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Abstract

We consider a monopole detector interacting with a massive scalar �eld. Using the ro-
tating wave approximation the radiative processes is discused from the accelerated frame
point of view. After this we obtain the Minkowski vacuum stress tensor measured by
the accelerated observer using a non-gravitational stress tensor detector as discussed by
Ford and Roman (PRD 48, 776 (1993)). Finally, we analyse radiative processes of the
monopole detector travelling in a world line that is inertial in the in�nite past and has a
constant proper acceleration in the in�nite future.
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1 Introduction

It has been known that an uniformly accelerated detector interacting with a massless
scalar �eld in the Minkowski vacuum behaves like an inertial detector in equilibriumwith
a thermal bath at temperature ��1 = 1

2��
, where ��1 is the proper acceleration of the

detector[1].
In a recent paper, Svaiter and Svaiter [2], studied the spontaneous and induced emis-

sion problem, using a very simple model of an atom consisting of a pointlike object with
an internal structure de�ning two energy levels introduced by DeWitt [3]. Assuming that
the atom (detector) interacts with a real massless scalar �eld, and it is travelling in iner-
tial or non inertial world lines, the authors obtained the probability of transition per unit
proper time as dF (E;��)

d�� , (normalized by the selectivity of the detector) between di�erent
eigenstates of the detector and also presented the rate of spontaneous excitation after a
�nite observation or switching time �T . The extension of these calculations for the de-
tector in the presence of paralel plates at zero and �nite temperature was given by Ford,
Svaiter and Lira [4]. A more involved mathematically case of the monopole detector in
the presence of cosmic strings was discussed more recently in ref.[5].

It is useful to review how the idea of spontaneous emission arises in quantum optics.
First, the interaction between the atom and the �eld is ignored; then the atom has
stationary states with well de�ned energy. After this step, we introduce the interaction
between the atom and the �eld as a perturbation. It is easy to show that only the ground
state of the atom stays with well de�ned energy. All the excited energy levels have a
width, and will decay spontaneously. A di�erent approach uses the role of the vacuum

uctuations in the spontaneous emission processes. Using perturbation theory it can be
shown that in �rst order approximation the asymptotic probability per unit time of decay
is given by the Fourier transform of the positive Wightman function in the world-line of the
atom. In this approach, it is assumed well de�ned levels of the atom, even after turning on
the interaction between the atom and the �eld, and time-dependent perturbation avoids
the calculations of the �nite energy width. If we prepare the atom in the excited state, it
will decay spontaneously by the e�ects of the vacuum 
uctuations. Spontaneous emission
can be interpreted as stimulated emission induced by vacuum 
uctuations. Note that the
fact that the excited states are not eigenstates of the full Hamiltonian of the system is
automatically taken into account in the later scheme.

The purpose of this paper is to discuss radiative processes from the accelerated point
of view and also to discuss the Minkowski stress-tensor measured by this observer using a
generalization of the monopole detector given by Ford and Roman [6]. This derivatively
coupled detector was analysed a long time ago by Hinton [7]. It was shown that in two-
dimensional space-time, both detectors (the monopole and the derivative detector) agree.
Nevertheless in a four-dimensional space-time there are discrepancies in the response
function of both detectors. This fact raises a question of which of them is the true
particle detector. Part of this question we will treat latter.

The main di�erence among our approach and all the previous papers is that we use the
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rotating wave approximation. In a real quantum detector prepared in the ground state,
the detector goes to an excited state by an absorption process. Of course we are assuming
asymptoticaly measurements, i.e. the observation time is large when compared with times
on the order E�1, where E is the energy gap between the excited and the ground state of
the detector. Consequently it is possible to assume the normally ordered �eld correlation
function in the probability of transition i.e., the rotating wave approximation. Since the
detector measures frequencies with respect to its proper time, we have to use the normally
ordered �eld correlation functions with respect to tho Rindler's time.

With the formalism which we developed, it is possible to obtain the transition rates
for the accelerated detector with di�erent proper accelerations in both, the begining and
in the end of the observation time. In order to simplify the calculations for �nite time
switching detectors we will introduce the switching in the transition rate. As we will
see, although this procedure is not exact from the mathematical point of view, it will
reproduce known results.

The paper is prepared as follows. In section II we discused radiative processes in
a frame of reference comoving with the monopole detector. In section III we repeat
the calculations using the derivativelly coupled detector. In section IV, the asymptotic
accelerated detector is discussed. Conclusions are given in section V. In this paper we use
�h = c = 1.

2 Radiative processes of the monopole detector

Let us consider a system (a detector) endowed with internal degrees of freedom de�ning
two energy levels with energy !g and !e, (!g < !e) and respective eigenstates jgi and jei.
This system is weakly coupled with a hermitian massive scalar �eld '(x) with interaction
lagrangian

Lint = �1d(� )'(x(� )); (1)

where x�(� ) is the world line of the detector parametrized using the proper time � , d(� )
is the monopole operator of the detector and �1 is a small coupling constant between the
detector and the scalar �eld.

