of noncompact inner

symmetry. The local generator P+ of the light ray translation together with its hidden

counterpart P� and the fake internal symmetry generator ~P? de�ne the massive physical

spectrum of

P �P� � P+P� � ~P 2
? (78)

In view of this additional partially hidden structure of chiral theories originating from

holographic projections of higher dimensional massive ones as compared to the standard

ones (based on the existence of a Virasoro type energy-momentum tensor), it is sometimes

helpful to picture the chiral projections as associated with the d-1 dimensional (upper)

horizon of the wedge. This does no harm as long as one remains aware of the fact that this

picture does not include the net structure associated with the P� and ~P? translations.

The remaining L-transformations which are not symmetries of the standard wedge W,

are transforming A(W ) into a di�erently positioned A(W 0) i.e. are isomorphisms within

the total algebra B(H): For d=2+1 one only needs one particular operator from the one-

parametric family of \tilting" boosts which �x the upper light ray. Such transformations

are well-known from the Wigner \little group" of light like vectors. In the present case

of d=2+1 the little group is generated by just one \translation" (within the L-group).

Any special transformation from this 1-parametric family di�erent from the identity will

via a W 0 and its holographic light cone projection A0(R+) lead to an isomorphism within

B(H) of A(R+) to A0(R+): It is plausible that such isomorphism between two di�erently

positioned light ray algebras can encode the missing covariances and net structure. This

can be demonstrated by applying the theory of modular intersections to the two light

ray (alias wedge) algebras. In dimension d one needs precisely d-2 specially positioned

chiral theories in order to recover the full Poincar�e symmetry and the d-dimensional net

structure. As far as counting parameters is concerned, this corresponds precisely to a

light front holography onto the horizon of the wedge, but a better picture is that of a

scanning by d-1 (isomorphic) copies of a chiral theory. In order to apply these ideas for

practical constructive purposes in higher dimensional �eld theories, one should look for

an extension of the notion of modular intersection to more than two algebras. Using a
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similar historical analogy as above (modular wedge localization method ' extension of

Wigner representation theory), it is tempting to interpret the modular holography as a

clari�cation and extension of light cone (or p!1 frame) physics.

In order to accomplish such a program, the understanding of chiral conformal �eld

theories themselves should be improved. Its present sectarian role with respect to higher

dimensional QFT and the general principles is clearly caused by the heavy reliance on spe-

cial algebras (energy-momentum tensor, a�ne, current) which have no higher dimensional

counterpart. On the other hand the theory of superselection rules and their consequences

for particle/�eld statistics is common to all theories. In the particular case at hand [41]

the admissible statistics belongs to the braid group and can be in fact classi�ed by Markov

traces on the braid group which via GNS construction lead to combinatorical type II von

Neumann algebras (sometimes inappropriately called \topological �eld theories"). They

contain the statistics information in such a way that the permutation group statistics

emerges as a special case. The missing �eld theoretic part is the use of the quantized

statistics (the statistical dimensions follow the famous trigonometric Jones formula) for

the construction of the spacetime carriers of these superselected charges. The ultimate

test should consist in the derivation of FQS-quantization of the central charge from the

physically more universal statistics quantization. It is clear that the modular theory must

play an important role [42].

4.3 A higher dimensional Theory of Anomalous Dimension?

In order to avoid the impression that the conservative attitude of LQP with respect to

physical principles prevents addressing presently fashionable subjects, I would like to

explain some speculative ideas on so-called SYM models. This is clearly part of the

general question of nontrivial aspects of higher dimensional conformal QFT. As in the

well-studied d=1+1 conformal theories, interpolating local �elds which create Wigner

particles are necessarily canonical free �elds. Hence nontrivial �elds cannot be associ-

ated with Wigner particles and must have noncanonical anomalous dimensions (which at

best can be associated with infraparticles). So the �rst step in unraveling the structure

of d>1+1 conformal theories should be the understanding of its spectrum of anomalous
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dimensions. For d=1+1 conformal models such a theory of anomalous dimension (critical

indices of associated critical statistical mechanics) exists; these numbers are determined

(modulo 2�) by the statistical phases of the braid group statistics of the �elds (the R-

matrices of the exchange algebra). The classi�cation of physically admissable braid group

statistics is a well-de�ned mathematical problem which can be separated from the space-

time aspects of QFT and treated by the technique of Markov-traces. The construction of

nets ful�lling exchange algebra relations can be converted into a well-de�ned problem of

modular theory. Can one achieve a similar situation with respect to anomalous dimensions

