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Abstract

We show that Bose-Finstein condensation is present in highly deformed ¢-gases,
the critical temperature being higher than for the usual ideal boson gas. The specific

heat C'y has a A-point transition behaviour not exhibited by non deformed ideal
gases.
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Quantum Groups [1-3] have emerged as an appealing non-trivial generalization of Lie
Algebras and Lie groups. As Heisenberg algebras play an important role in a wide range
of problems, deformed Heisenberg algebras [4] have been attracting increasing interest.

Our main motivation to discuss deformed quantum gases [5-8] comes from the role
played by the theory of ideal gases in many different physical phenomena as superfluidity,
blackbody radiation, phonons in a cristal lattice etc. [9].

In a previous letter [8] we have analysed the high-temperature (or low-density) ap-
proximation for a quantum g¢-gas at large ¢ limit. In this letter we are going to study
the phenomenon of condensation and the behaviour of the specific heat for that system.
We find that the presence of deformation increases the critical temperature. Also, the
specific heat shows a A-point discontinuity instead of a cusp singularity, as exhibited in
non-deformed ideal gases.

Let A;, AT and N; be respectively the annihilation, creation and occupation number
operators of particles in level ¢, with energy w; satisfying the algebra [4, 10]

AAT — P AT A = 5 (1)

The Hamiltonian for an ideal ¢g-gas can then be defined as [5-8]:

H = ZCUZA;I_AZ = ZwZ[NZ] 5 (2)

with [n] = (¢*" = 1)/(¢* = 1).

The grand canonical partition function is given by:
Z = Trexpl=f(H — uN)] = exp(—59) | )
where = 1/kT, with k the Boltzmann constant and N is the total number operator

N =N (4)

o is the chemical potential and € is the grand canonical potential. For the above system
7 factorizes and the grand canonical potential is given by a sum over single level partition
functions

Q:_%Zlnzio(wvﬂwu)v (5)

where

wz,ﬂ () Ze . (6)

As in the usual approach, we enclose the system in a large volume V' and the sum is
then replaced by an integral over the p space:

y
S [ (7)

where in the case of a non-relativistic g-boson the energy is defined as w; = p'?/2m.
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We find the pressure P = —/V and the density of states n = dP/du to be:
P(T,z) = BTIATY(2) (8)
n(T,2) = A7y,(2),

where the fugacity z = exp(fp) and A = (%)1/2. The functions Y,(z) and y,(z) are

respectively:

Y,(2) = —= Ood:zj =0 (9.a)

A i[n]nz”e_[n]g” (i[n]z”e_[”]x) (inzne—[n]x)

y(2) = —= Oodxx3/2 =0 — =0 = (9.b)

. 2
S znell (Zzne—[n]x)
n=0

In the high-temperature (or low-density) approximation this system has been analit-
icaly investigated both for ¢ = 1 [5-7] (see ref. [6] for a detailed discussion) and large
q [8]. Clearly, in this regime it is not possible to access the Bose-Einstein condensation
phenomenon.

Let us now study the Bose-Einstein condensation for the highly deformed case, where,
as it will be justified later, the series (9) above can be approximated by their first three
terms. As usual, when z — 1 (or T" — T¢, T. being the critical temperature) we have to
take into account the zero-point energy and single out its contribution in (9). In addition,
inspection of eq. (6) clearly shows that when w; = 0 the effect of the deformation is
cancelled showing that we cannot, for the zero-point energy case, cut the series into a
polynomial. Keeping n constant we now consider lower temperatures: nA® then increases
and so does z, until z = 1. This happens when T'= T?, defined as nA? = y,(1) or

71— h? 2/3

—_— 1
oy (1)32rmk " (10)

Comparing T to the critical temperature for non-deformed gases of the same density n,

we find
74 2.61 \*/*
e | . 11

T. (yq(l)) ( )

Figure 1 shows T?/T, as a function of the deformation parameter ¢, where y,(1) has been
numerically calculated keeping only the first three terms of series (9b). As we have already
mentioned, the validity of this approximation will be discussed later.

Analogously to the non-deformed case [9] the basic equations are:

P(T,z) = B7'AT?Y,(2) (12.a)
n(T,2) = %1jZ+A—3yq(Z) (12.b)
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where the first term on the right-hand side of (12b), which is due the contribution of the
zero energy, is relevant only for 7" < T'?. In this region z remains equal to one, as is the
usual case.

The specific heat per particle C'y, defined as

C 1 0e
bv L ve : (13)
k kn OT|
where € is the energy density (internal energy per volume), can be computed as usual and
has the form

& _ E 3. y—1 2 Ya(2)
Pl (A°n)" Y, (2) 1 Zy;(z) T>T. (14.a)
% - % (A*n)=1Y, (1) T<T.. (14.b)

with yi(2) = dy,(2)/9=2.

Let us describe our numerical results. Tables I and II show the values of Y,(1),y,(1)
and y/ (1) for ¢ = 3 and 4, considering the upper limit of the sums in (9) as being n = 2,3, 4
and 5. We can see that for ¢ > 3 the approximation of keeping only the first three terms of
the series is valid with an accuracy of at least 1072, Finally, in fig. 2 we see the behaviour
of the specific heat as a function of T/T7 for ¢ = 4. Cy shows a A-point transition which
is a feature of interesting phenomena like, e.g., superfluidity. We must note that as ¢
approaches 1, in order to have the same order of accuracy (107%) more terms have to be
added to the series in eq. (9). Also, the discontinuity in Cy diminishes and disappears
for ¢ = 1, becoming then the usual cusp singularity.

In spite of the specific heat 7%/% behaviour instead of T, for 7' < T., as it is the case
for H'! [11], deformed g¢-gases seem to describe H!! better than the usual ideal boson
gas, which does not present a A-point transition. Besides, the ¢-gas we have considered
is the simplest one and the model can be improved by choosing a different deformed
Hamiltonian.

The authors thank C. Tsallis and E.M.F. Curado for helpful discussions.
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CAPTION FOR FIGURES AND TABLES

Figure 1 - T?/T, behaviour as a function of the deformation parameter ¢. (7. is the
critical temperature for the non deformed case).

Figure 2 - The specific heat Cy /k as a function of T'/T. presents a A-point transition
when ¢ > 1.

Table I and IT - Values of Y, y, and y; with different upper limits n in egs. 9.
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Table 1
q¢=3
n 2 3 4 5
Y, (1) | 0.882905 | 0.883290 | 0.883300 | 0.883301
y,(1) | 0.787659 | 0.788110 | 0.788438 | 0.788439
y;(l) 0.631581 | 0.632749 | 0.632799 | 0.632801
Table 11
q=1
n 2 3 4 5
Y,(1) | 0.874085 | 0.874157 | 0.874158 | 0.874158
yo(1) | 0.774906 | 0.775046 | 0.775048 | 0.775048
y;(l) 0.616266 | 0.616478 | 0.616482 | 0.616482
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