In order to discuss radiative processes of the whole system (detector plus the scalar
�eld), let us de�ne the Hilbert space of the system as the direct product of the Hilbert
space of the �eld HF and the Hilbert space of the detector HD

H = HD 
HF: (2)

The Hamiltonian of the system can be written as:

H = HD +HF +Hint; (3)

where the unperturbed Hamiltonian of the system is composed by the noninteracting
detector Hamiltonian HD and the free massive scalar �eld Hamiltonian HF . We shall
de�ne the initial state of the system as:

jTii = jji 
 j�ii ; (4)
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where jji, (j = 1; 2) are the two possible states of the detector (j1i = jgi and j2i = jei)
and j�ii is the initial state of the �eld. In the interaction picture, the evolution of the
combined system is governed by the Schrodinger equation

i
@

@�
jT i = Hint jT i ; (5)

where

jT i = U(�; �i) jTii ; (6)

and the evolution operator U(�; �i) obeys

U(�f ; �i) = 1 � i
Z �f

�i
Hint(�

0

)U(�
0

; �i)d�
0

: (7)

In the weak coupling regime, the evolution operator can be expanded in power series
of the interaction Hamiltonian. To �rst order, it is given by

U(�f ; �i) = 1 � i
Z �f

�i
d�

0

Hint(�
0

): (8)

The probability amplitude of the transition from the initial state jTii = jji 
 j�ii at

the hypersurface � = 0 to
���j 0
E

 j�ii at � is given by

D
j

0

�f

���U(�; 0) jj�ii = �i�1

Z �

0
d�

0
D
j

0

�f

��� d(� 0

)'(x(�
0

)) jj�ii ; (9)

with j�fi an arbitrary state of the �eld and
���j 0
E
is the �nal state of the detector.

The probability of the detector being excited at the hypersurface � , assuming that the
detector was prepared in the ground state is:

Peg(� ) = �21j hej d(0) jgi j
2
Z �

0
d�

0
Z �

0
d�

00

eiE(�
00
��

0
) h�ij'(x(�

0

))'(x(�
00

)) j�ii ; (10)

where !e � !g = E is the energy gap between the eigenstates of the detector.
Note that we are interested in the �nal state of the detector and not that of the �eld,

so we sum over all the possible �nal states of the �eld j�f i. Since the states are complete,
we have

X
f

j�f i h�f j = 1: (11)

Eq.(10) shows us that the probability of excitation is determined by an integral transform
of the positive Wightman function.

Before starting to analyze radiative processes we would like to point out that a more
realistic model of detector must also have a continuum of states. This asumption allows
us to use a �rst order perturbation theory without taking into account higher order
corrections. Although we will use in this paper the two-state model, the case of a mixing
between a discrete and a continuum eigenstates deserves further investigations.

The radiative processes of the uniformly accelerated detector discussed from the iner-
tial frame point of view was analysed by Kolbenstvedt and also Grove[8]. Let us analyze
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the radiactive processes of the uniformly accelerated Unruh-DeWitt detector from the
point of view of a observer in a frame comoving with the detector. For the sake of
simplicity we study the two-dimensional case (D = 2).

In a D = 2 dimensional spacetime, the Rindler coordinates (�; �) are given by

x0 = �sinh� �1 < � <1 (12)

x1 = �cosh� 0 < � <1: (13)

where x0 and x1 are the cartesian coordinates used by inertial observers. The line element
in Rindler spacetime is given by

ds2 = �2d�2 � d�2: (14)

The Rindler edge is globally hyperbolic and posesses a timelike Killing vector which
generates a boost about the origin. Therefore it is possible to de�ne positive and negative
modes in a unambiguous way. These modes that form a complete set, basis in the space
of the solutions of the massive Klein-Gordon equation are given by

��(�; �) =
1

�
(sinh��)1=2e�i��Ki�(m�); (15)

���(�; �) =
1

�
(sinh��)1=2ei��Ki�(m�); (16)

where Ki� is the Bessel function of imaginary order or the Macdonald's function [9],
and m is the mass of the quantum of the �eld.

In order to canonical quantize the scalar �eld in the Rindler spacetime, let us fol-
low Fulling [10] and Sciama, Candelas and Deutsch [11]. Therefore we expand the �eld
operator in the form

'(�; �) =
Z 1

0
d�[b(�)��(�; �) + by(�)���(�; �)]; (17)

where the anihilation operator for Rindler's particle satis�es

b(�) j0; Ri = 0 8�: (18)

Let us suppose that in the surface �i = cte, the state of the system is jgi 
 j0;Mi.
The probability amplitude for the system to go to jei
 j�f i at �f (where j�f i is any �nal
state of the �eld) is

Ajg>
j0;M>!je>
j�f> = �i�1deg(�i)
Z �f

�i
d�eiE� h�f j'(�; �) jO;Mi : (19)

For a better understanding of the radiative processes, let us split the �eld operator in
the positive and negative parts, i.e.,

