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1 Introduction

The Lewis metric represents the most general stationary cylindrically symmetric solutions

to Einstein vacuum equations [1, 2]. However, as it is well known, in the case when all

the parameters of the metric are real, the so called Weyl class, the Cartan scalars corre-

sponding to this metric are the same as those of the static Levi-Civita spacetime [3] and

therefore both metrics, Levi-Civita and Lewis (Weyl class), are locally indistinguishable

[4]. This situation is also reected by the fact that a coordinate transformation exists

[5], which casts one of the metrics into the other. Although the consequences implied by

this transformation are physically inadmissible (e.g. periodic time), the transformation

itself is mathematically regular with a non-vanishing Jacobian. Comments above put in

evidence the very peculiar character of the stationarity of Lewis metric and the di�culties

in the understanding of the physical meaning of its parameters, which has been brought

out before [6]. It is our endeavour with this work to delve deeper into this question . With

this purpose we shall construct shell-like sources for the Lewis metric. These shells will

be studied and matched to the Lewis spacetime. Doing so, the parameters of the exterior

metric will be related to physical properties of the source, and their ranges of validity

somehow restricted by energy conditions.

The paper is organized as follows: in Sec. II we discuss about the global and local

properties of the spacetime, both, inside and outside a cylindrical source. Then, we show

that the solutions with a > 0; � � 1
4 or a < 0; � � 1

4 are free of CTC's far from the

axis of symmetry , where a and � are two of the four free parameters appearing in the

Lewis vacuum solutions, with a and � being usually related to the angular defect and the

mass per unit length, respectively. In Sec. III, using Taub's method [7] we construct

cylindrical shell-like sources, by taking the rotating Minkowski spacetime as the interior

of the shell, while in Sec. IV we write the surface energy momentum tensor, obtained in

Sec. III, in its canonical form by solving the corresponding eigenvalue problem, and then

impose the three energy conditions, weak, strong and dominant. It is found that these

conditions can be satis�ed for the solutions with a > 0; 0 � � � 1
4 or a < 0; 1

4 � � � 1
2 .

In Sec. V we calculate the vorticity of the shell as well as the energy density per unit

length, which will bring out further the role of di�erent parameters in the stationarity

of the spacetime. The paper is closed by Sec. V I, in which our main conclusions are

presented.

2 The Lewis metric and its local and global proper-

ties

The general stationary cylindrically symmetric vacuum solutions of the Einstein �eld

equations, the Lewis metric, are usually given by

ds2 = fdt2 � 2kdtd�� e�(d%2 + dz2)� ld�2; (2.1)
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where f; l; k and � are functions of % only, being given by

f = a%4� � 2%2(1�2�)

a
; l =

%2

f
� 
2f;

k = �
f; e� = %4�(2��1); 
 � b+
%2(1�2�)

af
; (2.2)

where a (6= 0); b;  and � are the four free parameters of the solutions (Note that in this

paper we use the notations slightly di�erent from the ones used in [1, 2]). When these

parameters are all real, the corresponding solutions are usually referred to the Weyl class,

and when they are complex, the corresponding solutions are usually referred to the Lewis

class. In this paper we shall restrict ourselves only to the Weyl class.

Setting b = 0 = , the Lewis solutions (with a > 0) reduce to the Levi-Civita solutions

[2, 3], which represent the gravitational �eld produced by a cylindrically symmetric static

source, with a being related to the angular defect and � the mass per unit length of the

cylinder [8],[9]. In order to give a geometrical meaning to the radial coordinate % we �rst

transform it into a proper radius r by de�ning

%2�(2��1)d% = dr; (2.3)

so obtaining

% = R1=�; R = �r; � � 4�2 � 2� + 1: (2.4)

With (2.4) the metric (2.1) becomes

ds2 = Fdt2 � 2Kdtd� � dr2 �Hdz2 � Ld�2; (2.5)

where

F = aR4�=� � 2

a
R2(1�2�)=�; H = R4�(2��1)=�;

L =
(1 � b)2

a
R2(1�2�)=� � ab2R4�=�;

K = �(1� b)

a
R2(1�2�)=� � abR4�=�: (2.6)

Since now the radial coordinate r de�nes the proper distance, without loss of generality,

we shall consider the solutions only in the region r 2 [0;1). It can be shown too that

the above solutions are singular at r = 0 (or equivalently R = 0) except for the cases

� = 0; 1=2;�1. In the latter cases, the Riemann tensor vanishes in the region r 2 (0;1),

and the spacetime is (locally) at. The singularity at r = 0 is usually considered as

representing the existence of some kind of source [10]. However, this kind of interpretation

is not completely satisfactory, until some physically acceptable source is found. It is in

this vein that in the following we shall look for shell-like sources for the above solutions.

