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ABSTRACT

We discuss the anisotropic square lattice spin - % Ising
ferromagnet. Through this system we illustrate how all rele-
vant thermodynamical quantities (phase diagram, magnetization,
short range order parameter, specific heat and susceptibility)
can be approximatively calculated within an effective-field
unified procedure (which substantially improves the Mean Field
Approximation). Two slightly different approximations for the sus
ceptibility (whose exact computation is still lacking) are pre-
sented. The (square lattice) - (linear chain) crossover is ex-
hibited.

The present (mathematically simple) procedures could be u-

seful in the study of complex Ising problems.



I - INTRODUCTION

The basic understanding of most magnetic phenomena is
presently quite deep. In what concerns theoretical approaches,

a great amount of techniques are presently available (series(]),

(2), Renormalization Group(3’4), Coherent Potential
Approximation(

5)

Monte Carlo
among others; see also references therein) ;

however in practice not all of them are tractable for complex
systems, and consequently effective-field theories can be very
useful to provide a first insight into these problems. Recently
Honmura and Kaneyosh1(6) have introduced, for the Ising model,
a new type of effective-field treatment (based on the use of
an appropriate differential operator into the spin correlation

(7)

function Callen identity ) which, without introducing mathe -

matical complexities, has been quite succesfully applied for

a large variety of situations(puré systems(s), bond-random mag

( )
nets(9:10:11) including sp1n¢g1ass(]2) and amorphaus 13,14,
systems, binary a]]oys(]5), transverse Ising model (16) and

7).

surface problems This approach 1is quite superior to the
standard Mean Field Approximation (MFA) in several senses; for
example, contrarily to MFA, it provides a vanishing critical
temperature for the nearest-neighbour linear chain, and exhibi
ts physically expected non uniform convergences (related to

(9,10).

various crossovers) in random magnets Up to now most

works within this new framework have been exclusively dedicated
to the calculation of the phase diagrams and magnetization; the

(6,11)

specific heat has been analyzed in two occasions in 1iso-

tropi¢ systems and the magnetic susceptibility in none.



In the present work we study the anisotropic square lat-

% Ising ferromagnet. A1l relevant thermodynamical

quantities (namely the phase diagram, spontaneous magnetiza-

tice spin-

tion, short range order parameter, specific heat and isothermal
magnetic susceptibility) are calculated within an unified appro-
ximation framework; in particular for the susceptibility
(whose exact computation is still to be done) we introduce two
slightly different approximations. The fact that we are dealing
with an anisotropic system will enable us to exhibit how the

d=2 to d=1 crossover (d=dimensionality) occurs.

IT - MODEL AND FORMALISM

II- 1 Spontaneous magnetization

Let us consider the Hamiltonian

W - T 94 o9y (o o5 = =) (1)
! <1,j>

where <i,j> run over all the couples of nearest-neighbouring si

tes on a square lattice, and J equals either J} and J2

iJ
(0 < Jo < Jy > 0), respectively corresponding to the x and y a -
xes. The starting point for the statistics of this system is the following

Callen identity (7)

<o> = <tanh B 5 g5 05> (8= 1/kgT) (2)

where j runs over the 4 neighbours of site i, and <...> denotes

the canonical thermal average. By introducing(6) the differential

operator D = 3/3%, Eq.(2) may be rewritten as follows:

BDEJ .
J

<g. > = < e 1]

.G\].
i “>tanh x (3)



By introducing the definition

Dlg(o +0 ) + an(o +0 )1/t (4)
G(t,&,n) = <e 1 3 2 4 >tanhx |, _ ¢

where t k

11

B T/J], a = J,/d; €[0,1] and o and g (02 and a,)
are the "left" and "right" ("up" and "down") nearest neighbours

of site i, the spontaneous reduced magnetization will be given

by

2o cosh-%—-+ m sinh—%—)z(cos %? + m sinh %?)zjtanh X

x=0
(5)

We have neglected correlations between next-nearest neighbours.