'(�; �) = '(+)(�; �) + '(�)(�; �); (20)

where '(+)(�; �) and '(�)(�; �) are given by:
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'(+)(�; �) =
Z 1

0
d�b(�)��(�; �) (21)

and

'(�)(�; �) =
Z 1

0
d�by(�)���(�; �): (22)

Substituting eq.(21) and (22) in eq.(19) yields:

Ajg>
j0;M>!je>
j�f> = �i�1deg(�i)
Z �f

�i
d�eiE� [ h�f j'

(+)(�; �) jO;Mi

+ h�f j'
(�)(�; �) jO;Mi]: (23)

The �rst term is an absorption process and since contains a factor of the form ei(E��)�,
it will allow energy to be conserved in the asymptotic limit �i ! �1; �f ! 1. The
second one is an emission process and lead to integrand of the form ei(E+�)�. For E > 0
and � > 0 it is rapidly oscilating, giving a negligible contribution. This expresses the
fact that the detector asymptotically can only su�er a transition to the excited state
absorbing a Rindler particle from the Minkowski vacuum jO;Mi. In other words, the
detector registers the occupation number of Rindler particles in the Minkowski vacuum.
This result allows us to assume the rotating wave approximation (RWA) to discuss the
radiative processes[12]. This kind of detector is called in the literature a square-law
detector. If we assume the normally ordered �eld correlation function with respect to the
cartesian time, the rate at which quanta of the �eld are detected by an inertial detector in
the Minkowski vacuum state vanishes. since we are interested to study the Unruh-Davies
e�ect from the point of view of the accelerated observer we assume the RWA with respect
to the Rindler's time. Using this approximation the probability amplitude becomes:

Ajg>
j0;M>!je>
j�f> � �i�1deg(�i)
Z �f

�i
d�eiE� h�f j'

(+)(�; �) jO;Mi : (24)

For a better understanding of the RWA and to present the di�erence in the probability
transition if we assume or not this approximation, let us �rst study the probability of
transition without the RWA. In this case, let us de�ne F (e; �i; �f) such that

P (E; �i; �f) = �21jdeg(�i)j
2F (e; �i; �f ): (25)

F (E; �i; �f ) is the response function, i.e., the probability of transition normalized by
the �21jmeg(�i)j2 term. Thus

F (E; �i; �f ) =
Z �f

�i
d�

Z �f

�i
d�

0

eiE(���
0
) h0;M j'(�

0

; �
0

)'(�; �) j0;Mi : (26)

Instead of using F (E; �i; �; �f ; �0), we will simplify the notation using F (E; �i; �f)
throughout the paper. Nevertheless in the calculations we are not restricted to con-
stant proper acceleration of the detector but we are taking into account the general case
of non-constant proper acceleration of the detector during the measure process.

Following Svaiter and Svaiter [2], let us de�ne



{ 6 { CBPF-NF-018/96

� � �0 = � (27)

and

�f � �i = �T: (28)

We would like to stress that Levin, Peleg and Peres [13] also used the same technique
to study radiative processes in �nite observation time. Substituting eqs.(27) and (28) in
eq.(26) we have

F (E; �i; �f) =
Z �T

��T
d� (�T � j� j)eiE� h0;M j'(�

0

; �
0

)'(�; �) j0;Mi : (29)

Let us de�ne the rate R(E;�T ), i.e., the probability transition per unit time, as :

R(E;�T ) =
dF (E;�T )

d(�T )
(30)

Consequently we have:

R(E;�T ) =
Z �T

��T
d�eiE� h0;M j'(�

0

; �
0

)'(�; �) j0;Mi : (31)

This important result shows that asymptotically the rate of excitation of the detector
is given by the Fourier transform of the positive frequency Wightman function. This is
exactly the quantum version of the Wiener-Khintchine theorem which asserts that the
spectral density of a stationary random variable is the Fourier transform of the two point-
correlation function.

The rate rigorously is:

R(E;�T ) =
Z �T

��T
d�eiE� [ h0;M j'(+)(�

0

; �
0

)'(+)(�; �) j0;Mi

+ h0;M j'(�)(�
0

; �
0

)'(�)(�; �) j0;Mi + h0;M j'(�)(�
0

; �
0

)'(+)(�; �) j0;Mi

+ h0;M j'(+)(�
0

; �
0

)'(�)(�; �) j0;Mi]: (32)

The last matrix element can be writen as

h0;M j'(+)(�0; �0)'(�)(�; �) j0;Mi = h0;M j'(�)(�; �)'(+)(�0; �0) j0;Mi

+ ['(+)(�0; �0); '(�)(�; �)]: (33)

The commutator is a c-number independent of the initial state of the �eld. Many
authors in quantum optics claim that this contribution has no great physical interest. So
the matrix elements determining the detection of quanta of the �eld are of the form

h0;M j'(�)(�
0

; �
0

)'(+)(�; �) j0;Mi + h0;M j'(�)(�; �)'(+)(�0; �0) j0;Mi : (34)

