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Abstract

In this work we evaluate the self-energy intergrals for �elds which obey equations of
motion containing the iterated Lorentz invariant D'Alembertians.
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xI. Introduction

Higher order equations seem to be a possible description for the evolution of physical
�elds.[1];[4]

In view of this fact, it is useful to have the necessary tools to develop the theory.
In this work we will evaluate the self-energy integrals for the �elds which obey equa-

tions of motion containing the Lorentz-invariant (iterated) D'Alembertian.
The simplest example is provided by the loop formed with \Scalar Photons".
The massless equations:

2�i = ji(�1�2) i = 1; 2 (1)

give rise to the self-energy integral.

�(k) =
Z
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�-dimension of space-time.
The integration can easily be performed with the aid of the well-known Feynman trick
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Replacing eq. (3) in (2) and choosing a convenient origin in q-space, we end up with
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As was to be expected, eq. (4) depends on k2 and no parameter with the dimension of
mass appears.

xII. Higher Order Massless Fields

The self-energy integral (2) can be generalized to the case in which the equations of motion
depend on interated D'Alembertians:[5]

2
n�i = ji (5)

In this case the propagators are proportional to (k2)�n and the self-energy integral is:

� =
Z
d�q

1

q2n
1

(q � k)2n
(6)

The appropriate formula to use for the integral (6) is obtained by taking derivatives
in eq. (3). For example, by taking n derivatives with respect to D1 obtain:

(�1)nn!
1

Dn+1D2
= (�1)n(n+ 1)!

Z 1

0
dx

xn

[D1x+D2(1� x)]n+2
(7)
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i.e.:
1

Dn+1
1 D2

= (n + 1)
Z 1

0

xn

[D1x+D2(1 � x)]n+2
(8)

If we now take n derivatives with respect to D2 we get the formula:

1

Dn+2
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2

=
(n +m+ 1)!

n!m!

Z 1
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(9)

Using (8) in (6) and changing the origin of the integration variable, we obtain:
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which, of course for n = 1 coincides with (4).
When the �elds obey equations with iterated D'Alembertians of di�erent orders

2
��1 = j1 (10)

2
��2 = j2 (11)

then we have to generalize (8) for arbitrary values for n and m to get
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xIII. Massless and Klein-Gordon Fields in Interaction

A massless scalar �eld interacting with a Klein-Gordon �eld obeys the equations

2�1 = j1 (13)

(2� �2)�2 = j2 (14)

with the appropriate expressions for j1 and j2. The respective propagators are q�2 and
(q2 + �2)�1 giving rise to the self-energy:
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(15)

Using eq. 3 and following the customary procedures we get a hypergeometric function.
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If, instead of (13), we have for �, an equation with iterated D'Alembertian:

2
n�1 = j1 (17)
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The self-energy integral is:
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Z
d�q
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1

q2 + �2
(18)

and we should use eq. (7) obtaining
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In (19) (or (16)) we have now the mass-parameter of the Klein-Gordon �eld (cf. eq.
(14)).

P
is a function of q2 and q2 + �2

xIV. Iterated D'Alembertians

In this paragraph we will consider equations of motion containing iterated D'Alembertians
for both, the massless and the massive �elds.

As a �rst example, we shall take the equations

2
2�1 = J1 (20)

(22 � �4)� = j2 (21)

The propagators are q�4 and (q4 � �4)�1. The self energy integral is then:
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We now use the identity
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So that we can write (22) in the form:
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Each of the \partial" self energies has the form (18) and the total self-energy is:
(k ! q)
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To see the general rule, we will consider a second example:

2
3�1 = j1 (26)

(23 � �6)�2 = j2 (27)
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with propagators q�6 and (q6 � �6)�1 (respectively).
This time we use the identify

1

q6 � �6
=

1

3�4

 
e1

q2 � e1�2
+
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q2 � e2�2
+

e3

q2 � c3�2

!
(28)

where e1 e2 e3 are the three cubic roots of unity. For the self-energy integral we have

� = �1 + �2 + �3 (29)

where

�i =
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The integral (30) coincides with (18) for n = 3
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It is now clear that we can solve a more general situation. The power of the D'Alembertian
may be arbitrary and it need not be the same for the massless and for the massive �elds.

