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Abstract

We write functional integral representations for the probability distribution over

the statistical ensemble of Newtonian 
uid velocity �elds satisfying: a) A white

noise initial condition; b) Beltrami 
uxes with appropriate random stirrings; c) The

one-dimensional Burger-Beltrami equation with general gaussian stirring.
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1 Introduction

The main task in the statistical approach to random 
uid dynamics ([1]) is solve the

set of in�nite hierarchy equations for the random 
uid velocity correlation functions.

One important scheme to solve these equations consists in considering directly for the

appropriate 
uxe equation the random conditions generating the 
uxe stochasticity in

the hope that the 
uid turbulence is appropriated described in this statistical approach

at least as an e�ective analytical theory.

Our aim in this paper is to present (formal) functional integral representations for the

Navier-Stokes equation in the following random conditions:

1) A pure white-noise initial 
uid velocity condition

2) A Soluble Beltrami 
uxe with appropriate gaussian random stirrings

3) The Burger-Beltrami one-dimensional equation with a general gaussian random stir-

ring.

Finally in a somewhat long appendix we show via path-integral techniques the ap-

pearance of vortex phase factors as important object in the advection physics of scalars

on 
uid 
uxes.

2 The Functional Integral

Let us start this section by writing the Navier-Stokes equation for the velocity �eld

of an incompressible 
uid in the presence of a non-random external force Fi(x; � ) with a

Gaussian (ultra-local) Random initial condition

@

@�
vi � ��xvi +

 
vk

@

@xk
vi
!Tr

= Fi (1.a)

vi(x; 0) = 'i(x) (1.b)

h'i1(x1)'i2(x2)i = ��(3)(x1 � x2) (1.c)
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Let us remark that we have eliminated the pressure term �1
�
~� � ~p by using the incom-

pressibility condition ~(�~v) � 0 which, in turn, lead us to consider only the transverse

part of the force and non-inertial �eld terms in Navier-Stokes equation. The transverse

part of a generical vector �eld ~W (x; � ) is de�ned by the relationship

~W Tr(x; �) = ~W (x; �) +
1

4�
~��1
x

0
@Z

R3

dy
(~�y

~W )(y; �)

jx� yj

1
A

~W (x; �) = f ~Wi(x; �) ; i = 1; 2; 3g (2)

Our task, now, is to compute the '-averge of the N -point 
uide velocity �elds eq.

(1.a), for arbitrary space-time points, by means of a functional integral representation for

the characteristic functional of the random 
uid velocity �elds Z[Ji(x; �)]; namely [3]

hVi1(x1; �1); [']) � � �ViN (xN ; �N ; ['])i'
= (�1)N �(N)

�Ji1(x1; �1) � � � �JiN(xN ; �N ) ZjJi(x; �)j
����
Ji(x;�)=0

(3.a)

where

Z[Ji(x; �)] =
Z
M
d�[Vi]� exp

�
�
Z
R3

dx
Z 1

0
d�(Vi � Ji)(x; �)

�
(3.b)

The functional measure d�[Vi] in eq. (3.b) is de�ned over the functional spaceM of all

possible realizations of the random 
uid motion de�ned by eq. (1). An explicit (formal)

expression for the above functional measure should be given by the product of the usual

Feynman measure weighted by a certain functional S[Vi] to be determined,

d�[Vi] = DF [V i]exp(S[V i]) (4.a)

DF [V i] =
Y
x2R3

0<�<1
i=1;2;3

(dVi(x; �)) (4.b)

In order to determine the Weight Functional S[Vi] we �rst rewrite the Navier-Stokes

Equation as a pure integral equation which has an explicit term taking into account the

initial condition [4]

Ai[~v] = Bi['] (5)
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with

Ai[v] = Vi(x; �)�
Z 1

0
ds
Z
R3

dyOijk(x� y;� � s)� (VjVk)(y; s)