That is, we shall consider the Lewis solutions valid only in the region outside of a rotating
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cylindrically symmetric thin shell, say, located on the hypersurface r = r0, and then join

them to a rotating at region in the interior of the shell. By this way, we can consider the

Lewis vacuum �eld as produced solely by the rotating thin shell. If the matter on the shell

satis�es the weak, strong and dominant energy conditions [11], then we shall consider it

as physically acceptable source of the Lewis vacuum solutions. However, we are aware of

the fact that a great deal of "exotic" (but still seeming physically meaningful) scenarios

may produce violation of any of the energy conditions above, and therefore caution should

be exerted before ruling out the correspondig sources.

Let us start by noticing that the spacetime inside and outside the shell must satisfy

several physical and geometrical conditions [2, 8, 12]. In general, checking those conditions

is not trivial. As a matter of fact, only when the symmetry axis is free of curvature

singularities, we know how to impose them. When it is singular, it is still not clear which

conditions should be required [13, 14]. Fortunately, in the present case since the region

inside the shell is assumed to be at, the axis is regular. Then, we impose the following

conditions: (i) There must exist an axially symmetric axis, which is usually characterized

by the condition,

X � k��(�)��(�))g�� j =j g�� j! 0; (2.7)

as r ! 0+, where we have chosen the radial coordinate such that the axis is located at

r = 0, � denotes the angular coordinate, with the hypersurfaces � = 0 and � = 2� being

identical,and ��(�) is the Killing vector along d� (ii) The spacetime near the symmetry axis

must be locally at, which can be expressed as [2],

X;�X;�g
��

4X
! 1; (2.8)

as r! 0+ and the comma stands for partial di�erentiation. Note that solutions that fail

to satisfy this condition are sometimes accepted. For example, when the left-hand side

of Eq.(2.8) approaches a �nite constant, the singularity on the axis can be related to a

cosmic string [15].

These are the conditions that the metric inside of the shell has to satisfy.

For the spacetime outside the shell we impose the conditions: (iii) No closed timelike

curves (CTC's). In cylindrical spacetimes, CTC's are rather easily introduced [11]. While

the physics of the CTC's is not yet clear [16], we shall not consider this possibility here

and simply require that [17]

��(�)�
�
(�)g�� < 0; (2.9)

holds in all the region outside the shell. Since we are studying axisymmetric solutions of

the form (2.1), in which � is restricted to [0; 2�], the (t; �) surfaces thus have cylindrical

topology. This imposes restrictions on the permissible transformations on (t; �). It is

showed in [13] that the only allowed transformations are

t
0

= Y t; �
0

= �+ Zt (2.10)
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where Y and Z are constants. Under these transformations g�� = g�0

�
0 , hence the condi-

tions (2.9) remains the same for (2.10). (iv) Asymptotical atness. Since the source now

is a thin shell located at a �nite distance from the axis, we require that the spacetime

be asymptotically at as r ! +1. We note that because of the cylindrical symmetry,

the spacetime can never be asymptotically at in the axial direction. Therefore, in the

following whenever we mention asymptotical atness we mean in radial direction. (v) No

spacetime singularities. The spacetime outside the shell must be free of any singularities.

By this way, we are sure that the Lewis vacuum spacetime is indeed produced only by the

rotating thin shell. Otherwise, the singularities may represent additional sources, being a

possibility that we do not consider in this paper.

It can be shown that conditions (iv) and (v) are satis�ed by the Lewis vacuum solu-

tions, while the condition (iii) given by Eq.(2.9) becomes

L(R) =
(1 � b)2

a
R4�=�[R2(1�4�)=� �R

2(1�4�)=�
1 ] > 0; (2.11)

where

R1 �
����� ab

1� b

�����
�=(1�4�)

: (2.12)

From the above it is simple to see that Eq.(2.11) should hold in the following four

cases , far from the axis,

(a) a > 0; � <
1

4
; b 6= 1; R 2 (R1;1);

(b) a > 0; � =
1

4
; b 6= 1; a2b2 < (1� b)2; R 2 (0;1);

(c) a < 0; � =
1

4
; b 6= 0; a2b2 > (1� b)2; R 2 (0;1);

(d) a < 0; � >
1

4
; b 6= 0; R 2 (R1;1): (2.13)

3 Matching Lewis spacetime to a cylindrical rotat-

ing shell source

In 1937, van Stockum constructed a rotating cylindrically symmetric dust uid as the

sources of the Lewis vacuum solutions [18], and showed that only the solutions (of the

Weyl class) with a0 and 0 � � < 1
4 can be produced by such a dust uid.

