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Abstract

This paper deals with operators (PFG), which are localized in Minkowski space wedges (Rindler or

Bisognano-Wichmann) regions, and yet are free of those polarization clouds which are typical of vectors

obtained by applying interacting operators with smaller localization regions or local �elds to the vacuum.

They relate the (o�-shell) KMS properties for the thermal Unruh wedge localization to the on-shell

concept of crossing symmtry in a surprizingly deep way, and create new understanding in an area of QFT

which hitherto remained somewhat obscure from the point of view of particle physics. The �rst test of

these concepts, carried out on the Karowski-Weisz-Smirnov axiomatic approach to factorizable d=1+1

models, yields not only a deep understanding, but also opens new ideas in the bootstrap-formfactor

approach. The �ndings suggest the existence of a new nonperturbative framework of QFT in which

interactions are not de�ned and implemented by (interaction parts) of Lagrangians or closely related

functional integrals, but rather by certain properties of the wedge algebras.

The sharpening of localization starting from wedges is done by the process of \quantum localization"

via the intersection of algebras instead of the classical localization in terms of the support of testing func-

tions. This new paradigm in QFT also leads to change of emphasis away from short distance properties

of individual �elds deciding over the existence and renormalizability of models in favor of nontriviality of

intersections of wedge algebras.

Key-words: Exact Solutions,Local Quantum Physics, Chiral Conformal Theory, Light Ray Projection

(Holography).
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I. OBSERVATIONS ON NONPERTURBATIVE PFG'S IN D=1+1

Let us start with the following surprising observation on a nonlocal modi�cation of a

d=1+1 massive free scalar �elds A(x): For the latter we use the notation:

A(x) =
1p
2�

Z
(e�ipxa(p) + h:a:)

dp

2!
(1)

=
1p
2�

Z
(e�im�sh(���)a(�) + h:a:)d�; x2 < 0

=
1p
2�

Z
C

e�im�sh(���)a(�)d�; C = R[f�i� +Rg

where in the second line we have introduced the x- and momentum- space rapidities

and specialized to the case of spacelike x, and in the third line we used the analytic

properties of the exponential factors in order to arrive at a compact and (as it will turn

out) useful contour representation. Note that the analytic continuation refers to the c-

number function, whereas the formula a(� � i�) � a�(�) is a de�nition and has nothing

to do with analytic continuations of operators�. With this notational matter out of the

way, we now write down our Ansatz

F (x) =
1p
2�

Z
C

e�im�sh(���)Z(�)d�; Z(�)
 = 0 (2)

Z(� � i�) = Z�(�)

Z(�1)Z(�2) = SZ;Z(�1 � �2)Z(�2)Z(�1) (3)

Z(�1)Z
�(�2) = �(�1 � �2) + SZ;Z�(�1 � �2)Z

�(�2)Z(�1)

�Operators in QFT never possess analytic properties in x- or p-space. The notation and

terminology in conformal �eld theory is a bit confusing, because although it is used for operators

it really should refer to vector states and expectation values in certain representations of the

abstract operators. The use of modular methods require more conceptual clarity than standard

methods.
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For the moment the S
0

s are simply Lorentz-covariant (only rapidity di�erences appear)

functions which for algebraic consistency ful�l unitarity S(�) = S(��): We assume (for

simplicity) that the state space contains only one type of particle. Before continuing with

the special situation we introduce two useful general de�nitions.

De�nition 1 A �eld operator F(x) is called \one-particle polarization free" (PF) if

F(x)
 and F�(x)
 have only one-particle components (for any one of the irreducible par-

ticle spaces in the theory)

For Pf's the vector F#(x)
 is on mass-shell i.e. has a Fourier transform in terms of

Z�(�)
, with Z(�)
 = 0: Note that the de�nition does not yet require that F (x) itself to

be on-shell. We are however interested in F (x)0s which upon smearing with test functions

restricted to a subspace L generate algebras

A = alg

�
F (f̂) =

Z
F (x)f̂(x)ddx j f̂ 2 L

�

which on the one hand are big enough in order to create a dense set of states if applied

to 
; but on the other hand allow for an equally big commutant algebra A0; in short the

PF's should generate an A which is cyclic and separating with respect to the vacuum.