�
Z 1

0
ds
Z
R3

dyH(1)(x� y); � � s)Fi(y; s) (6.a)

Bi['] =
Z
R3

dyH(0)(x� y; �)'i(y) (6.b)

Here, the Kernels Oijk;H(1);H(0) are given respectively by

Oik`(z; �) = �1

2

 
@

@Zt

Oik +
@Oi`

@Zk

!
(z; �) (7.a)

Opq(z; �) = �pq�(�)H(0)(jzj; �) + @2

@zp@zq

 
2��

jzj
Z jzj

0
H0(jz0j; �)dz0

!
(7.b)

H(0)(jzj; �) = 1

(4���)3=2
exp

 
� jzj2
4���

!
(7.c)

H(1)(jzj; �) = �(�)H(0)(jzj; �) (7.d)

Let us now introduce the following functional representation for the generating func-

tional Z[Ji(x; �)] [4]

Z[Ji(x; �)] =
Z
DF [V i]h�(F )(V i � ~V i['])i' � exp

�
�
Z
R3

dx
Z 1

0
d�(V i � J i)(x; �)

�
(8)

where �(F )(�) denotes the delta { functional integral representation de�ned by the ruleZ
M
DF [Vi]�

(F )(Vi �Ai)�(Vi) = �(Ai) (9)

with �(Vi) being an arbitrary functional de�ned on M .

By writing the '-average in eq. (9) by means of a Gaussian functional integral in

'(x; �), we obtain the following functional integral representation for the weight S[V i]

exp(�S[V i]) =
Z
DF ['i]exp

�
� 1

2�

Z
R3

dx('i � 'i)(x)
�

�
�Z

DF [K i]exp i
Z
R3

dx
Z 1

0
d�Ki � (Ai[v]�Bij'j)

�
(10)

where we have used the Fourier Functional Integral representation for the Delta-functional

in eq. (9)

�(F )(V i � V i[']) = �(F )(Ai[v]�Bi[']) = DETF

 
�

�Vi
Ak[v]

!
�

Z
DF [K i]exp

�
i
Z
R3

dx
Z 1

0
d�Ki(A

i[v]�Bi['])(x; �)
�

(11)
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It is worth remark that the functional determinant in eq. (11) is unity as a straight-

forward consequence of the fact that the Green function of the operator @=@� is the step

function.

We, then, face the problem of evaluating the ' and K functional integrals in eq. (11).

The '-functional integral is of Gaussian type and easily evaluated

Z
DF ['i]exp

�
� 1

2�

Z
R3

dx('i � 'i)(x)
�
�

exp(i
Z
R3

dx
Z 1

0
d"(Ki �Bi;�['])(x; "))

= exp

(
��
2

Z
R3

dx1

Z
R3

dx2

Z 1

0
d�1

Z 1

0
d�2K

i(x1; �1)� �(3)(x1 � x2)

C(x1; �1;x2; �2)K
i(x2; �2)

o
(12)

where the Kernel C(x1; �1;x2; �2) is given by

C(x1; �1;x2; �2) =
Z
R3

dzH(0)(x1 � z; �1)H(0)(z � x2;��2) (13)

and is the (formal) Green function of the self-adjoint extension of the square Bi�Bi di�u-

sion operator

(Bi)�Bi =

 
� @

@�1
� ��x1

! 
@

@�1
� ��x1

!
C(x1; �1;x2; �2) (14)

with the (well-posed) initial and boundary conditions

lim
�1!0+

C(x1; �1;x2; �2) = �(3)(x1 � x2) (15)

Its explicit expression in K-momentum space is given by (see ref. 6)

~C(k; �1; �2) = � 1

�k2
[e��k

2j�1��2j � e��k
2(�1+�2)] (16)