In this paper, we shall consider an in�nitely thin cylindrical shell of anisotropic rotating

uid with a �nite radius and we match it to the exterior Lewis spacetime given by Eqs.(2.5)

and (2.6). For the interior of the shell we assume a rotating Minkowski spacetime, since

it is the only spacetime deprived of energy density. In order to do the matching we only

require the continuity of the metric coe�cients across the shell [7], so allowing us to obtain



CBPF-NF-018/02 5

the most general rotating thin shell. Using the same coordinate system as in Eq.(2.5),

the rotating Minkowski spacetime with angular velocity ! can be written in the form,

ds2� = (1� !2r2)dt2 � 2!r2dtd� � dr2 � dz2 � r2d�2: (3.1)

Indices � and + refer to interior and exterior spacetimes of the shell, respectively.

Clearly the conditions (2.7) and (2.8) are satis�ed by the metric (3.1). In addition to

these two conditions, we also require that the Killing vector ��(t) = ��t remains timelike in

the interior region of the shell,

��(t)�
�
(t)g

�
�� = 1� !2r2 > 0; (0 � r � r0): (3.2)

On the other hand, without loss of generality, we make a reparametrization of t and

z,

t! t

A
; z ! z

B
; (3.3)

where A and B are constants. Then, the solutions of Eqs.(2.5) and (2.6) become,

ds2+ = Fdt2 � 2Kdtd�� dr2 �Hdz2 � Ld�2; (3.4)

with

F =
1

A2

"
aR4�=� � 2

a
R2(1�2�)=�

#
; H =

1

B2
R4�(2��1)=�;

L =
(1� b)2

a
R2(1�2�)=� � ab2R4�=�;

K = � 1

A

"
abR4�=� +

(1� b)

a
R2(1�2�)=�

#
: (3.5)

On the hypersurface r = r0, the �rst junction condition requires that

g+�� jr0 = g��� jr0: (3.6)

From the 00-component of Eq.(3.6), we �nd that

F (R0) =
2

aA2
R

4�=�
0 [R

2(1�4�)=�
2 �R

2(1�4�)=�
0 ] = 1 � !2r20 > 0; (3.7)

where

R0 = �r0; R2 �
�����a
�����
�=(1�4�)

: (3.8)

Eq.(3.7) further restricts the validity of the Lewis solutions as representing the vac-

uum gravitational �eld outside a cylindrical source and/or the range of validity of the

coordinates of (2.1).

As a matter of fact, in the cases (a) and (d) given in Eq.(2.13), F (R) is always negative

when R is su�ciently large. Therefore, in these two cases the condition F (R0) > 0 is
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possible only in certain range of R. A closer investigation shows that the four cases given

in Eq.(2.13) have to be further restricted to

(a) a > 0; � <
1

4
; b <

1

2
; R1 < R0 < R2;

(b) a > jj; � =
1

4
; �(a+ ) < b < a� ; b 6= 1; R0 > 0;

(c) �jj < a < 0; � =
1

4
;  � jaj < b <  + jaj; b 6= 0; R0 > 0;

(d) a < 0; � >
1

4
; b 6= 0; b <

1

2
; R1 < R0 < R2: (3.9)

These conditions are su�cient to ensure the absence of CTC's outside the source and

the timelike nature of the Killing vector ��(t),inside the shell.

From the above expressions we can see that when � 6= 1=4 the rotating shell can be

present only in between the two cylinders R = R1 and R = R2 . It is remarkable to note

that in the cases (c) and (d) where a < 0, the static limit b = 0 =  is forbidden by the

�rst junction condition. Moreover, in the cases (a) and (d), there always exists a point

R = R2, where

F (R) =
�� 0; R � R2,

< 0; R > R2.
(3.10)

That is, (as expected) the Killing vector ��(t) = ��t changes from time-like in the region

R 2 [R0R2) to space-like in the region R 2 (R2;1), thereby restricting the range of R

(for the whole spacetime) to (0; R2).

It should be also noted that the conditions (3.9) are valid not only for the case where

a thin shell is the sole source of the Lewis metric, but also for the case where the whole

interior region r � r0 is all �lled with matter. Then, any kind of matching between a

cylindrical stationary source and the Lewis vacuum spacetime is satis�ed by (3.9).