As a result of F (f̂)A0
 = A0F (f̂)
 for A0 2 A0; the on-shell aspect of the vectors is

transferred to the operators, i.e. formula (2) for F (x) is valid. The L0s we have in mind

are subspaces of localized test functions L =
n
f̂ j suppf̂ � O

o
. But as a result of an

old theorem by Jost and the present author [1], this immediately limits the admissable

localization properties. If the �eld is pointlike local, this theorem forces the F to be a free

�eld, and by a slight adaptation of the proof this would continue to hold for F 0s which

have a compact Minkowski space localization. Even for noncompact localizations which

are properly contained in a wedge (i.e. a Lorentz transformed of the standard wedge

x1 > jx0j) this clash with interactions continuesy and the only consistent value of the S-

yI am indebted to D. Buchholz for a discussion of this point.
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functions in the above Ansatz are S = �1 i.e. free Bosons/Fermions. The smallest region

for which these arguments break down are wedges themselves. The following theorem

shows that indeed wedge localization in d=1+1 is consistent with nontrivial interactions

and the result emerging from the above Ansatz in formula (3) is quite surprising. One

�nds that the coe�cients are related to each other and ful�l the complete Zamolodchikov-

Faddeev algebra if and only if the F (f̂)0s with suppf̂ 2 W generate wedge localized

algebra, thus unraveling the physical signi�cance of this formally introduced algebraic

structure in terms of wedge localization. This is not the �rst time in physics that wedges

play a prominent role. In Unruh's Minkowski space illustration of the origin of thermal

aspects of quantum matter encapsulated by a horizon, in the �rst application of Tomita's

modular theory by Bisognano and Wichmann and in the inverse use of the B-W theorem

for the direct construction of local algebras [2], in all cases one encounters the fundamental

role of wedge localization and wedge algebras. In the present case we �nd [2]:

Proposition 2 The requirement of wedge localization of a PF operator F (f) =R
F (x)f̂(x)d2x; suppf 2 W with F ful�lling formula (2,3) is equivalent to the

Zamolodchikov-Faddeev structure of the Z-algebra. The corresponding F's cannot be lo-

calized in smaller regions i.e. the localization of F(f̂) with suppf̂2 O � W is not in O but

still uses all of W:

Here the requirement of wedge localization is expressed by

[A(W ); A(W 0)] = 0 (4)

with the prime on a spacetime region denoting its causal disjoint which for a wedge W

consists of the opposite wedge W 0 = W opp:

Before doing the necessary calculation, let us put on record two more de�nitions of a

general kind which are suggested by the proposition.
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De�nition 3 We call PF's which generate the wedge algebraz

A(W ) = alg
n
F (f̂);8f suppf̂ 2 W

o

PFG or one-particle polarization free wedge generators [2].

We omitted the w for wedge in our short hand notation because wedges are the \small-

est" regions in Minkowski space which do not have the full space as the causal completion

and support nontrivial PF's. So all PF's which appear in our approach are always PFG's

in the sense of wedges. In view of the mass-shell aspect of our approach and the fact that

we work more frequently in momentum space and its rapidity-parametrized mass-shell,

we reserve the simpler notation (without hat) to the Fourier transforms.

De�nition 4 We call the improvement of localization obtained by intersecting A(W )0s

for di�erent wedges an improvement of \quantum localization" [2], whereas the standard

localization in suppf̂ with the use of smeared out pointlike local �elds A(f̂) is referred to

as classical (albeit in a quantum �eld theory).

We now prove the above proposition by appealing to the so called KMS condition for

localized algebras. This property originally arose in thermal systems in cases where the

thermodynamical limit for the in�nitely extended system cannot be described in terms

of a Gibbs formula (volume divergencies), but it later turned out to be a characteristic

property for all von Neumann algebras in a cyclic and separating state vector [3]. Local

algebras in QFT are known to have this property with respect to the vacuum state at least

as long as the localization region has a nontrivial causal complement, but they generally do

not admit a natural thermodynamic limit description in terms of a sequence of increasing

zIn this letter we do not discuss the necessity to distinguish between localized von Neumann

algebras A(O) of bounded operators and polynomial algebras P(O) of a�liated unbounded

operators as those formed from products of F (f)'s and their precise relation.
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quantization boxes. In the case at hand, the wedge localized �eld algebras are known to

have Lorentz boost as their KMS automorphism group with the KMS temperature equal

to the Hawking-Unruh temperature Tloc = 2�:

Proof: Consider �rst the KMS property of the two-point function

D
F (f̂1)F (f̂2)

E
=
D
F (f̂2�i2 )F (f̂1)

E
=
D
F (f̂�i2 )F (f̂�i�1 )

E
(5)

Rewritten in terms of the f̂'s we have

Z
f1(�) �f2(�)d� =

Z
f2(� � i�) �f1(� + i�)d� (6)

which is an identity in view of the fact that the wedge support properties for the test

functions f together with their reality condition imply f(� � i�) = �f (�):

The 4-point function h1; 2; 3; 4i consists of 3 contributions, one from an intermedi-

ate vacuum state vector associated with the contraction scheme h12i h34i ; another one
from the direct intermediate two-particle contribution h14i h23iand the third one from

its exchanged (crossed) version h13i h24i : The latter is the only one which carries the

interaction in form of the S-coe�cients. In the would be KMS relation

D
F (f̂1)F (f̂2)F (f̂3)F (f̂4)

E
=
D
F (f̂�2�i4 )F (f̂1)F (f̂2)F (f̂3)

E
(7)

f z(�) : = a:c:f j�!�+z

the vacuum terms and the direct terms interchange their role on both sides of the equation

and cancel out, whereas the crossed terms are related by analytic continuation. The

required equality for the crossed term brings in the S-matrix via the relations ( [3]) and

yields

Z Z
d�d�0S(� � �0)f2(�) �f4(�)f1(�

0) �f3(�
0) (8)

=

Z Z
d�d�0S(� � �0)f1(�) �f3(�)f4(�

0 � 2�i) �f2(�
0)

Again using the above boundary relation for the wave functions we rewrite the last product

in the second line as �f4(�0 � i�)f2(�0 � i�) and performing a contour shift �0 ! �0 + i�;
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renaming � $ �0 and �nally using the denseness of the wave functions in the Hilbert

space, we obtain the crossing relation for S

S(�) = S(��+ i�) (9)

Note that we already omitted the subscripts on S, since the identity SZ;Z� = SZ;Z � S

follows from the two di�erent ways of calculating the crossed term, once by interchanging

the two creation operators in Z�(�3)Z�(�4) and then performing the direct contraction

and another way by interchanging Z(�2)Z�(�3) and then being left with the vacuum

contraction. Let us look at one more KMS relation for the six-point functions of the

would be PFG's.

D
F (f̂1)::::F (f̂6)

E
=
D
F (f̂2�i6 )F (f̂1):::F (f̂5)

E
(10)

This time one has many more pairings In fact ordering with respect to pair contraction

times 4-point functions one may again group the various terms in those for which the

pairing contraction is between adjacent Z 0s and those where this only can be achieved by

exchanges. The �rst group satis�es the KMS condition because of the previous veri�cation

for the 2- and 4- point functions. For the crossed contributions the wave functions say

fi and �fk: Those terms only compensate by shifting upper C-contours into lower ones

and vice versa. If S would contain poles in the physical sheet, then there are additional

contributions and the KMS property only holds if these poles occur in symmetric pairs

i.e. in a crossing symmetric fashion.c
Here we will not pursue the fusion structure for the Z 0s resulting from poles beyond

noting that the particle spectrum already shows up in the fusion of the wedge localized

Z(f)0sx. It should be stressed that the simple quantum mechanical picture of charge

fusion in terms of particle bound states only holds for the above class of model with

xIn fact it is only through the PFG's F(x) that the Z-F algebra and the fusion rules for the Z's

receive a space-time interpretation. This close relation to a kind of \relativistic QM" only occurs
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pair interactions and not for more realistic models with real (on-shell) particle creation.

All models except free �elds, whether they are real particle conserving or not, have a

rich virtual particle structure (see below), i.e. the particle content of operators A with

compact localization e.g. A 2 A(O) complies with the \folklore" that all particle matrix

elements

out hp1; :::; pk jAj q1; :::; qliin 6= 0 (11)

as long as they are not forced to vanish by superselection rules. Although we have ex-

plained the basic concepts in the case of an Ansatz with diagonal S-coe�cients, one

realizes immediately that one can generalize the formalism to matrix-valued \pair in-

teractions". The operator formalism (the associativity) then leads to the Yang-Baxter

conditions and the crossing relations are again equivalent to the KMS property for the

wedge generators F (f). In fact this family of theories with matrix-valued pair interactions

constitutes a kind of long distance equivalence class in the sense that the long-distance

limit of an arbitrary d=1+1 scattering matrix asymptotically falls into this pair interac-

tion class better known under the name of \factorizing models".