(' critical indices) in higher dimensional conformal theories? The answer is positive for

theories which admit observable algebras which ful�l timelike commutativity i.e. which

propagate only in lightlike directions (Huygens principle) as zero mass free �elds. There

are arguments that by choosing the observable algebra su�ciently small, this can always

be achieved. One would like to interpret anomalous dimension �elds as carriers of super-

selection charges associates with the timelike local observable algebra and one glance at

the two-point function reveals that one should expect timelike braidgroup commutation

relations associated with the timelike ordering structure23. This is indeed what a sytem-

atic DHR analysis in terms of localized endomorphisms con�rms. We obtain the whole

superselection formalism with braidgroup (R-matrix) commutation relations except that

the statistic interpretation is missing: from the viewpoint of spacelike commutation re-

lations we are dealing with Bosons/Fermions. The two- and three-point functions of the

observable �elds su�er the usual conformal restrictions i.e. they are determined by their

dimensions modulo a normalization constant which carries the memory about the interac-

tion. If supersymmetry \protects" these parameters against changes due to interactions,

then such a model is in dangerous proximity of a free �eld theory.

My conviction that the present modular framework and more generally the LQP ap-

proach will have a rich future stems primarily from the fact that the intrinsic logic of

LQP is strong and convincing that it appears a safer guide than that obtained from the

quantization approach. Whereas the canonical formalism, the interaction picture, the

23In fact the time-like net in the forward light cone admits a projection onto the timelike line which is

a chiral conformal theory without the Virasoro structure.
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formalism of time-ordering etc. can (and has been) be used outside of relativistic QFT,

the modular approach is totally speci�c for real time LQP. In fact it is the only truly

noncommutative entrance into QFT which came really from physics (rather than physi-

cal illustrations of mathematical concepts as done e.g. with noncommutative geometry).

Admittedly, it is an area, which because of its strong conceptual roots and demanding

mathematical apparatus is not easy to enter; neither does the subject render itself to fast

publications. But in compensation, even if progress at times is very slow, it carries a

conceptual profoundness and mathematical solidity which, if coupled with the belief in

the guiding power of physical principles (especially through times of crisis), is hard to

match.

A super�cial observer would conclude from the present account that particle physics

is strong and healthy with a promising 21st century future. Such an observer has missed

to notice the radical change of values which also profoundly altered the exact sciences.

An outburst of stunning creativity as it happened at the beginning of last century (Plank,

Einstein, Bohr, Heisenberg) is only possible under very special sociological conditions in

which the search for scienti�c truth and universality has a high social ranking and were

new emerging ideas in sciences were always confronted with historical and traditional

aspects. These are not necessarily the good times as the explosion of sciences and the

arts in the imperial as well as in the humiliated post-war Germany of theWeimar republic

shows.

Present sociology and philosophy of life is totally di�erent. The high social rank-

ing of shareholder-values and globalization over productive values in modern capitalism

has found its counterpart also in particle physics. It consists of using ones knowledge,

including mathematical sophistication primarily for improving ones status within a sci-

enti�c community and not for the bene�t of furthering science. This works because it is

tacitely accepted by a majority. In earlier times there still existed a perceived di�erence

of \physics" and what at one or the other time \physicist were doing", whereas nowadays

this distinction disappeared. How can one otherwise explain that theories which already

exist for 30 years and besides making their inventors famous never contributed anything

to particle physics enjoy such popularity? And how can one explain that rewards are
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starting to be given to inventors, thus setting examples for the young generation? The

acquired profound knowledge about quantum �eld theory is now rapidly getting lost and

it is a truly amazing experience to meet young people who do not have the slightest

idea about scattering theory, dispersion theory and the Wigner particle theory although

they know more than necessary about Calabi-Yao spaces, Riemann surfaces and all those

theories which hide behind big Latin Letters. At most places it is already impossible to

have a carrier in physics outside these trends; the academic freedom is rapidly loosing

its economic basis. Fast returns as with shareholder values are incompatible with the

ourishing of particle physics. If this trend continues another 10 years, the profound

knowledge about real problems of 20th century particle physics and QFT will have been

lost with the young generation. Even if one believes that truths in exact sciences will

always eventually �nd its way, one does not want to be proven correct on such a rather

pessimistic outlook.
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