Considering the other components of Eq.(3.6), we obtain

A =
R

1=�
0

r0
; B = R

2�(2��1)=�
0 ;

a =
2(1 � b)2R2(1�2�)=�

0

r20 � 
0
;

!r0 = � r20

(1� b)R1=�
0

� 2b(1 � b)R
1=�
0

r20 �
0
: (3.11)

with


0 �
h
r40 + 4b2(1� b)2R2=�

0

i1=2
: (3.12)

Taub [7] showed that if (3.6) is satis�ed then the �rst derivatives of the metric are in

general discontinuous across r = r0, giving rise to a shell of matter. Following him, we

�rst introduce the quantity b�� via the relations

g+��;�jr0 � g���;�jr0 = n�b��; (3.13)
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where n� is the normal to the hypersurface r = r0, directed outwards and given by n� = �r�.

Then, in terms of b��, the energy-momentum tensor (EMT), T��, of the shell is given by

[7],

T�� = ����(r � r0); (3.14)

where �(r � r0) denotes the Dirac delta function and ��� the surface EMT, given by

��� =
1

16�
[b(ng�� � n�n�) + n�(n�b

�
� + b��)n� � nb�� � n�n�b

��g�� ]; (3.15)

with n � n�n
�, and b � b��. It can be shown that in the present case the non-vanishing

components of b�� are

btt = 2!2r0 + F 0
0; bt� = 2!r0 �K 0

0; bzz = �H 0
0; b�� = 2r0 � L0

0; (3.16)

where a prime stands for di�erentiation with respect to r. Substituting the above expres-

sions into Eq.(3.15), we �nd that the surface EMT can be written in the form,

��� = �t�t� + q(t��� + ��t�) + pzz�z� + p����� ; (3.17)

where

� =
1

16�R0
[1 � (1� 4�)J(r0)] ;

q =
4� � 1

16�R0

h
J2(r0)� 1

i1=2
; pz =

(1� 2�)�

4�R0
;

p� =
1

16�R0

h
1� 4� + 8�2 � (1 � 4�)J(r0)

i
; (3.18)

and

t� = �t�; z� = �z�; �� = !r0�
t
� + r0�

�
�;

t�t
� = �z�z� = ����� = 1; t�z

� = t��
� = z��

� = 0; (3.19)

with

J(r0) � 
0

r20
: (3.20)

The upper sign \�" in Eq.(3.18) corresponds to the case a0, and the lower sign \+"

corresponds to the case a0.

4 Physical Interpretation of the Surface Energy-Mo-

mentum Tensor and the Energy Conditions

In order to have the physical interpretation for each term appearing in Eq.(3.17), we need

�rst to cast the surface EMT in its canonical form, that is, solving the eigenvalue problem

[14],

��� �
� = ���: (4.1)
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Before doing so, we note that when � = 1=4, which corresponds to the cases (b) and

(c) classi�ed in Eq.(3.9), we have q = 0 and the surface EMT of Eq.(3.17) is already in

its canonical form (the same is true when b = 0).

Then, the three unit vectors t�; z� and '� are the corresponding eigenvectors of

Eq.(4.1). Thus, now � can be considered as representing the energy density of the matter

shell, and pz and p' the principal pressures along the two spacelike eigen-directions,

de�ned, respectively, by z� and '�. It can be also shown that the corresponding EMT

satis�es all the three energy conditions [11]. Therefore, it is concluded that the Lewis

vacuum solutions with � = 1=4 for both of the two cases a > 0 and a < 0, can be produced

by physically acceptable rotating thin shell.

Thus, in the following we need only to consider the cases (a) and (d) of Eq.(3.9). In

the latter cases, the system of equations (4.1) will possess nontrivial solutions only when

the determinant detj��� � ���� j = 0, which can be written as [14]

�(pz � �)
h
�2 � (�� p')� + q2 � �p'

i
= 0: (4.2)

Clearly, the above equation has four roots, � = 0; pz; ��, where

�� =
1

2

h
(�� p')�D1=2

i
; D � (� + p')

2 � 4q2: (4.3)

It can be shown that the eigenvalue � = 0 corresponds to the eigenvector ��1 = n�,

where n� is the normal vector to the hypersurface r = r0. The eigenvalue � = pz
corresponds to the eigenvector ��2 = z�, which represents the pressure of the shell in

the z-direction. On the other hand, substituting Eq.(4.3) into Eq.(4.1), we �nd that the

corresponding eigenvectors are given, respectively, by

��� = (�� + p')u
� + q'�: (4.4)

In the rest of this section we shall only consider the case a > 0 in details. For the

case a < 0 we present only the �nal results since the analysis is similar to the a > 0 case.