The relation of the above observation with aspects of interaction in local quantum

physics (LQP) becomes more manifest, if one reminds oneself that the Lorentz boost,

which featured in the above KMS condition, also appears together with the TCP operator

in the Tomita theory for the pair (A(W );
). Fortunately, this physically extremely

important result, �rst obtained by Bisognano and Wichmann, has meanwhile entered a

textbook on LQP [3], so that we can e�ort to be very brief on its description. Consider

the basic relation

STA
 = A�
; A 2 A(W ) (12)

on the level of wedge localization; the algebras resulting from intersections of wedge algebras

loose this quantum mechanical aspect and show the full virtual particle creation/annihilation

polarization structure.
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which de�nes the antilinear, unbounded, closable, involutive (on its domain) Tomita op-

erator ST : Its polar decomposition

ST = J�
1

2 (13)

de�nes a positive unbounded �
1

2 and an antiunitary involutive J and the nontrivial part

of Tomita's theorem (with improvements by Takesaki) is that the unitaty �it de�nes an

automorphism of the algebra i.e. �t(A) � �itA��it = A and the J maps A antiunitarily

into its commutant j(A) � JAJ = A0: The wedge situation is a special illustration for

the Tomita theory [3]. In that case both operators have well known physical aliases; the

modular group is the one-parametric wedge a�liated Lorentz boost �it = U(�(�2�t);
and the J in d=1+1 LQP's is the fundamental TCP-operator; in higher dimensions it is

only di�erent from TCP by a �-rotation around the spatial wedge axis. The prerequisite

for the general Tomita situation is that the vector in the pair (algebra, reference vector) is

cyclic and separating i.e. there is no annihilation operators in the von Neumann algebra

or equivalently: its commutant is cyclic relative to the reference vector. In LQP these

properties are guarantied for localization regions O with nontrivial causal complement

O0 thanks to the Reeh-Schlieder theorem. Returning to our wedge situation we conclude

from the Bisognano-Wichmann result that the commutant of A(W ) is geometric i.e. ful�ls

Haag duality A(W )0 = A(W 0); a fact which can be shown to be modi�ed by Klein factors

in J in case of deviation from Bose statistics.

There is one more structural element following from \quantum localization" beyond

wedge localization.

Proposition 5 Operators localized in double cones A 2 A(O) obey a recursion relation

in their expansion coe�cients in terms of PFG operators

A =
X 1

n!

Z
C

:::

Z
C

an(�1; :::�n) : Z(�1):::Z(�n) : d�1:::d�n

=
X 1

n!

Z
:::

Z
ân(x1; :::xn) : F (x1):::F (xn) : d

2x1:::d
2xn; suppâ 2 W
n



CBPF-NF-018/99 9

ilim�!�1(� � �1)an+1(�; �1; :::; �n) = (1�
nY
i=2

S(�1 � �i))an�1(�2; ::; �n)

Remark 6 � In order to compare (see below) with Smirnov's [4] axioms we wrote the

recursion in rapidity space instead of in x-space light-ray restriction which would be

more physical and natural to our modular approach. The series extends typically to

in�nity. Only for special operators (e.g. bilinears as the energy momentum tensor)

in special models with rapidity independent S-matrices (e.g. Ising, Federbush) for

which the bracket involving the product of two-particle S-matrices vanishes, the series

restricts to a polynomial expression in Z. Therefore apart from these special cases,

an operator A 2 A(O) with a1 6= 0 applied to the vacuum creates a one-particle

component which an admixture of an in�nite cloud of additional particles (particle-

antiparticle polarization cloud). The above recursion together with Payley-Wiener

type bounds for the increase of the a0ns in imaginary �-directions (depending on the

shape and size of O) characterize formfactors of operators from A(O):

The proof follows rather straightforwardly from the quantum localization idea

A(O) = �
U(a)A(W )U�1(a)

�0 \ A(W ) (14)

i.e. we are considering the relative commutant inside the wedge algebra. Using the PFG's