We consider the equations:

2
n�1 = j1 (32)

(2m � �2m)�2 = j2 (33)

For the propagator of the massive �eld �2 we use the identity:

1

xm � 1
=

(�1)m+1

m

mX
S=1

ei

x� ei
(34)

where eS are the m-roots of unity

eS = ei
2�S

m S = 1; 2 � � �m (35)

Relation (34) allows us to write:

1
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=
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The self-energy integral corresponding to (32) (33) is
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1
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(37)

Using (36) we reduce (37) to a sum of \partial" self-energies:
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The result of the integration in (38) is given by (18) and (19)
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xV. Arbitrary Polinomials in 2

The method followed in xIV for the consideration of a massive �eld can be generalized
to the case where the Lorentz invariant equation of motion is given by a polynomial in
the D'Alembertian operator.

In fact, any polynomial in2 can be algebraically factorized into Klein-Gordon factors[6]

i.e.:
2
n + a12

n�1 + � � � + an = (2 � �21)(2 � �22)(2� �23) � � � (2 � �2n) (40)

where �2S (S = 1; 2 � � � n) are the n(complex) roots of the polynomial.
The corresponding propagator has the form:

P (q2) =
1

q2 + �21

1

q2 + �22
� � �

1

q1 + �2n
(41)

The factorization of P (q2) into Klein-Gordon propagators allows us to write:

P (q2) =
�1

q2 + �21
+

�2

q2 + �22
+ � � �+

�n

q2 + �2n
(42)

where �S(S = 1; 2 � � � n) are appropriate �-dependent constans.
In this way, the self-energy integral for a �eld obeying an equation which is a poly-

nomial in 2 interacting with a massless �eld obeying (23) can be reduced to the type of
integral given by (38). The solution is then a sum of \partial" self energies given by (39)
where the roots eS�2 have been substituted by the roots �2S .

By using a similar method we can treat the interaction between two �elds obeying
equations of motion with arbitrary-possibly di�erent, polynomials in 2. Both polynomial
are �rst factorized as in (40). Then both propagators are written as in (42). Finally, the
total self-energy integral is decomposed into partial self-energies consisting of convolutions
of each of the terms of one propagator with each of the terms of the other propagator[7].

xVI. Discussion

The possible use of higher order equations of motion for the description of natural
processes give rise to the necessity of developping tools for the evaluation of diagrams
corresponding to the pertubative solution of the evolution of the �elds.

In the present work we were interested in the evaluation of the second order self-energy
integrals when the intervening �elds obey higher order equations.

Our presentation goes from simpler to more involved cases. We started with massless
�elds (xII) and increasing complication in the respective powers of the D'Alembertian.
(2).

In xIII we considered a Klein-Gordon �eld interacting with a massless �eld, the power
of 2 for the latter being arbitrary.

In xIV we treated a massless �eld whose equation contains di�erent powers of 2
interacting with a �eld of the \Klein Gordon type" in whose equation the D'Alembertian
has an arbitrary power. Finally, in xV we show that it is possible to treat more general
cases. For example, a massless �eld with arbitrary power of 2 in its equation of motion
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in interaction with another �eld whose equation is determined by any polynomial in 2.
The solution in this case depends on the factorization of the polynomial in Klein-Gordon
factors.

It is also possile to treat the interaction of two �elds obeying equations with two
di�erent (arbitrary) polynomials of 2. Both polynomials are factorized into Klein-Gordon
factors. Then each \Klein Gordon propagator" for the �elds gives rise to a convolution
self-energy integral with another �eld another partial \Klein-Gordon propagator" for the
other �eld. If the polynomials have degree n and m (respectively) the total self-energy is
expressed as a sum of m times n \elementary" self-energies.
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