Thus assuming a > 0, we �nd that

�+ + p' =
1

16�R0

h
� � (1 � 4�)J(r0) +

p
D
i
;

D =
1

(8�R0)2

h
(1� 4�)2 + �2 � 2�(1 � 4�)J(r0)

i
: (4.5)

Following [14], we shall further distinguish the three subcases: (1) D > 0; (2) D = 0;

and (3) D < 0.

4.1 D > 0

From Eq.(4.5) we can see that the condition D > 0 can be written as

(1� 4�)J(r0) <
�

2
+

(1� 4�)2

2�
; (D > 0): (4.6)
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As can be seen from Eq.(4.3), now the two roots �� and the two eigenvectors ��� are

all real and satisfy the relations,

(�+ + p')(�� + p') = q2;

����
�
�g��

D1=2(�� + p')
= �1;

��+�
�
�g�� = 0: (4.7)

From these expressions we can see that when �+ + p' > 0, the eigenvector ��+ is

timelike, and ��� is spacelike, while when �+ + p' < 0, the two vectors exchange their

roles. Let us �rst consider the case where �+ + p' > 0. Case A.1.1 �+ + p' > 0: This

condition can be written as

�� (1 � 4�)J(r0) +
p
D > 0; (�+ + p' > 0): (4.8)

Setting

E�
(0) � ��+

[D1=2(�+ + p')]
1=2

; E�
(1) � n�; E�

(2) � z�;

E�
(3) � ���

[D1=2(�� + p')]
1=2

; (�+ + p' > 0); (4.9)

we �nd that E�
(a); (a = 0; 1; 2; 3) form an orthogonal basis, i.e., E�

(a)E(b)� = �ab, with

�ab = diag:f1; �1; �1; �1g.
Then, in terms of these unit vectors, the surface EMT given by Eq.(3.17) takes the

form

��� = �(0)E
�
(0)E

�
(0) + p(2)E

�
(2)E

�
(2) + p(3)E

�
(3)E

�
(3); (4.10)

where {

�(0) =
(�+ + p')

2q2

n
D1=2p' �

h
p'(�+ p')� 2q2

io

=
1

2

h
D1=2 + (�� p')

i
=

p
D

2
+
�(1� 2�)

8�R0
;

p(3) =
(�� + p')

2q2

n
D1=2p' +

h
p'(�+ p') � 2q2

io

=
1

2

h
D1=2 + (p' � �)

i
=

p
D

2
� �(1� 2�)

8�R0
;

p(2) = pz =
�(1� 2�)

4�R0
; (�+ + p' > 0): (4.11)

{Note the typos in the expressions given by Eq.(39) in [14]. After the corrections, they should be

given by the �rst parts of Eq.(4.11) in each of their corresponding expressions.
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Thus, in terms of its tetrad components the surface EMT can be cast in the canonical

form,

h
�(a)(b)

i
=

2
66664
�(0) 0 0 0

0 0 0 0

0 0 p(2) 0

0 0 0 p(3)

3
77775 ; (4.12)

where �(a)(b) � ���E
�
(a)E

�
(b).

This corresponds to the Type I uid de�ned in [11]. Hence, in this case the surface

EMT can be considered as representing an anisotropic uid with its surface energy density

given by �(0), measured by observers whose four-velocity is given by E�
(0), and the principal

pressures in the directions E�
(2) and E�

(3), given respectively by p(2) and p(3). Certainly,

this interpretation is valid only when the surface EMT satis�es some physical conditions,

such as, the weak, dominant, and=or strong energy conditions [11]. In this paper, we shall

not consider the exactly physical nature of the matter content of the shell, but impose

these three energy conditions. If they are satis�ed, then we shall consider the shell as

physically acceptable.

It can be shown that in this subcase, all the three energy conditions are satis�ed for

the range of � given by

0 � � <
1

4
; (4.13)

by properly choosing the radius of the rotating thin shell such that the following condition

is ful�lled, p
D � �(1� 2�)

4�R0
: (4.14)

On the other hand, it can be also shown that Eq.(4.8) is automatically satis�ed, once

Eqs.(4.6) and (4.13) are ful�lled.