F (f); the A 2 A(O) are characterized by [2]

h
A;F (f̂a)

i
= 0; 8f̂ 2 W (15)

where f̂a(x) = f̂ (x � a); a 2 W: One immediately realizes that the contribution of the

commutator to the nth power in F yields a relation between the an�1 and an+1 (from the

creation/annihilation part of F (f̂a)): The details of this relation are easier, if one passes

to the light-ray restriction which in the present approach turns out to be a quite nontrivial

result of modular theory [2] [5] [6].
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Proposition 7 The relative commutant for light-like translations with a+ = (1; 1) de�nes

a \satellite" chiral conformal �eld theory via the (half) net on the (upper) +light ray

A(Ia;e2�t+a) = U(a; a)��it
�A(Wa+)

0 \ A(W )
�
�itU�1(a; a) (16)

where Ia;b with b > a � 0 denotes an interval on the right upper light ray. This net is

cyclic and separating with respect to the vacuum in the reduced Hilbert space

H+ =M+
 = P+H � H = A(W )
 (17)

M+ � [tA(I0;e2�t); E+(A(W )) =M+ = P+A(W )P+

where the last relation de�nes a conditional expectation. The application of J to M+

gives the left lower part of this light ray, which is needed for the full net.

Remark 8 The most surprising aspect of this proposition is that this light-ray a�liated

chiral conformal theory exhibits the \blow-up" property i.e. can be activated to reconstitute

the two-dimensional net by association of the -light ray translation

A(W ) = alg [a>0 fadU�(�a)(M+)g (18)

A = A(W ) _ A(W )0

The Moebius groups SL(2,R)� account for 6 parameters in contradistinction to the 3

parameters of the two-dimensional Poincar�e group of the massive theory. Most of the

former are \hidden" and the original theory perceives these additional symmetries only

in its P� projections (for the proofs see [2] [5] [8]) The light-ray reduction reduces the

derivation of the recursion relation to a one-dimensional LQP problem and the reader may

carry out the missing algebra without much e�ort. This reduction also helps signi�cantly

in the demonstration that the A(O) spaces are non-trivial i.e. contain more elements than

multiples of the identity.
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It is worth emphasizing that the existence problem�� for nontrivial QFT's, which in

the quantization (Lagrangian, functional integral) approach required a su�ciently mild

behavior for short distances in the correlations of the Lagrangian �eld with the perturba-

tive renormalizability requirement being dimLint � dimspacetime, the modular approach,

which does not use individual \�eld-coordinatizations", relates the existence of nontrivial

�eld theories associated with interacting PFG's to the nontriviality of intersections which

represent double cone algebras. Of course in the present state of our knowledge we cannot

exclude the possibility that there may be a hidden relation between nontriviality of such

intersections and the short distance behavior of a special (Lagrangian) �eld coordinate in

the equivalence class of all possible �eld coordinates. Note also that the above construc-

tions is formal and only determine operators in the sense of bilinear forms and a more

rigorous (bounded) operator approach which could handle the nontriviality problem for

the intersections requires the conversion of the wedge generators into bounded operators

similar to the transcription of smeared free �elds into Weyl algebras. These (important)

technical matter, which in more standard �eld theoretic terminology is related to the

existence of correlation functions for a known space of formfactors, will be dealt with in

a separate paper.

At this point it is appropriate to address the question of what we learned from this

approach as compared to the Karowski-Weisz-Smirnov \axiomatics" [7] [4] for factorizing

models. Actually this terminology is not quite fair since a considerable part of that

axiomatics has been reduced to specializations of general �eld theoretic properties via the

LSZ formalism, although this does not include the algebraic and analytic aspects of the

fundamental crossing property. But since the LSZ formalism itself can be derived from

the basic causality and spectral properties of say Wightman QFT, one may even want

��This problem has in no way been solved by the duality between large/small coupling con-

stants; it only has been shifted to the problem of existence of a QFT with those two asymptotes.