As a consequence of eq. (12) we have represented the weight S[vi] by a Gaussian

functional integral in the Ki(x; �) �eld

exp(�S[vi]) =
Z
DF [K i]exp

"
��
2

Z
R3

dx1dx2

Z 1

0
d�1d�2

�
K i(x1; �1)C(x1; �1;x2; �2)Ki(x2; �2)

��

exp
�
i
Z
R3

dx
Z
R3

dx
Z 1

0
d�(K iAi[v])(x; �)

�
(17)
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By evaluating eq. (17) we, thus, obtain the result

exp(�S[vi]) = exp
�
� 1

2�

Z
R3

dx1dx2

Z 1

0
d�1d�2

Ai[v](x1; �1)C
�1(x1; �1;x2; �2)Ai[v](x2; �2)

�
(18)

By noting that (see ref. 4)

B�1
i [A[v]] =

 
@

@�
� ��k

!
Ai[v] =

 
@

@�
� ��x

!
vi +

 
vk

@

@xk
vi
!Tr

� F Tr
i (19)

we �nally obtain the expression for the weight S[vi]

S[vi] =
1

2�

Z
R3

dx
Z 1

0
d�d�0

" 
@

@�
� ��x

!
Ai[v]

#�
(x; �)�

" 
@

@�0
� ��x

!
Ai[v]

#
(x; �0)

=
1

2�

Z
R3

dx
Z 1

0
d�
Z 1

0
d�0

" 
@

@�
� ��x

!
vi+

 
vk

@

@xk
vi
!Tr

+ F Tr
i

3
5 (x; �) �

" 
@

@�0
� ��x

!
vi + (vk

@

@xk
vi)Tr + F Tr

i (x; �0)

#
(20)

we obtain, thus, our proposed functional integral representation for eq. (1)

Z[Ji(x; �)] =
Z
DF [vi]exp(�S[vi] exp

�
�
Z
R3

dx
Z 1

0
d�(Ji � Vi)(x; �)

�
(21)

The above written functional integral is the main result of this section.

A perturbative analysis for eq. (22) may be implemented by using the free propagator

eq. (17) in the context of a background �eld decomposition Vi = �Vi + �V q
i where �Vi

satis�es the non-Random Navier Stokes equation

@

@�
�Vi = ��x

�V i �
 
�Vk

@

@xk
�V i

!Tr
+ F Tr (22.a)

with

�V i(x; 0) � 0 (22.b)

with � being a coupling constant (� << 1). It is worth remaking that the cross term

Z
R3

dx
Z 1

0
d�(@iv

i�xvi)(x; �) (23.a)
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vanishes in S[vi] as a result of the boundary condition

vi(x; 0) = vi(x;1) = 0 (23.b)

for the pure random di�usion free propagator (eq. (17)).

Finally, we point out that our proposed functional integral eq. (21) di�ers from that

proposed in ref. 7.

3 An Exact Soluble Path Integral Model for Stochas-

tic Beltrami Fluxes and its String Properties

Our aim in this section is to present in our framework an exactly soluble path integral

model for stochastic hydrodynamic motions de�ned here to be random regime of the phys-

ical Navier-Stokes eq. (1.a) equation in the incompressible case dominated by generalized

Beltrami 
uxes de�ned by the condition rot v = �v with � a positive parameter.

Let us, thus, start with the usual Navier-Stokes equation, eq. (1a)

@v

@t
+
�
1

2
grad(v2) � (v � rot v)

�
= �gradP

�
+ ��v + F ext (24)

where, the random stirring force is such that its satis�es the following spatially nonlocal

Gaussian statistics in our reduced model for turbulence, i.e.,

h(F ext)i(r; t)(F
ext)j(r

0; t0)i = �2�ij((�
�1)�(r � r0)�(t� t0) (25)

where ��1
r denotes the Laplacean Green function.