Such approximation is called the rotating-wave approximation (RWA). The last ex-
pression said that the excitation of the detector corresponds to the absorption of a Rindler
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particle from the Minkowski vacuum j0;Mi. This is a consequence of the absorptive na-
ture of the detector. Nevertheless there are subtleties in the process. As it was shown
by Unruh and Wald [14], the process is followed by the emission of a Rindler particle in
a causally disconected region of the spacetime. (In the appendix we discuss this result).
This result can be understood since the Minkowski vacuum j0;Mi can be expressed into
a set of EPR type of Rindler particles [15]. Thus a coherent state with respect to the
annihilation operator of Minkowski particles appears to be squeezed with respect to the
annihilation operator of Rindler particles. Note that this fact has been investigated in
the literature in the context of quantum optics. We can imagine macroscopic detectors
di�erent from the square law detector. For example we can use the process of stimulated
emission as a basis for detection. In this case the �eld operator would occur in anti-normal
order. Di�erent operator ordering has been also sugested. Wilkens and Lewenstein [16]
proposed a photodetection scheme based on an interference between emission and absorp-
tion processes. In this paper we are assuming the absorptive nature of the detector.

Another point which is important to stress is the fact that a logarithmic ultraviolet
divergence will appear in the response function, as was discussed by Svaiter and Svaiter
[2]. In order to circumvent the problem of the divergence, Higuchi et al [17] considered
a detector switched on and o� continuously with the �eld. These authors claim that the
ultraviolet logarithmic divergence in the excitation probability that Svaiter and Svaiter
[2] found in the time dependent perturbation theory can be circumvented. De�ning the

probability of transition per unit proper time as dF (E;�T )
d�T , normalized by the selectivity

of the detector, it is possible to obtain the rate of spontaneous excitation after a �nite
observation or switching time. Although the rate of spontaneous excitation of an unaccel-
erated atom (assuming that the state of the �eld is the Minkowski vacuum state and the
state of the detector is the ground state) is negative and diverges below the uncertainty
region, i.e. for �T � 1

E
, there is no problem in such behavior. This happens because it

is possible to consider measurements of �nite duration only for �T > 1
E
. Over shorter

time intervals, it is not even possible to say what level our two-level system is in, or even
to de�ne this two-level system. Note that we are not interested in discussing the subtle
problem of how to decode the information stored in the system and to convert it into a
classical signal. Only with the latter the measurement process is complete. Without this
mechanism it is convenient to call the �rst step as a "pre-measurement", but because we
are not interested in discussing this controversial issue, we will still call the �rst step as
a measurement. Back to our problem, we conclude that measurement is meaningless for
intervals obeying �T � 1

E
. As it was shown by Ford, Svaiter and Lyra [4], the asymp-

totic regime is achieved after a very short transient period. We conclude that there is
no problem with the rate, concerning non positive de�nite rate, or divergent in intervals
above the uncertainty region.

Of course, this divergence is expected, in the sense that the response function is an
integral transform of the positive Wightman function, which becomes singular in one
point of the spacetime. Since the �eld is a distribuition, the square of such object in one
point of spacetime is ill-de�ned. This is the fundamental problem of the interacting �eld
theory in 
at and curved spacetime. If we adopt the point of view that we are interested
in measurements, everything is in order and therefore any renormalization procedure
is required. Note that we can use another physical interpretation to the mathematical
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calculations, as the result of making two measurements in the system separated by the
time interval �� , instead of the usual switching interpretation. For a short time inter-
val, we would expect a large disturbance in the system. It is clear that the e�ect of a
smooth switching on and o�, sugested by Higuchi and collaborators (as the more realistic
procedure for modeling detectors) is to prevent the region �� � 1

E
. Again we are not

interested in discussing another controversial issue: the uncertainty relation for time and
energy and the di�erent interpretations of such inequality and we are adopting the Landau
and Peierls approach [18]. In this case the energy uncertainty introduced by the switching
is less than the level separation of the system and the measurement can be de�ned.

The conclusion is that the transient terms related with the switching or �nite obser-
vational time will vanish in the asymptotic limit. A straightforward calculation gives the
probability of transition per unit proper time (normalized by the selectivity of the atom)
of an inertial atom interacting with a massless �eld in the Minkowski vacuum (withouth
assume the RWA):

R(E;�T ) =
1

2�

�
�E�(�E) +

cosE�T

��T
+
jEj

�
(SijEj�T �

�

2
)
�
; (35)

where Si(z) is the sine integral function de�ned by Si(z) =
R1
0

sint
t
dt [9]. For large values

of the argument we have Si(1) = �
2
, thus in the asymptotic limit, we will obtain for the

rate

lim�T!1R(E;�T ) =
�E

2�
�(�E): (36)

The transition rate is proportional to the energy level gap of the atom, and in the
asymptotic limit only spontaneous decay is allowed.

It is possible to repeat the calculations for the uniformly accelerated detector. In the
asymptotic limit the expression that takes into account the two processes; spontaneous
and induced decay or induced excitation is given by:

lim��!1R(E;�� ) =
jEj

2�

�
�(�E)(1 +

1

e2��jEj � 1
) + �(E)

1

e2��E � 1

�
: (37)

were 1
�
is the proper acceleration of the atom.