CBPF-NF-018/99 12

to have a more direct physical spacetime understanding of the other properties. This is

achieved by realizing that the an-coe�cients have the interpretation of the connected

part of formfactors of operators A 2 A(O); for selfconjugate models

an(�1; :::; �n) = h
 jAj �1; :::; �niin = h
 jAj �1; :::; �niinconn (19)

�1 < �2 < :: < �n

an(�1; ::��; ��+1 � i�; ::; �n� i�) (20)

= out h�1; ::�� jAj ��+1; ::; �niinconn

The relations for di�erent orderings of �0s follows from the algebraic structures of the

Z 0s. Note that the modular approach determines spaces of formfactors of A(O) and

therefore disentagles the problem of constructing a QFT from the choice of using indi-

vidual �elds i.e. the problem of constructing a convenient analogue of the Wick basis for

the composite free �elds. In the diagonal case this connection between Z 0s and in- and

out- creation/annihilation operators can be seen directly via representing the Z 0s in a

bosonic/fermionic Fock space of the incoming particles in the form

Z(�) = ain(�)e
i
R
�

�1
a�
in
(�)ain(�)d� (21)

However such representations are not known for the nondiagonal case. But once one

obtained the double cone localized operators the theory itself (scattering theory as a

consequence of the locality+spectral structure) assures the existence of Z in terms of in-

coming particle creation/annihilation operators, albeit not in terms of simple exponential

formulas. The modular theory for wedges in terms of PFG's really explains the KWS

axiomatics by integrating it back into the fundamental principles of general QFT. In

particular the notoriously di�cult crossing symmetry for the �rst time �nds its deeper

explanation in Hawking-Unruh thermal KMS properties once one realizes that a curved

space-time Killing vector (a classical concept) is not as important quantum localization
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of operator algebras. With these remarks we have achieved our goal of deriving and ex-

plaining all axioms of the KWS approach in terms of localization properties of PFG's

with pair interactions.

There is also an interesting extension of the KWS axiomatics in form of a pair of

satellite chiral conformal theories. In contradistinction to the standard short distance

association the light ray association via modular theory is not just a one way street; the

blow-up property with the help of adjoining the opposite light cone translation allows

to return, so that hidden conformal symmetries become relevant for the massive the-

ory or more precisely for the massive theory projected into the H� subspaces. Similar

ideas about chiral conformal \sattelites" have been recently used in the context of de-

grees of freedom counting in higher dimension [8] [5]. The resulting light ray projection

(\holographic property") and its inverse (the \blow-up" property) obtained from modular

inclusion/intersection methods are generic properties of Local Quantum Physics and do

not rely on string theoretic ideas. The present construction principle can also be used

for the direct systematic construction of chiral conformal theories. For the construction

of W-like algebras one starts with PFG generators on a half line. Modular theory as-

sures that in principle every system of S-coe�cients ful�lling the Z-F algebra leads to a

bosonic/fermionic conformal theory granted that the previous relative commutator alge-

bra is non-trivial. This is a construction scheme which could not have been guessed within

the framework of pointlike �elds. Another apparently simple but untested idea suggested

by the present concepts is the classi�cation of wedge algebras with non-geometric com-

mutator algebras via statistics Klein factors or constant S-matrices in J: Examples are

the Ising �eld theory and the order/disorder �elds. For the more interesting case of plek-

tonic R-matrices which appear in the exchange algebras [9] of charge carrying �elds, one

knows that these algebras in contradistinction to bosonic/fermionic (e.g. W-algebras) are

incomplete since the distributional character at coalescent points is left unspeci�ed. This

is not the case if one uses the R-data as an input into plektonic Z#(�): The Hilbert space
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obtained by iterative application of Z-creation operators is not compatible with a Fock

space structure. Rather the n-particle subspace has the structure of a path space as known

from the representation theory of intertwiner algebras. The combinatorial complications

should be o�set by the simplicity of constant S-matrices. As the operator representa-

tion of the massive Ising model shows, the case of constant S should even have a simple

coe�cient series in the massive case.

II. REMARKS ABOUT THE GENERAL CASE

The amazing new spacetime insight from modular theory into the workings of the non-

perturbative non-Lagrangian KWS bootstap formfactor approach [7] [4] has been obtained

by specializing general principles and concepts to situations with no real particle creations

(factorizing models) which can only occur in d=1+1yy. But even the very special situation

studied in this letter suggests fresh ideas on nonperturbative QFT which remained hidden

in the quantization approach. Let us look at one related to the age old dream of having

objects with a better short-distance behavior than the pointlike �elds in the standard

quantization approach. Modular theory achieves this by starting with PFG's which are

(thanks to their spatial extension) naturally short-distance well-behaved, although for to-

tally di�erent reasons than the cut-o� quantized �elds: PFG's are not modi�ed pointlike

�elds, but they are intrinsically nonlocal objects which are attached to the full wedge.

