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ABSTRACT

Ve propose to study the stability of a polyatomic molecular sys-—
tem in terms of the thermodynamic potential 6. This enables us to
establish a relation between the bond index and the susceptibility
tensor 626/6gt6pj.

Key-words: Potential thermodynamic; Bond index; Hardness; Density
matrix; Linear response theory; Susceptibility.
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1 INTRODUCTION

The chemical potential () and the eletronegativity (x> con-
cept. for a microscopic system (atom or molecule) are related by
the derivatlive of the energy of the fundamental state with respect

to the number of electrons!:

SEIN]
r = - p=- . 1)

When we take a atom i, in a molecular system, this definition

assumes Lhe particular form:

x=- p= —ad, 2>

where q. is the electric charge of an atom in the molecule?.

The hardness of atoms in a molecule, another important concept

3

in quantum chemistry, formulated by Parr and Pearson™,can be iden-

tified as the diagonal of the stiffness matrix*:

&Elg, 1 ap. .
n; = —— k= - i €3>

The off-diagonal term n, is zero in two cases: a) as a conse-
quence of the molecular partition in fragments which do not inter-—
act and b) if the interaction energy is only long range Coulombic.
The first case is a necessary and sufficient condition for valid-

ity of the Sanderson principle, as it was observed before by
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FerreiraB and uthers"z.

Nevertheless, considering the relation between electronic

charge, the chemical potential and the thermodynamic potentialﬁ,

we should consider !

au. .
_ Mo i = 0 4D
2, o

because the off-diagonal elements of the matrix_ége/apiapj are
different from zero.

As it was shown by Giambiagi and Giambiagi7 ILj expresses the
correlation of atomic charge fluctuations in a molecule due to

electronic sharing:

1 — —
w1, = <at><aj> ‘ﬁ-ﬁﬁ . 8)

The diagonal term Ii_i is the self—charge in the molecule and the
off-diagonal term I‘._j is the bond index between atoms i and j.

We intend to build the stiffness matrix from the thermodynamic
potential G by the inverse matrix (I)Lj. This study allows us to
establish criteria of stability in the chemical bond, from Le
Chatelier principle.

2 LINEAR RESPONSE THEORY

The softness (s >, of an atom in a molecule, is the first

derivative of the electronic charge with respect. to the chemical

potentiale,
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-3-
s = - KB >/ 6u. | = Lp1.. 6>
L v 1 pi_ =M z Vi
where <§ > is defined by
g =<@>= 3<¢ ¢ > = 30° <7
aEl aEL

where ¢; and ¢ 2 are annihilation and creation operators associ-—
ated to orbital a. Hab are elements of the first—order density

mat.rix.

We propose to study the stability of a polyatomic molecular

system, in terms of the t hermodynamic potential G :

n
6 = —B LnTr expl—-R(pP>-3 u, § 21 8>
L,
from where we have
q x ’
- <q.> = ’ 9>
- ap‘.
. o <§ > 56
L. = - = 10
J o o w3y

and 3 = 1/KT.

¥hen X . = 0 we have Itj = 0, but if Iij-D does not imply that
I. is equal to zero; in this case there is only a modification of
the electronic cloud due the Coulomb interaction. When there is
overlap or sharing we have Itj 0 and I . =~ 0.

According to equations ¢(8-10> we can write relations between

the variations of electronic charge and chemical potential as a

linear response,
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G
‘5‘1; = 2 Su, = 2 ‘5,_,; = 2 Itj‘s"" R 11D
P .

whose inverse is given by

s = 3 ou =S oE 6q. = 3 I'isq, 12>
v = a4q ] 8 q@q 3 : J

where oy’ = —-(2/36p > and the matrix ¢1>') is the susceptibility,

wich is expresses by

’ 13>

Atj bying the minor of Ii..i in matrix (I)ij.

3 STABILITY CONDITIONS

We can find other relations between self-charge and bond index,

from the stability criterion of the system.
In equilibrium we have d6 = 0 and d%6 > ©

%6
3 p 0 u,

6pt6pj = 3 Iii 6piépj >0 s (14

ij i)

This imposes the condition that all minors of the susceptibility
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matrix must be positive.
In the most usual form, we take into account that the variation

of charge in atom i can be partitioned in the following way;

n

5q.= 2 5q;, 15>
k

where 6qik= — 6qkt is the charge transfer from atom i to atom k.

For any i~k pair of atoms we have
-12 >0 €16)
i Tkk ik

The positivity of all minors and the Schwartz’s inequality for
random operators in Hilbert’s spaceg"o garantees that the deter-—

minant (eq.{(16)) is positive.

