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Abstract

For the massive (�'4)D vector N-component model, in the large N limit we check
that there is no �rst order phase transition induced by the thermal renormalized
coupling constant whatever is the dimension D. Moreover for D = 3 we are able to
give an exact formula for the temperature behavior of the coupling constant
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The e�ective potential at �nite temperature for the (�'4) model has been investigated

by several authors at the one-loop approximation and also taking into account the contri-

bution from multiloop diagrams [1]. In many of these papers [2] is presented the question

of whether a �rst or second order phase transition should be present in the model. In

particular Arnold and Spinosa [3] investigated the possibility of a phase transition in the

(�'4)4 model using the ring improved e�ective potential. The authors claim that a sec-

ond order phase transition could exist, but that the method employed cannot be trusted

to distinghish between a �rst or a second order phase transition. Tetradis and Wet-

terich [4] have tried to better understand the problem by investigating the N-component

(�'4)4 model using renormalization group techniques, resulting in a claim for a second

order phase transition. A di�erent answer has been got for instance by Carrington and

Takahashi [5] who found a �rst order transition in a pure scalar model at D = 4. In a

slightly di�erent context using composite operator techniques, Carmelia and Pi [6] are in

disagreement with the conclusion for a �rst order phase transition.

In recent papers [7][8] and [9] the behavior of the coupling constants in temperature in

connection to stability and phase transitions was investigated. In particular the possibility

of a �rst order phase transition in the (�'4) model at D = 3 was still raised in ref.[8].

In this paper Malbouisson and Svaiter investigated the �nite temperature behavior of

the model in arbitrary dimension D at the one-loop approximation. The result is that

the thermal correction to the renormalized squared mass is positive and increases with

the temperature, while the thermal correction to the renormalized coupling constant, is

negative and increasing in modulus with the temperature. This raises again the possibility

of the vanishing of the thermal coupling constant at some temperature and its change

of sign afterwards. Of course we can not be sure that this peculiar behavior will be

preserved when higher order loops contributions are taken into account. For instance,
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two-loop corrections have been added by Ananos and Svaiter [9] in the context of the

tricritical phenomenon with the result that in the high temperature regime two-loops

corrections are positive and tend to compensate the lowering of the value of the thermal

renormalized coupling constant. In any case the question concerning the thermal behavior

of the coupling constant of scalar models in �eld theory seems to still be a controversial

one.

In order to throw some light on the problem we examinate a model which allows us

a non-perturbative approach. We look in this note as a simple example, the vector N-

component (�'4)D model in the limit of the leading order in 1
N
. This is not a very hard

task since in this limite the model is soluble. In this case we have been able to obtain a

de�nite answer to the question raised in ref.[8] and the above quoted ones.

We consider the model described by the Lagrange density,

L =
1

2
@�'a@�'a +

1

2
m2 : 'a'a : +

�0

N
(: 'a'a :)

2 (1)

(summation over repeated indices are understood) where �0 is the bare coupling constant

and m is the physical mass (see below). At leading order the two-point function is of

order 0 in 1
N

and the four-point function is of order 1 in 1
N
, in the limit of a very large

numbers of colours, N . We note that Wick ordering of the product of �elds makes

unnecessary an explicit mass renormalization at the order in 1
N
considered. The tadpoles

are completely suppressed by Wick ordering. We consider thus in the following only the

thermal behaviour of the temperature dependent renormalized zero-external momenta

four-point function, which we take as our de�nition of the thermal renormalized coupling

constant.

The four-point function for the N -component vector model is given pictorially by the

sum of the diagrams in (�g.1). In the following we drop out the colour indices, and we
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perform as usual the Matsubara replacements,
R

d!

2�
! 1

�

P
1

n=�1; ! ! !n =
2n�
�
, where �

is the inverse temperature (we take k = �h = 1). Performing the sum over all diagrams

indicated in (�g.1) we get for the temperature dependent four-point function with zero-

external momenta (the renormalized coupling constant),

�
(4)
D (0; �) =

1

N

�0

1� �0�(D;�)
(2)

where �(D;�) corresponds to single-bubble diagram present in �g.(1). To write down

an expression for �(D;�) for arbitrary dimension D, we brie
y sketch some one-loop

results described in ref.[8], which have been got by the concurrent use of dimensional

and zeta-function analytic regularizations: taking the dimensionless parameters, c2 =

m2

4�2�2
, (��)2 = a�1, g = �

8�2
, '0

�
= �, where '0 is the normalized vacuum expectation

value of the �eld and � is an arbitrary mass parameter introduced in order to deal with

dimensionless quantities in the regularization procedures, the one-loop contribution to the