By evaluating Eq. (5) we obtain (see also Ref. (9))

m=Am+B m (6)

A = [tanh Ei%iﬂl + tanh % + tanh %g 12 (6')
_ 2(14

B = rtanh 200 tann 2 tann 2%, (6'")

which admits the paramagnetic solution m=0 and the ferromagnetic

one

-fi-a\1/2
m‘C—BA) (see Fig.l) (7)



The critical line is given by A=1, which provides a critical
reduced temperature tC monotonously increasing frem 0 (d=1) to
3.0898 (d=2) while o runs from 0 to 1 (t ®*2%(a=1)-2.2692;

t MFAa=1)=4).

II.2 Short range order parameter and specific heat

The internal energy per site <E> is given by

<E> = —J]TX-JZTy (8)
T, T <0450¢> 5 <0.03> (9)
T, = <030,> = <0,0,4> (9")

(TX and Ty are referred hereafter as short range order parame-

ters). By using the two-site Callen identity(7) we can rewrite

Eqs. (9) and (9') as follows:

BD%JiiGJ

Tx,y = <c]’2 e v >tanh x (10)

or even

g% G (t,g,n)

T =

1
X 2

O et

tanh 2(1+a) , tanh 2(1-q) . 2 tanh 2
t t t

Q0 | =

+ 1 ]3 tanh 20+0) oo 2(0-0)] 2
4 t t



and

1
T, =~ — “— G {t,g,n)
y
ZOCD an E:n:]
1 2(1+a) tanh 2(1-a) + 2 tanh 2a
3 tanh t £ t
+ Ll 3tann 2020) | yapy 2020) 4,2
4 t t
+ 1 tanh Ejljﬁﬂ_ - tanh Eﬁl:ﬂl._ 2tanh 2 m4 (11Y)
8 t t t

The temperature dependences of /TX and /T_ are .depicted in

y
Fig.1. The specific heat per site is given by
c - 9<E> P A aTy
= = - B ———— 4+ O - e (]2)
aT ' au 3t

The thermal behaviour of the specific heat is shown in Fig.2
for selected values of o : we remark that, although the well
known Togarithmic divergence is not reproduced (this s of
course typical for effective-field theories), a paramagnetic
tail (proportional to 1/T2 jn the 1imit of high temperatures)

is present, thus improving the standard MFA result.



II1.3 - Susceptibility

In the presence of an external magnetic field H, the
term -gug must be added to Hamiltonian (1) (g = Landé factor
and up = Bohr magneton) ; consequently identity (2) is extended

into

<o5> = <tanh6(§J1joj+guBH)>

BDZJijGj
=<e >tanh(x+ngBH) % = 0 (13)

The zero field isothermal magnetic susceptibility per site is

given by
2 2
9 g
X = X (14)
‘ J
1
_am
X = =
shlp = (15)

where h = gp§4/J1
The identity (13) can be rewritten as follows:

D[(c1+o3) +'a(02+c4)]/t
m=<e >tanh(Xf%9 (16)



By neglecting hext-nearest-neighbour spin corre]ations, Eq.(16)
becomes identical to Eq.(5) excepting for the transformation
tanh x - tanh(x+h/t); differentiation with respect to h on
both sides leads to our present first approximation for the
susceptibility:

I F

- 17
t(1-A-3Bm°) t7)

where I stands for "first”approximation, A, B and m are given

by Eqs. (6'), (6"') and (7) respectively, and

F = l{[i‘?ch2 2(0+2) 4 sech? 2(1=%) 4 25ech? 2
8 t t t
2
+ 2sech™ _2g + 2
t
" [6$ech2 2(14a)  _ pgech? 2(1-9) 4]m2
t t
+ [sech2 ?(]+a) + sech2 2(1-a) _ 25ech? 2
t t t

(18)
-Zsech2 20 + Z]mz}v
t

The temperature dependence of XI is depicted in Fig.3; remark

that, in the limit t » =, xL 1/t.



—.8 -

let us now turn onto another type of approximation
which will provide our second proposal for the reduced suscep

tibility, noted ylI.