At this point we take curl of Eq. (24) and consider the already mentioned Beltrami


ux condition and its direct consequence, namely:

�2v = rot(rot v) = grad(div v)��v = ��v ; (26.a)

v � rot v = v � (�v) = 0 ; (26.b)

in order to replace the Navier-Stokes equation, Eq. (24) by the exactly soluble Langevin

equation for the 
uid 
ux stirred by the external force 
ext = rot(F ext) in our proposed

model of Navier-Stokes turbulence dominated by generalized Beltrami 
uxes

@v(r; t)

@t
= ���2v(r; t) + 1

�

ext(r; t) : (27)
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The new external stirring 
ext = rot(F ext)(r; t) satis�es a Gaussian process with the

following two-point correlation function

h
ext
` (r; t)
ext

`0 (r0; t0)i = ("`jk@
(r)
j )("`

0j0k0

@
(r0)
j0 hF ext

k (r; t)F ext
k0 (r0; t0)i

= �2(�``
0

�`jj
0 � �`j

0

�`
0j)@(r)j @j0(�

�1
r �(3)(r � r0)� �(t� t0)

= �2�``
0

�(3)(r � r0)�(t� t0)� �2@
(r)
` @

(r0)
`0 (��1

r �(r � r0))�(t� t0) : (28)

It is obvious that Eq. (28) satis�es the incompressibility condition necessary for the

incompressibility consistency of our Brownian-Langevin 
uid Eq. (28) and its stochastic

version below.

It is important to remark that the formal wave vectors of the Beltrami hydrodynamical

motions have eddies of a �xed scale jkj = 
 in our reduced model. As a consequence of

this fact, we assume implicitly the same wave vector constraint in our random strings

Eqs. (25) and (28).

Proceeding as in section 2 it leads to the exactly generating path integral for our Brow-

nian reduced model, where we have used the incompressibility constraint @
(r)
i vi(r; t) = 0

to see that the spatially nonlocal piece of Eq. (28) does not contributes to the �nal path

integral weight Eq. (29)

Z[j(r; t)] =
Z
D[v(r; t)]exp

�
i
Z +1

�1
d3r

Z 1

0
dt(j � v)(r; t)

�

�det
"
@

@t
� ��2

#
�(F )(div v exp

�
�1

2

Z +1

�1
d3rd3r0

Z +1

0
dtdt0

�
 
@vi
@t

+ ��2vi

!
(r � r0)�ii

0

�(3)(r � r0)�(t� t0)

�@(r)i @
(r)
i0 (��1

r �(r � r0))�(t� t0)]

 
@vi0

@t
+ ��2vi0

!
(r � t0)

)

=
Z
D[(v(r; t)]exp

�
i
Z +1

�1
d3r

Z 1

0
dt(j � v)(r; t)

�

�exp
8<
:�1

2

Z +1

�1
d3r

Z +1

0
dt

 
@v

@t
+ ��2v

!2

(r; t)

9=
; : (29)

At this point it is worth to compare the exactly soluble path integral above written

(note the �xed wave vector jkj = 
 imposed implicitly on Eq. (29)) with that one

associated to the complete Navier-Stokes equation for ultra-local random external stirring
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with strength D namely: hFi(r; t)Fj(r0; t0)i = D�(3)(r� r0)�(t� t0)�ij and full range scale

0 � jkj <1 (see section 2)

Z[j(r; t)] =

=
Z
D[v(r; t)]det

" 
@

@t
� ��

!
�`k +

p
D

�

�v`
((v ��)v)k

#

�
8<
:�1

2

Z +1

�1
d3r

Z +1

0
dt

 
@

@t
� ��v +

p
D(v �r)v +

gradP

�

!2

(r; t)

9=
;

�exp
�
i
p
D
Z +1

�1
d3r

Z +1

0
(j � v)(v; t)

�
: (30.a)

Let us remark that it is possible to eliminate the pressure term �(1=�)gradP in this

path-integral framework by using the incompressibility condition div(v) = 0, which, by

its turn leads one to consider only the transverse part of the external force and of the

nonlinear term in the e�ective action in Eq. (30a) (see section 2)