Therefore, it is concluded that all the Lewis vacuum solutions with a > 0 and 0 � � <

1=4 can be produced by a physically acceptable rotating shell. Case A.1.2 �+ + p' < 0:

This condition can be written as

�� (1 � 4�)J(r0) +
p
D < 0; (�+ + p' < 0): (4.15)

Since now ��� is time-like, the orthogonal basis can be chosen as

E�
(a) �

(
���

D1=4 j�� + p'j1=2
; n�; z�;

��+

D1=4 j�+ + p'j1=2
)
: (4.16)

Then, the corresponding EMT also takes the form of Eq.(4.12) but now with k

�(0) = �(�� + p')

2q2

n
D1=2p' +

h
p'(�+ p')� 2q2

io

kNote the typos in Eq.(42) of [14]. After the corrections, they should be given by the �rst parts of

Eq.(4.17) in each of their corresponding expressions.
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=
1

2

h
(�� p')�D1=2

i
=

�(1� 2�)

8�R0
�
p
D

2
;

p(3) = �(�+ + p')

2q2

n
D1=2p' �

h
p'(�+ p')� 2q2

io

=
1

2

h
(p' � �)�D1=2

i
= ��(1� 2�)

8�R0
�
p
D

2
;

p(2) = pz =
�(1� 2�)

4�R0
; (�+ + p' < 0): (4.17)

It is not di�cult to show that in this case none of the three energy conditions is

satis�ed. Thus, it is concluded that in the present case there does not exist physically

acceptable rotating thin shell such that the conditions (4.6) and (4.15) are satis�ed.

4.2 D = 0

In this case from Eq.(4.5) we �nd that

J(r0) =
1

2

�
�

1� 4�
+

1 � 4�

�

�
: (4.18)

Substituting the above expression into Eq.(3.18), we have

� =
�

8��R0

h
2 � 5� + 4�2(1� �)

i
;

pz =
�(1� 2�)

4�R0
; p' =

3�2(1� 2�)2

8��R0
;

q = �j�(1� �)(1� 4�2)j
8��R0

; (4.19)

from which we can see that when � = 0 the shell disappears, and when � = �1=2 we have
q = 0. In the latter case, we obtain

� = �p' =
1

2
pz = � 1

8�R0
; q = 0;

�
� = �1

2

�
: (4.20)

Clearly, in this case none of the three energy conditions is satis�ed. On the other

hand, impossing (3.9) we �nd that � must satisfy the condition � < 1=4, since now

we have a > 0. Therefore, in this subsection we need to consider only the subcases,

� < �1=2; �1=2 < � < 0 and 0 < � < 1=4. From Eq.(3.17) we can see that the case

q < 0 can be obtained from the case q > 0 by replacing '� by �'�. This is physically

equivalent to a counter-rotation. Obviously, the energy conditions should not depend

on such rotations. Thus, without loss of generality, in the following we shall drop the

negative sign of q given in Eq.(4.19). After this replacement is done, we �nd that

q =

8><
>:

1
2(� + p') > 0; 0 < � < 1

4 ,

�1
2(�+ p') > 0; �1

2 < � < 0,
1
2(� + p') > 0; � < �1

2 .

(4.21)
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In each of the above subcases, it can be shown that the two roots �� given by Eq.(4.3)

degenerate into one. As shown in [14], this multiple root corresponds to two null inde-

pendent eigenvectors,

��� =
u� � '�

p
2

: (4.22)

From these two null vectors we can construct two unit vectors, one is timelike and the

other is spacelike, but these are exactly u� and '�. Thus, in the basis

E�
(a) = fu�; n�; z�; '�g ; (4.23)

the surface EMT takes the form

h
�(a)(b)

i
=

2
66664
� 0 0 q

0 0 0 0

0 0 pz 0

q 0 0 p'

3
77775 : (4.24)

To further study the problem, let us consider the cases (1) 0 < � < 1=4 or � < �1=2,
and (2) �1=2 < � < 0, separately. Case A.2.1 0 < � < 1=4 or � < �1=2: In this case

from Eq.(4.21) we can see that

q =
1

2
(�+ p') > 0; (4.25)

and the corresponding surface EMT (4.24) can be written in the form

h
�(a)(b)

i
= q

2
66664
1 + � 0 0 1

0 0 0 0

0 0 p(2) 0

1 0 0 1� �

3
77775 ; (�+ p' > 0); (4.26)

where

� � �� p'
� + p'

; p(2) � 2pz
�+ p'

: (4.27)

Eq.(4.26) is exactly in the form of the type II uid classi�ed in [11]. Then, it can

be shown that the weak and strong energy conditions are satis�ed for � 2 (0; 1=4), while

the dominant energy condition is violated for any value of � within the above given range.