Let us use the RWA to obtain the probability of transition per unit time in the general
case of a massive �eld. Going back to the eq.(32) using the RWA we have to the rate:

R(E;�T ) =
Z �T

��T
d�eiE� [ h0;M j'(�)(�

0

; �
0

)'(+)(�; �) j0;Mi

+ h0;M j'(�)(�; �)'(+)(�0; �0) j0;Mi]: (38)

De�ning v(�; �) and the complex conjugate v�(�; �) such that

��(�; �) = e�i��v(�; �) (39)

and
���(�; �) = ei��v�(�; �); (40)
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we have

R(E;�T ) =
Z �T

��T
d�eiE�

Z
d�d� h0;M j by(�)b(�) jO;Mi

[ ei(��
0���)v�(�; �0)v(�; �) + ei(�����

0)v�(�; �)v(�; �0)]: (41)

Using the fact that

h0;M j by(�)b(�) jO;Mi =
�(� � �)

e2�� � 1
; (42)

we have to the rate

R(E; �0; �) =
Z 1

0
d� [

1

e2�� � 1
v�(�; �0)v(�; �)

Z �T

��T
d�ei(E��)�

+
1

e2�� � 1
v�(�; �)v(�; �0)

Z �T

��T
d�ei(E+�)� ]: (43)

Note the absence of the �rst term of eq.(37) in eq.(43). The spontaneous emis-
sion term does not appear since we adopted the RWA and disregard the commutator
['+(�0; �0); '�(�; �)] in the rate R(E;�T ). The conclusion is that this term (which is
independent of the state of the �eld) is responsible for the spontaneous emission pro-
cesses (this radiative process is induced by vacuum 
uctuations). It is well known that
in a semiclassical theory where a quantum mechanical system interacts with a classical
�eld only stimulated emission and absortion are predicted. The use of the RWA or the
Glauber[19] correlation function possesses a simple physical interpretation of a classical
�eld with classical correlation functions interacting with the detector.

As it has been pointed out byMilonni and Smith [20] and Ackerhalt, Knight and Eberly
[21], there is a di�erent approach to study radiative processes without using perturbation
theory, but using the Heisenberg equations of motion. In this approach it is possible to
obtain nonperturbative expressions for radiative processes where the radiation reaction
appears in a very simple way: the part of the �eld due to the atom (detector) that
drives the Dicke operators [22]. In this approach it is possible to identify the role of
radiation reaction and vacuum 
uctuations in spontaneous emission. We would like to
stress the fact that the contribution of vacuum 
uctuations and radiation reaction can
be chosen arbitrarily, depending on the order of the Dicke and �eld operators. As it
was discussed by Dalibard, Dupont-Roc and Cohen-Tannoudji [23], there is a preferred
ordering in such a way that the vacuum 
uctations and radiation reaction contribute
equally to the spontaneous emission process. More recently this approach was developed
by Audretsch and Muller and also Audretsch, Muller and Holzmann [24] to study the
Unruh e�ect. These authors constructed the following picture of the Unruh e�ect. The
e�ect of vacuum 
uctuations is changed by the acceleration, although the contribution
of radiation reaction is unaltered. Due to the modi�ed vacuum 
uctuation contribution,
transition to an excited state becomes possible even in the vacuum. Note that di�erent
results appear in the literature. Barut and Dowling [26] concluded that the thermal
response of the detector does not arise through an interaction with "real" particles, but
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from the spectrum of its self-�eld which has become altered by the change to a non-inertial
frame. The discrepancy between above cited results comes from the arbitrariness in the
operator ordering when one constructs the interaction Hamiltonian.

Going back to Eq.(43), it is possible to generalize the result for switching detectors.
Let us rewrite the rate R(E; �0; �) introducing a switching function g(� ). Thus

r(E; �0; �) =
Z 1

0
d� [

1

e2�� � 1
v�(�; �0)v(�; �)

Z 1

�1
d�g(� )ei(E��)�

+
1

e2�� � 1
v�(�; �)v(�; �0)

Z 1

�1
d�g(� )ei(E+�)� ]: (44)

The Fourier transform of g(� ) is de�ned as

G(s) =
Z 1

�1
d�g(� )e�2�i�s: (45)

Therefore we can write eq.(41) as

r(E; �0; �) =
Z 1

0
d� [

1

e2�� � 1
v�(�; �0)v(�; �)G(

� � E

2�
)

+
1

e2�� � 1
v�(�; �)v(�; �0)G(

� + E

2�
)]: (46)

Some interesting switching functions are:

g1(� ) =

(
1 j� j < 1

2�

0 j� j > 1
2�

(47)

g2(� ) =

(
1 � j� j

�
j� j < 1

2�

0 j� j > 1
2�

(48)

g3(� ) = e��(�=�)
2

; (49)

with the respective Fourier transforms:

G1(� � E) =
�sin�(� � E)�

�(� � E)�
; (50)

G2(� � E) = �

 
sin�(� � E)�

�(� �E)�

!2
; (51)

G3(� �E) = �e��((��E)�)
2

: (52)

Substituting any of the Fourier transform in eq.(46) we obtain the rate for a switching
detector. Note that we introduce the switching function in the rate and not in the La-
grangian interaction term. Although this procedure is not correct from the mathematical
point of view, it will reproduce eq.(33) and eq.(47) of ref.[25]. For broadband detectors
this procedure is totally justi�ed.
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Finally note that we did all the calculations using the Rindler's time �, and the
proper acceleration does not appear in Eq.(46). To obtain the correct expression we have
to relate the Rindler time to the detector's proper time. Using this fact we have to do
the replacement

� ! 2���

where ��1 is the proper acceleration of the detector. With this replacement we recovered
the usual result.

3 Stress Tensor Detector

In this section we will repeat all the calculations that we did in the previous section, using
the following interaction Lagrangean density:

Lint = �2d
�(� )@�'(x(� )): (53)

The calculations are exactly the same as we did. The only di�erence is that we have
the components R00, R01 and R11, given respectively by:

R00(E; �
0; �) =

Z 1

0
d� [

�2

e2�� � 1
v�(�; �0)v(�; �)

Z �T

��T
d�ei(E��)�

+
�2

e2�� � 1
v�(�; �)v(�; �0)

Z �T

��T
d�ei(E+�)� ]; (54)

R01(E; �
0; �) =

Z 1

0
d� [

�

e2�� � 1
v�(�; �0)

@

@�
v(�; �)

Z �T

��T
d�ei(E��)�

+
�

e2�� � 1

@

@�
v�(�; �)v(�; �0)

Z �T

��T
d�ei(E+�)� ]; (55)

R11(E; �
0; �) =

Z 1

0
d� [

1

e2�� � 1

@

@�0
v�(�; �0)

@

@�
v(�; �)

Z �T

��T
d�ei(E��)�

+
1

e2�� � 1

@

@�
v�(�; �)

@

@�0
v(�; �0)

Z �T

��T
d�ei(E+�)� ]: (56)

Note that R�� is not a tensor but � and � refer to directions in the detector's rest
frame. The response of the detector is orientation dependent. In a D = 2 dimensional
spacetime, the diference between the monopole and the derivativelly coupled detector in
the rate is the term �2, � @

@�
v(�; �) and @

@�0
v�(�; �0) @

@�
v(�; �) in the components R00, R01

and R11 respectivelly. In the case D = 4 in R0i and Rij will appear the angle between the
spacelike direction de�ned by di and the spacelike component of the momentum vector.

Finally, it is important to compare our results with the conclusions obtained by Pad-
manabhan and Singh [27]. In the above mentioned article, these authors presented an
example (a detector in a uniformly rotating frame) to conclude that the monopole detector
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is a 
uctuometer [28]. In this case, although the expectation value of the number operator
(in the rotating frame) in the Minkowski vacuum is zero, the power spectrum (the Fourier
transform of the positive Wightman function) is not zero. They concluded that the power
spectrum is not related to the existence of "real" particles. The uniformly accelerated de-
tector goes to the excited state not because there is real Rindler particles in the Mikowski
vacuum, but because the accelerating source supplies energy to the transition.

The key point of this discussion is given by Eq.(31) and Eq.(33). Assuming the RWA
we disregard a vacuum piece, i.e., a contribution that is independent of the state of
the �eld. Nevertheless we still have obtained a non-nule probability of excitation, since
the Minkowski vacuum is �lled by thermal Rindler particles. The Eq.(34) gives to the
power spectrum contribution from the following physical process: absorption of a Rindler
particle. In other words, assuming the RWA the power spectrum and the expectation
value of the Rindler number operator in the Minkowski vacuum must be proportional.
The inclusion of the commutator of Eq.(33) in Eq.(38) gives a vacuum piece contribution.

4 The asymptotic accelerated detector

The aim of this section is to discuss the following physical situation. How the monopole
detector behaves if is traveling along a world line in such a way the detector is inertial in
the in�nite past and has a constant proper acceleration in the in�nite future.

Let us consider the folowing transformation of coordinates between the inertial (t; x)
and non-inertial coordinates (�; �),

t+ x =
2

a
sinha(� + �) (57)

t� x = �
1

a
ea(�+�) (58)

This coordinate system was investigated by Kalnins and Miller[29], and by this reason
we will call it as the Kalnins and Miller coordinate system.

The line element in this coordinate system can be written as:

ds2 = (e2a� + e�2a�)(d�2 � d�2) (59)

The proper acceleration in the world line � = cte is given by

lim�!�1�(�; �0) = 0 (60)

and

lim�!+1�(�; �0) = ae�a�0 = �1 (61)

The discussion of these issues can be found in ref.[30]. Eqs.(60) and (61) show that
� = cte is the world line of an uniformly accelerated observer. Note that the hypersurface
� = �0 is a Cauchy surface for the region t� x < 0.