�nite temperature e�ective potential may be written in the form,

V (�; �) = �D
p
a
1X
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From the well-known formula,
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we get

V (D;�) = �D
p
a
1X
s=1

f(D; s)gs�2sAc2

1 (s�
d

2
; a); (5)

where f(D; s) is a function proportional to �(s� d

2 ) and Ac2

1 (s� d

2 ) is one of the inhomo-

geneous Epstein zeta-functions de�ned by,

Ac2

N (u; a1; a2; :::an) =
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2
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valid for Re(u) > N

2
(in our case Re(s) > D

2
).

Then making use of some Mellin transform representations, the Epstein inhomoge-

neous zeta-functions may be extended to the whole complex u-plane ( the s-plane in our

case), and we obtain after some manipulations, the one-loop correction to the temperature

dependent e�ective potential,
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2
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)(
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2
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(7)

The single-bubble function �(D;�) is just the coe�cient of the 4th-power (s = 2) of

the �eld, in the above equation. Thus from the results of ref.[8] we may write �(D;�) in

the form

�(D;�) = A(D)�G(D) (8)

where
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1
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2
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and
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In eqs.(7, 10) K� are the Bessel functions of the third kind and h(D; s) is given by

h(D; s) =
1

2
D

2
�s�1

�2s�
D

2

(�1)s+1
�(s + 1)

(11)

From the properties of the Bessel functions it may be seen from eq.(10) that for any

dimension D

G(D;�)�!1 ! 0 (12)

G(D;�)�!0 !1 (13)
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We conclude also from those properties that G(D;�) is always positive for any values of

D and �. From eqs.(2, 8) we have,

�
(4)
D (0; �) =

1

N

�0

1� �0(A(D) �G(D))
(14)

Then, let us de�ne the zero temperature renormalized coupling constant �R as

1

N
�R = lim�!1�

(4)
D (0; �): (15)

From eq.(15) and eq.(12) we get,

�R =
�0

1 � �0A(D)
; (16)

so, from eqs.(14) and (16), we obtain for the thermal renormalized coupling constant,

�
(4)
D (0; �) =

1

N

�R

1 + �RG(D;�)
: (17)

It is easy to see that the above procedure leading to eq.(17) corresponds on more familiar

grounds, to sum up all the chain of bubbles graphs of �g.(1) with all possible combinations

of �R
N

and ��

N
at the vertices, where the counterterm �� = �0 � �R. It is nothing but the

resummation of all perturbative contributions including counterterms from the chain of

bubbles and the subtraction of the divergent (polar) parts written in a compact form.

These subtractions are performed even in the case of odd dimension, D, in which case

there are no poles of �-functions.

We see from eqs.(17), (12) and (13) and the positivity of G(D;�) that for any di-

mension D there is no �nite temperature such that the thermal renormalized coupling

constant vanish. Therefore, at leading order in 1
N
, in the context of the N -component

vector �'4
D model the answer to the question raised in [8] and the preceeding ones on the

existence of a �rst order phase transition is clearly negative. Eq.(17) is for any dimension

D, a decreasing positive function of the temperature. It generalises for any dimension the
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remarks of ref.[8] and those by Fujimoto et al. done for D = 4 [11]. Moreover, an exact

result may be obtained in dimension D = 3. From the relationships [10],

Kn+ 1

2

(z) = K
�n� 1

2

(z) (18)

K 1

2

= (
�

2z
)
1

2 e�z; (19)

we get from eq.(10), after summing the resulting geometric series,

G(D;�) =
3

8m�

1

em� � 1
; (20)

which gives from eq.(17) the exact relationship,

�
(4)
3 (0; �) =

1

N

8m��R(e
m

T � 1)

(8m�)e
m

T + 3�R � 1
=

1

N
�R(T;D = 3): (21)

A plot of �R(T;D = 3) is given in (�g.2).
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Figure captions

Fig.(1) { In this �gure the four-�eld vertex is splitted to indicate colour circulation. To

each vertex there is a factor 1
N
and for each single bubble a colour circulation factor

N

Fig(2) { A plot of the coupling constant( in units of 1
N
as a function of the temperature

in dimension 3.
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