Case A.2.2 �1=2 < � < 0: In this case from Eq.(4.21) we �nd that

q = �1

2
(�+ p') > 0; (4.28)

and the corresponding surface EMT cannot be written in the form of Eq.(4.26). In order

to study the energy conditions, let us consider an observer with its four-velocity given by

w� = �t� + �n� + z� + �'�; (4.29)
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where �; �;  and � are arbitrary constants, subject to the condition,

w�w� = �2 � �2 � 2 � �2 � 0: (4.30)

The weak energy condition requires that [11]

���w
�w� = �2� + 2pz + �2p' � 2��q � 0: (4.31)

It can be shown that Eq.(4.31) is satis�ed for any observer given by Eqs.(4.29) and

(4.30) only when the conditions � � 0; � + pz � 0; � + p' � 2q � 0 and �+ p' + 2q � 0

are true. On the other hand, the strong energy condition holds when [11]

�
��� � 1

2
g���

�
w�w� =

1

2

h
(�2 + �2 + 2 + �2)�+ (�2 + 2 � �2 � �2)pz

+(�2 + �2 � �2 � 2)p' � 4��q
i
� 0; (4.32)

which is equivalent to �+ pz � 0; �+ p' � 2q � 0; �+ p' + 2q � 0 and �+ pz + p' � 0,

while the dominant energy condition requires that [11] � � jpzj; � � jp'j; � � jqj. To

summarize, for any given ��� of the form (4.24), the energy conditions are the following:

(a)The Weak Energy Condition:

i) � � 0; ii) � + pz � 0; iii) �+ p' + 2q � 0; iv) �+ p' � 2q � 0: (4.33)

(b) The Dominant Energy Condition:

i) � � jpzj ; ii) � � jp'j ; iii) � � jqj : (4.34)

(c) The Strong Energy Condition:

i) � � 0; ii) �+pz � 0; iii) �+p'�2q � 0; iv) �+p'+2q � 0; v) �+pz+p' � 0:

(4.35)

Applying the above energy conditions to the surface EMT given by Eq.(4.21), we �nd

that in the present case, �1=2 < � < 0, none of the three energy conditions is satis�ed.

Therefore, when a > 0 and D = 0 the weak and strong energy conditions are satis�ed

when � 2 (0; 1=4), and there does not exist any value of � in the range � 2 (�1; 1=4),

for which the dominant energy condition is satis�ed.

4.3 D < 0

The condition D < 0 is equivalent to

J(r0) >
�2 + (1 � 4�)2

2(1 � 4�)�
; (D < 0): (4.36)
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From Eqs.(4.3) and (4.4), on the other hand, we can see that now the eigenvalues �� are

complex, and so do the two eigenvectors ���. This means that in the present case the

surface EMT cannot be diagonalized (by real similarity transformations), and Eq.(4.24)

is already in its canonical form. As shown in the last subsection, for this form of EMT,

the three energy conditions are those given, respectively, by Eqs.(4.33)-(4.35). In order

to analize these conditions, let us �rst note that when � < 1=4 the condition � � 0 is

equivalent to

J(r0) � 1

1 � 4�
; (� � 0): (4.37)

Eqs.(4.36) and (4.37) have solution when 0 < � < 1=4. However, for this range of � it

can be shown that the condition �+ p' � 2q � 0 requires

J(r0) � �2 + (1 � 4�)2

2(1 � 4�)�
; (�+ p' + q � 0); (4.38)

which is inconsistent with Eq.(4.36). Combining the above analysis with Eqs.(4.33) and

(4.35), we �nd that in the present case the weak and strong energy conditions are violated

for values of � within the range 0 < � < 1=4. On the other hand, it can be shown that

now the dominant energy condition requires,

0 � � <
1

4
;

�2 + (1 � 4�)2

2(1 � 4�)�
< J(r0) � 8�2 � 4� + 1

1 � 4�
: (4.39)

In review of all the above, it is concluded that for the case a > 0 the Lewis vacuum

solutions can be produced by physically acceptable rotating cylindrical thin shells for 0 �
� < 1=4. Moreover, to this range of � the radius of the shell has to be chosen such that

the condition D > 0 is satis�ed, in which the surface EMT can be diagonalized and given

by Eq.(4.12). A similar analysis shows that for the case a < 0 the Lewis vacuum solutions

can be produced by physically acceptable rotating cylindrical thin shells for 1=4 < � � 1=2,

by properly choosing the radius of the shell so that the condition D > 0 is satis�ed, for

which the surface EMT can be diagonalized and given by Eq.(4.12).