The massive Klein-Gordon equation in the Kalnins-Miller manifold reads
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[
@2

@�2
�

@2

@�2
+m2(e�2a� + e2a�)]'(�; �) = 0: (62)

The situation is very di�erent from the Rindler coordinate system. The metric is not
static and there is an ambiguity in de�ning positive and negative frequencies modes. A
straightforward calculation reveals that there are two well behaved complete set (��(x); ���(x))
and ('�(x); '��(x)), basis in the space of the solutions of the massive Klein-Gordon equa-
tion in the Kalnins-Miller manifold. These two complete sets are given by

��(�; �) =
1

2

 
�(1 � e�2��)

�a

! 1

2

H
(1)
i� (

m

a
e�a�)Ki�(

m

a
ea�) (63)

���(�; �) =
1

2

 
�(1 � e�2��)

�a

! 1

2

H
(2)
i� (

m

a
e�a�)Ki�(

m

a
ea�) (64)

and

'�(�; �) = (
�

�a
)
1

2Ji�(
m

a
e�a�)Ki�(

m

a
ea�) (65)

'��(�; �) = (
�

�a
)
1

2J�i�(
m

a
e�a�)Ki�(

m

a
ea�): (66)

The modes given by eqs.(63) and (64) are the positive and the negative frequency
modes in the in�nite past and the modes given by eqs.(65) and (66) are the positive and
negative frequency modes in the in�nite future. By this reason we will call them "inertial"
and "accelerated" modes respectively.

The Bogoliubov coe�cients between the Minkowski modes and the inertial and accel-
erated modes are given respectively by :

j���j
2
in =

1

2�2��sinh��
(Re)2(�i�)![2a(�� �)]i� (67)

and

j���j
2
ac
=

1

2��a

1

e2�� � 1
(68)

where � is the energy of the Minkowski modes. Using eq.(67) and (68) it is possible
to obtain the transition rate of the detector. The problem is that it is not possible to
make asymptotic measurements, but only for �nite time �T = �f � �i. For small �T it
is possible to assume that the metric is static and we have two di�erent outcomes if the
measurement is made in the in�nite past or in the in�nite future. Using the Bogoliubov
coe�cients between the Minkovski modes and the ('�(�; �); '(�; �)) and (��(�; �); �(�; �))
we obtain that if a measurement is made in the asymptotic future we have a similar result
as Rindler's. Nevertheless if the measurement is made in the in�nite past we obtain a
non-expected result, i.e, the rate is not zero although the detector is inertial in this region.
This situation deserves further investigations.
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5 Conclusions

In this paper we discussed radiative processes of di�erent detectors interacting with a
massive scalar �eld. The probability of transition per unit proper time of the accelerated
detector is obtained for the monopole Unruh-DeWitt detector and also for the derivatively
coupled detector.

We used the RWA in order to simplify the calculations of a detector with nonconstant
proper acceleration. We want to remark that the standard "photodetection" scheme is
based on absorption of quantum of the �eld by the detector. Using �rst order perturbation
theory the rate of excitation is proportional to the Fourier transform of a normal ordered
product of the negative and positive parts of the �eld operator. Nevertheless, normal
ordering with respect to the Rindler time is not normal ordered with respect to the
Minkowski time. Therefore an absorption of a Rindler particle by the detector is view
by an inertial observer by an emission and absorption of Minkowski particles, i.e., the
annihilation and creation operators of Rindler particles contains a mixture of both positive
and negative frequency parts of the �eld operator with respect to the inertial time.

Summarizing, the Minkowski vacuum j0;Mi with respect to the annihilation operator
of inertial particles is a squeezed state with respect to the annihilation operator of Rindler
particles. In this way, the absorption of Rindler particles combine both absorption and
emission of Minkowski particles in the excitation processes.

6 Appendix

In the appendix we will demonstrate that the excitation of the detector travelling in the
right edge of the Rindler manifold is followed by a annihilation of a Rindler particle in the
right edge of the Rindler manifold and the creation of a Rindler particle in its left edge.

For the sake of simplicity let us suppose that the mass of the quanta of the �eld is
zero i.e. m2 = 0 and de�ne

Ruk = (4��)�1=2ei(k����) inR; (69)

Ruk = 0 inL; (70)

and

Luk = 0 inR; (71)

Luk = (4��)�1=2ei(k�+��) inL: (72)

De�ning L;Rv�(�) = (4��)�1=2eik�, it is possible to write the �eld operator as

'(�; �) =
Z 1

0
d� [ b(1)(�)Lv(�; �)ei�� + b(1)

y

(�)Lv�(�; �)e�i��

+ b(2)(�)Rv(�; �)e�i�� + b(2)
y

(�)Rv(�; �)ei��]: (73)
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Let us suppose that in �i = cte the state of the system is jTii = jgi 
 j0;Mi. The
probability amplitude for the system to go to jTf i = jei 
 j�f i is:

A1
jg>
j0;M>!je>
j�f>

= �i�1meg(�i)
Z �f

�i
d�

Z 1

0
d�[

ei(E��)�(Lv�(�; �) h�f j b
(1)y(�) jO;Mi + Rv(�; �) h�f j b

(2)(�) jO;Mi)

+ei(E+�)�(Lv(�; �) h�f j b
(1)(�) jO;Mi + Rv(�; �) h�f j b

(2)y(�) jO;Mi)]: (74)

In the amplitude we have two terms. The �rst is an absorption process in the right
edge and an emission in the left edge of the Rindler manifold. The second is an absorp-
tion process in the left edge and an emission in the right edge of the Rindler manifold.
Nevertheless since this second one contains the factor ei(E+�)� which rapidly oscillates, it
gives a negligible contribution to the amplitude for � >> 1

jEj
.

7 Acknowledgement

We would like to thank Prof.L.Ford, for valuable comments. This paper was supported
by Conselho Nacional de Desenvolvimento Cient���co e Tecnol�ogico (CNPq) of Brazil.



{ 16 { CBPF-NF-018/96

References

[1] P.C.W.Davies, J.Phys.A 8, 609 (1975), W.G.Unruh, Phys.Rev.D 14, 870 (1976).

[2] B.F.Svaiter and N.F.Svaiter, Phys.Rev.D 46, 5267 (1992), ibid, Phys. Rev.D 47,4802
(1993)E.

[3] B.DeWitt, in General Relativity - An Einstein Centenary Survey, edited by
S.W.Hawking and W.Israel (Cambridge University Press, Cambridge, Englad, 1980).

[4] L.H.Ford, N.F.Svaiter and M.L.Lyra , Phys.Rev.A 49, 178 (1994).

[5] B.F.Svaiter and N.F.Svaiter, Class.Quant.Grav. 11, 347 (1994).

[6] L.H.Ford and T.Roman, Phys.Rev.D 48, 776 (1993).

[7] K.J.Hinton, J.Physics A 16, 1937 (1983).

[8] H.Kolbenstvedt, Phys.Rev.D 38, 1118 (1988), P.G.Grove, Class.Quant.Grav 3, 801
(1986).

[9] N.N.Lebedev, "Special functions and their applications", Dover Publication Inc, NY
(1972).

[10] S.A.Fulling, Phys.Rev.D 7, 2850 (1973).

[11] D.W.Sciama, P.Candelas and D.Deutsch, Adv. on Phys.30, 327 (1981).

[12] , P.L.Knight and L.Allen,"Concepts of Quantum Optics" Pergamon Press Inc, USA
(1985).

[13] O.Levin, Y.Peleg and A.Peres, J.Phys.A 25, 6471 (1992).

[14] W.G.Unruh and R.Wald, Phys.Rev.D 29, 1047 (1984).

[15] L.N.Pringle, Phys.Rev.D 39, 2178 (1989), T.D.Lee Nucl.Phys.B264, 437 (1986).

[16] M.Wilkens and M.Lewenstein, Phys.Rev.A, 39, 4291 (1989).

[17] A.Higuchi, G.E.A.Matsas and C.B.Peres, Phys.Rev.D 48, 3731 (1993).

[18] L.D.Landau and Peierls, selected papers in Quantum Theory and Measurement,
edited by J.A.Wheeler and W.H.Zurek, Princeton University Press N.Y. (1983).

[19] R.J.Glauber, Phys.Rev 130, 2529 (1963), ibid 131, 2766 (1963).

[20] P.W.Milonni and W.A.Smith, Phys.Rev.A 11, 814, (1975).

[21] J.R.Ackerhalt, P.L.Knight and J.H. Eberly, Phys.Rev.Lett. 30, 456 (1973).

[22] R.H.Dicke, Phys.Rev. 93, 99 (1954).



{ 17 { CBPF-NF-018/96

[23] J.Dalibard, J.Dupont-Roc and C.Cohen-Tannoudji, J.Phys.(Paris) 43, 1617 (1982);
ibid J.Phys(Paris) 45, 637 (1984).

[24] J.Audretsch and R.Muller, Phys.Rev.A 50, 1775 (1994), J.Audretsch, R.Muller and
M.Holzmann, Class.Quant.Grav. 12, 2927 (1995).

[25] J.Audretsch, M. Mensky and R.Muller, Phys.Rev.D 51, 1716 (1995).

[26] A.O.Barut and J.P.Dowling, Phys.Rev.A 41, 2277 (1990).

[27] T.Padmanabhan and T.P.Singh, Class.Quant.Grav. 4, 1397 (1987), T.Padmanabhan,
Class.Quant. Grav. 2, 117 (1985).

[28] P.Candelas and D.W.Sciama, Phys.Rev.D 27, 1715 (1983).

[29] E.G.Kalnins and W.Miller, J.Math.Phys. 15, 1025 (1974), ibid J.Math.Phys. 19,
1233 (1978).

[30] I.Costa, J.Math.Phys. 30, 888 (1989).