Therefore, from eqs.(11-16) we obtain

-

'+ o+ 1% - 21*% > 0 €17

or in term of the inverse matrix,

. +I,, ¢+ 2., 2 0 (18

L

which is a consequence of the Le Chatelier principle. We conclude
that the charge involved in the bond should always be smaller

than half of the sum of self-charges of i and k.
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4 ATOMIC MARDNESS IN A POLYATOMIC MOLECULE

Due Lo the importance of the concepts of hardness n, and
softness s, , different approaches have been proposed in order to
describe them. As it was discussed in tﬁe previous sections, in
cur formulation the concept of hardness comes from the introduc-
tion of a thermodynamic potential to describe chemical bonds. One
of the main consequences consist in clarifying the contribution of
the bond index, not usually considered.

From the definition of hardness 7, = ézEfaqu we can write

n.= (2#’(3)1“'t or, in terms of the inverse element,

o

n:
n, =n = L 19
C1 =75
foo= ! -1t ki A 20>
i ;"j;":z ikTik
Ll x
which for a diatomic system given us,
o
n
n, = A €21)
C1 -fD
where
12
f = AB 22>
IAAIBB

which expresses the correlation between charge fluctuation. It is
easy to see that 0 < f < 1.

vhen there is only long range Coulombic interaction (Iij-D,
i.e. f =0 ) the hardness will be n, = 2/01,

i a8 usual.
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&6 CHARGE TRANSFER BETWEEN TWO ATOMS IN A MOLECVLE

In this section we study the charge transfer (6qij), the varia-
tion of the chemical potential (6Pij) between two atoms and their
chemical bond stability.

Taking the linear system (12) and the charge partition proposed
in €15), we can express the variation of chemical potential as a

function of the charge transfer from all pairs of atoms,

sul =3 I‘jéqjk 23>
ik
or
. . . i x
Sy = 2 (I""éqij + I"éq“) + 3 ««a "quk + I &q, ;2 24D

b] ik

The first sum involve variables belonging to only two atoms,
whereas the second sum conlains-variables belonging to three dif-
ferent atoms.

In analogy to the diatomic case, we define the variation of
chemical potential betwen pairs of atoms,

op); = I"i’éq.‘j-i- I”&qj.t 25>

and for three differents elements i,] and x by

, ij ik
ol = I sq,,+ I'"sq,; . €26?

Now using egs.(25,26) we can express the chemical potential of

each atom in a polyatomic molecule by
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—8—
n n
dp: = > 6p:j + > 6p:jk 5 27>
] ik
since & ;= pfj il % and T TN (in equilibriumd.

The charge transfer in the formation of the pair i=j can be

studied solving the linear system, eq.(27).

Using the constraint 6qti - — éqii we obtain a general expres-

sion for the charge variation given by

¢ "?t - pfj)

%5 T Ty DT < 210
=] =]
= CHi ""j)detq".j) . 28>
A . + A . - C-1d+*2A :
i ) L)

For the diatomic case Lhe constraint is 6qAE-6qB=6q, which give
us the following relation to the charge variation &q

o

- o T2
C ug M, KX, I IAB )

T ot I % 21, .

m:

29D

where Sy’ = - p

We remark that the positive sign of 8q depends only on the dif-
ference bet.ween p: and p;. Therefore the atom A receives charge
from atom B if p; > p:. The charge transfer in the chemical bond
is zero if the chemical potentials of atoms A and B are the same.

Another important relationship emerges from the analysis of the
behavior of the charge and chemical potential to atom i{,as a func-
tion of the variation of Lhe same parameters in the atom j. To get

this result we choose the set of independent. variables belonging

to the atom j;,
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-0
aq I . aq. . s e
—_—t = i > ~L = ”I <300
o P I s, ij
and
au’ 1 Su’ . I..
L o= > e 31>
x5 L ouy L,
13 DISCUSSIONS

¥When we make explicit the correlation of the charge fluctua-
t.ions we can see that : diminishes the charge transfer and there-
fore increases the hardness of atoms and molecules. If the corre-
lation is weak,i.e.,fi<( 1, we obtain the definitjion of hardness
in the linear pertubation t.heory2 x> nf(1+fi). If there are only
electrostatic interations, f is equal to zero because Iy = 0.

-

Therefore I'J expresses the efect of electronic sharing which is
very important in the covalent bondst1: 12

The thermodynamic caracter of molecular system has been dis-
cussed by many authors?® '® The introduction of function 6 allows
us to establish relations between the self-charge and bond indi-
ces, which are obtained from the density wmatrix.

We can also see that our approach will allow us Lo study the
stability of chemical bonds in a 2n—-dimensional Riemannian mani-
fold, where n is the number of atoms in a molecule.

It is possible to establish relations between G(uj) and a po-—
tential U(pt,qj). Ve identify the Catastrophe theory with the
theory of chemical bonds using equilibrium statistical thermody-
namic?® In our approach we reveal the thermodynamic aspect of the
density matrix by introducing the function G. ¥e obtain relations

between bond indices, self-charge, hardness and softness,which are
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observables of the microscopic system. Thus our approach is in the
gpirit of Nalewajski" and Tiszal”
The basic variable in our approch is the susceptibility tensor

a’e/apiapj which express the linear response of atomic charge

with the varialion of chemical potential.
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