Both single-site (Eq.(2)) and two-site Callen identiti

es(7) can be generalized (18)1nt0.
<flog> =< f'tanh8(§J1j0j+gu§+)> (19)

where f' is an arbitrary function of all O *0; (f'=1 andf”:ck

respectively provide the single- and two-site identities). By

choosing f' = f[1+ (tanthdijojﬁ {tanh 59U§U ] where f also is
J
an arbitrary function of all o * 0y we rewrite Eq. (19) as fol

Tows:

<foi> + <foi tanh6§dijoj> tanhsguﬁ

= <ftanhgzd o > + <f> tanhegugi (20)
J 133

By finally choosing f = 1 and introducing (19) the differen-
tial operator D into this identity, we obtain:

BJijoJD
<o> o+ <oin e >tanh x tanhsguﬁ
J X =
BJ:.0:D
173 , (21)
= <I e >tanh x + tanthu§
J x =0




-9 -

Bdic-D

By decoupling the nearest-neighbour spin term, i.e. <o ;e 33

BJi-G-D J
= <o;><Te 3 >, and by further decoupling the next-nearest-
‘ J . . . BJijGjD N BJUOJ-D
neighbour spin correlations, i.e. <Ile > x Ii<e >,
J J
eq. (21) can be rewritten as follows:

m + m H[cosh(sdijD) + m sinh(BdijD)] tanhx tanhsgug

J

x=0

= H[cosh(BJijD) +m sinh(BJijD)]tanh X
J

+tanthp§l (22)
x=0

By differentiating (with respect to H) on both sides and expli
citely applying the D - operator we obtain the following appro
ximate zero field reduced susceptibility:
11 1 - m?
X -

£ (1-A-3Bm9)

(23)

We remark that the present denominator coincides with that of

I

Eq. (17); consequently XI and '~ diverge at one and the sa-

me critical point; furthermore, in the limit t - 0, XII NXII W/t
II

The temperature dependence of x is illustrated in Fig. 3; we

remark that in the high temperature region XI

I1

is a better ap-

II

proximation than y

, whereas at Tow temperatures x tends

to be better than yl.
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IIT - CONCLUSION

The spin - 1 Ising ferromagnet in anisotropic square
2

lattice has been discussed. All relevant thermodynamical quan-
tities (phase diagram in the T - a space with o = JZ/JI’ spon-
taneous magnetization, short range order parameter in both x
and y directions, specific heat and zero field isothermal mag-
netic susceptibility) have been calculated in an effective
field unified framework which extends that recently introduced

(6)

by Honmura and Kaneyoshi Two slightly different new proce-
dures for approximatively calculating the susceptibility(whose
exact computation is still to be done) are presented: one of
them tends to be better at high temperatures while the other
one tends to be better at low temperatures.

Although the present approach leads to classical (Landau-
type) critical exponents (as it is the case for most effective -
field theories) , and consequently no strict crossover can be
observed at the critical exponents level, this framework is quite
superior to the standard Mean Field Approximation one as it pro-
vides: a) a vanishing critical temperature in the Timit o -+ 03
b) non vanishing tail in the paramagnetic phase specific heat;
c) critical temperatures, as function of o , which stand closer
to the exact ones (see Ref.(9) for details on this and other
types of improvements) .

We believe the (mathematically simple) procedures illustra-
ted herein can be useful in order to provide a first insight on
a great variety of complex Ising problems.

One of (E.F.S.) acknowledges generous hospitality from Cen

tro Brasileiro de Pesquisas Fisicas where part of this work was done.
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CAPTION FOR FIGURES

Fig. 1 - Thermal behaviours of the spontaneous magnetization (solid line)

and the square root of the short range order parame-

ters along the x- (dashed 1line) and y- (dot-dashed 1ine)

directions for selected values of o :JZ/J1

Fig. 2 - Thermal behaviour of the reduced specific heat for

selected values of «a

3 - Thermal behaviour of the inverse reduced zero field

(solid line)

Fig.
susceptibility within approximations I

and II (dashed 1ine) (see the text); the dot-dashed line

qualitatively indicates the unknown exact result.
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