Z[j(r; t)] =
Z
DF [v(r; t)]

�exp
(
�1

2

Z �1

�1
d3r

Z +1

0
dt

 
@

@t
v � ��v +

p
D((v �rv)tr)2

!)
: (30.b)

Here the transverse part of a generic vector �eld is de�ned by the expression (see eq. (2))

(W (r; t))tr =W (r; t)� 1

4�
gradr(�

�1(div W )) : (31)

Note that now one should postulate the nonlocal two-point correlation function in

order to get Eq. (30b) hF tr
i (r; t)F

tr
j ((r

0; t0))i = D�(3)(r � r0)�(t� t0)�ij.

It is worth remark that Eqs. (3a)-(5b), applied to the Burger equation leads to a

di�erent path integral than that proposed in ref. [8] since in the path-integral framework

the viscosity is not a perturbative parameter which, in our case, is
p
D. Besides, the

propagator in the free case for the time parameter in the range 0 � t � 1 is given (see

eq. (16))0
@ @

@t
� ��

!�1
�
 
� @

@t
� ��

!�11A (k; t; t0) = � 1

�k2

h
e��k

2jt�t0j � e��k
2 jt+t0j

i
(32)

and di�ering from the Dominicis-Martin propagator suitable for the range �1 � t �1
([8]) 0

@ @
@t
� ��

!�1
�
 
� @

@t
� ��

!�11A (k; t; t0) =
Z +1

�1
dw(eiw(t�t

0))
1

w2 + �2jkj4 : (33)
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Let us now evaluate the vortex phase factor de�ned by a �xed-time spatial loop

` = f`(�); a � � � bg in our exactly soluble model Eq. (27) in order to see the con-

nection with strings (random surfaces) ([8]) (see Appendix A for the relevance of theses

non-local objects for advection phenomema)

�
exp

�
i
I
v(`(�); t)d`(�)

��
v

�
Z
DF [v(r; t)]exp

8<
:�1

2

Z +1

�1
d3r

Z +1

0
dt

 
@v

@t
+ ��2v

!2

(r; t)

9=
;

�exp(i
I
v(`(�); t)d`(�)) : (34)

Since the 
ux is of a Beltrami type in our soluble model Eq. (29), we propose to

rewrite the circulation phase factor as a sum over all surfaces bounding the �xed loop `

by making use of Stokes theorem and by taking into account again the Beltrami condition,

i.e.,

D
ei
H
c
v�d`
E
=
Z
DF [v(r; t)]exp

(
�1

2

Z +1

1
d3r

Z +1

0
dt

"
v

 
� @

@t2
+ ��2

!
v

#

�
 X

S

exp
�
i�
Z Z

S
v(x; t) � dA(x)

�!)
: (35)

By observing now that the two-point correlation of our Brownian-Beltrami turbulent 
ux

is exactly given by

hvi(r; t)vj(r0; t0)iv =
Z
jkj=�

e�ik�(r�r)
e���

2jt�t0j

��2
�(t� t0)�ij ; (36)

with t; t0;2 [0;1] and �(0) = 1=2 in this initial value problem, we can easily evaluate

the average Eq. (29) and producing a strongly coupled area dependent functional for the

spatial vortex phase factor, in our proposed turbulent 
ux regime

W [`;v] �
D
ei
H
`
v(`;t)�d`

E
=
X
fSg

exp

(
��
�

Z Z
S
dA(y)

sin(�jx� yj)
jx� yj dA(y)

)
: (37)