However they are nonlocal objects which generate wedge algebras in a would be local the-

ory. Only by studying quantum localization via intersections of these algebras does one

get to the more local operators; in fact the intersections are either trivial (multiples of the

identity), or they de�ne a local theory of which the pointlike generators are the �elds co-

yyThere exist also PFG's in situations with creation, if one restricts to d=1+1 scattering of

waves instead of particles. This was pointed out to me by Buchholz [10]. Any nontrivial zero

mass scattering model of the type envisaged by Buchholz will give rise to nontrivial PFG's.
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ordinates of the standard approach. Note that the latter only appear at the very end and

not ab inicio as in the quantization approach. The known examples of factorizing models

show that the short distance behavior of even the best local interpolating �elds can be

as bad as an arbitrarily high inverse power, thus contradicting the standard perturbative

renormalizability criterion in terms of power counting. Therefore the present situation

of having nonlocal operators (the PFG's) which only make sense in a local theory is a

far shot away from ad hoc cut-o�s or regulators imposed on quantized local �elds (which

clash with the principles of a local theory and need to be removed at the end). The new

objects which generate the intersection algebras (the PFG's) are completely reprocessed;

the intersection method leads to new generators which are not modi�cations of individual

old operators as in the standard approch where the interacting local composites are viewed

as deformed Wick products of free composites. In our factorizing model illustrations the

double cone generators turned out to be in�nite power series in the PFG's. For a more

elegant intrinsic description one probably needs a better knowledge of the modular theory

of the intersection algebras.

This raises the question if the PFG's F (x) in their property as wedge algebra generators

could exist also in higher dimensions. In that case, as a result of the always present real

particle creation, their more than one time application to the vacuum would generate

state vectors whose real particle content is already very complicated. As often in QFT

with such structural questions, it is easier to see what does not work, i. e. to prove No-Go

theorems. Indeed if the interacting PFG's exist at all, their causally closed living space

O cannot be (even a tiny little bit) smaller than a wedge O � W . As was already stated

at the beginning, if there would be spacelike separated \get away" directions with an

arbitrarily small conic surrounding which are contained inW but not in O; it is fairly easy
to generalize the proof of the Jost-Schroer theorem [1] and show that the commutators of

such PFG's must be a c-number which is determined by their two-point function. However

the method used in those No-Go theorems has no extension to the wedge region. If wedge
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algebras can indeed be generated by PFG's, one expects again that modular theory does

not only relate them to the S-matrix so that their correlations can be expressed in terms

of products of S-matrix elements and furthermore that the elusive crossing symmetries

for the S-matrix and formfactors �nd their explanation in the thermal KMS properties.

This surprising relation between particle physics and the thermal properties of (Hawking-

Unruh) wedge horizons has attracted the attention of many physicist, the ideas most close

to those of the present work and several older articles [11] of the present author are those

in [12]. However it should be clear that as long as higher dimensional PFG's, which are

the mediators between o�- and on-shell, have yet to be constructed, there is no proof

beyond the one in the present work, despite some claims to the contrary in the cited

literature.

The main problem in the extension to theories with real particle creation is to replace

the Z-F commutation relations by analytic formulas which relate the various rapidity

orderings of Z#0s inside correlation functions with iterated applications of S-operators

acting on subsets of in states. The important two-dimensional ordering in the rapidities

can also be achieved in higher dimensions by replacing the mass by an \e�ective" mass

m(p?) =
p
p2? +m2 in terms of transversal wedge components. In the relation of the

rapidity ordering to the S-matrix one expects that the decomposition into cycles will be

important because the cycles belong naturally to sub-S-matrices. A future clari�cation

of the possibility of PFG's and a wedge based approach in higher dimension would be

very desirable since presently there exists no systematic nonperturbative nonquasiclassical

method. The revolutionary aspect of the present message abstracted from the pioniering

formfactor approach lies not so much in pushing an existing quantization formalism up-

word by many orders of magnitude, but rather in the wealth of new concepts based on

well established physical principles.
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