5 The vorticity of the shell and its energy per unit

length

The four velocity of a comoving observer in the system of the chosen coordinates is given

by

u� =
1p
gtt

��t ; (5.1)

for which it can be shown that the vorticity tensor !�� has only two non-vanishing com-

ponents, given by

!�� = u[�;�] + u[�;�u
�u�]

=
g0tt

2
p
gtt

�
�t��

r
� � �r��

t
�

�
+

g0t'
2
p
gtt

�
�r��

'
� � �'��

r
�

�
: (5.2)
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Then, the vorticity vector !� takes the form

!� =
����

2
p�gu�!� =

1

2
p�g

 
g0t' �

gt'g
0
tt

gtt

!
��z : (5.3)

Calculating the above quantity at r = r0 using the external metric (3.4), we �nd that

!�
+(r

+
0 ) =

(4� � 1)r20
(1� !2r20)R1+1=�

��z ; (5.4)

while for the interior metric (3.1), we have

!�
�(r

�
0 ) =

!

1 � !2r20
��z : (5.5)

Clearly, now we have !�
� 6= !�

+. The reason is that the derivatives of the metric are

discontinuous across the shell r = r0.

On the other hand, considering Israel's de�nition [19] of energy density per unit length

�, from Eqs.(3.17) and (3.18) we �nd that,

� =
Z 1

0

Z 2�

0
(T t

t � T r
r � T z

z � T �
� )
p�gdrd�

=
�

�
+ (1 � 4�)

b

2�
: (5.6)

The tangential velocity !r0 given by (3.11) for the case a > 0, up to �rst order, O(b)

and O(), becomes

!r0 � �bR
1=�
0

r20
� r20

R
1=�
0

: (5.7)

The �rst and second terms in the right hand side of (5.7) correspond to the tangential

velocity of the shell due to b, and , respectively. Then we can see that b �(tangential
velocity of the shell)2.

Hence, the second term in the right hand side of Eq.(5.6), due to rotation, can be

associated to the kinetic energy of the shell.

6 Discussions and Conclusions

In this paper, we �rst studied the local and global properties of the stationary cylindrically

symmetric general vacuum solutions (Lewis), and found that the condition for the non-

existence of closed time-like curves outside the shell can be satis�ed if a > 0; � � 1=4 or

a < 0; � � 1=4. To further study the solutions, we also constructed rotating thin-shell-

like sources, by assuming that the spacetime inside the shell is at. It was shown that

such constructed cylindrical shells can satisfy the three energy conditions, weak, dominant

and strong, when a > 0; 0 � � � 1=4 or a < 0; 1=4 � � � 1=2. It was also found that in

the latter cases the corresponding surface EMT can be diagonalized and takes the form
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of Eq.(4.12). Moreover, in the cases a < 0 the �rst junction condition does not allow

the static limit b = 0 =  [cf. Eq.(3.9)]. The vorticity of the rotating shell and its mass

per unit length were also calculated. When  = 0, the vorticity of the shell calculated

from outside, vanishes as can be seen from Eq.(5.4), while the energy per unit length

as given by (5.6) is the same as that in the corresponding static case [20]. However the

stationarity of the spacetime manifests itself through the dragging of a gyroscope at rest

in the frame where (2.1) takes a diagonal form [21]. This situation is reminiscent of the

behaviour of a gyroscope in the �eld of a charged magnetic dipole. In this latter case,

even though the metric is static, dragging of inertial frames appears and is explained as

due to the presence of a ow of electromagnetic energy in the angular direction [22]. In

our case also, even if the vorticity of the shell vanishes, there is still a ow of energy (if

b 6= 0 ) along ��, which might be interpreted as the "source\ of the dragging. Finally it is

worth mentioning that we have ensured no CTC's and energy conditions being satis�ed

simultaneously in our models by restraining the range of � to 0 � � � 1=4, (if a > 0).

It remains to be proved if, and to what extent, this range can be safely extended. Since

physically reasonable sources for the Levi-Civita spacetime have been found for � > 1=4

(see [8], [9] and references therein), it could be conjectured that for su�ciently small

values of b and , this is also possible for Lewis. However a bifurcation might be present

, but we conclude without giving a de�nite answer to that question.
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