Just for completeness of our study and in order to generalize the Beltrami 
ux turbulence

analysis represented in the main text, for the physical case of the complete wave vector

range 0 � jkj < 1 in our turbulent path integral soluble model studies, we propose to

consider a kind of generalized Beltrami condition to overcome this possible drawback of
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our turbulence modeling, namely:

rot v(r; t) = �(r)vjr; tj (38)

where �(r) is a positive function varying in the space and to be determined from a

phenomenological point of the view. Note that the Fourier transformed (wave-vector)

condition takes now the general form

jkj � j~v(k; t)j =
Z
R3

d3pj~�(p� q)j � j~v(p; t)j (39)

which, by its turn, leads to the full range scale 0 < jkj <1 for the eddies hydrodynamical

motions undeer study. By supposing that the \vortical" stirring Eq. (28) is a pure white

noise process with strength D,

h
ext
` (r; t)
ext

`0 (r; t0)i = D � �``0�3)(r � r0)�(t� t0) : (40)

It is a straightforward deduction by following our procedures as exposed in the text

to arrive at an analogous Gaussian path integral for the Generalized Beltrami random

hydrodynamical de�ned by Eq. (38). The generalized e�ective motion equation is given,

in this new situation, by

" 
@

@t
� �

 
��

�

!
(r)� �

�(r)

@�(r)

@xe

@

@xe
+ ��2(r)

!
�ik+

+�

 
"ijk

@�(r)

@xj

!#
vk(r; t) = 
ext

i (r; t) : (41)

The Gaussian path-integral, thus, is exactly written below

Z[ji(r; t)] =
Z 3Y

i=1

DF [vi(r; t)]exp
�
i
Z +1

1
d3r

Z 1

0
dt(jivi)(r; t)

�

�exp
�
� 1

2D

Z +1

�1
d3r

Z 1

0
dtvk(r; t)(M

�ki �M is)vs(r; t)
�
: (42)

Here, the di�erential operators entering in the kinetic term of the turbulent path

integral are

M�ki =

 
� @

@t
+

�

�(r)

@�(r)

@xe

@

@xe
+

�

�(r)
���r � v

��(r)

�(r)
+ ��2(r)

!
�ki + �"kji

@�(r)

@xj
(43)
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and

M is =

 
+
@

@t
� �

�(r)

@�(r)

@xe

@

@xe
+ ��2(r)� �

��(r)

�(r)

!
�is + �"ijs

@�(r)

@xj
: (44)

It is worth pointing out that the exact evaluation of the variance in Eq. (42) depends

on the exact form of our rotation �(r) de�ning the Beltrami condition (38).

The vortex phase factor Eq. (34), takes now a form closely related to the pure self-

avoiding string theory in the case of a slowly varying function jgrad �(r)j << �(r) and

�(r) � 1 (a very slowly r-varying function: for instance as �(r) = �0 exp(�10�5jrj2))

hei
H
v(`;t)d`i =X

fSg

exp
�
�1

�

Z
S

Z
S
dA(x) � �(3)(x� y) � dA(y)

�
� exp

�
�1

�
area(S)

�
:

(45)

Now, if we follows Refs. [9] it is an easy task to deduce that the above written time-

�xed vortex phase factor satis�es the famous loop wave equation for Abelian Q.C.D. at

very low energy and a large number of colors. It may be written in the geometrical

(in�nitely di�erentiable loops `(�)) as the following

@x�
�

����(x)

�
hei
H
v(`;t)d`i

�
=

1

�

I
dy�(3)(x� y)hei

H
v(`;t)d`i : (46)

The above obtained results rise hopes again that a string theory may be relevant to

understand turbulence modeled as an amalgamation of \rough" roll up of random stirred


uid motions.

4 A Complex Trajectory Path-Integral Representa-

tion for the Burger-Beltrami Fluid Fluxe

The Hopf wave equation for turbulence is a master functional compressing the in�nite

hierarchy 
uid velocity correlation functions in a single functional di�erential equation

([3]).

Our aim in this section is to a certain extent complete the previous path integral

studies by presenting a complex trajectory path integral representation for a reducedmodel

simulating \Burger turbulence" by considering directly the \experimental observable"
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N -point grid velocity observable as a fundamental object of the proposed dynamically

reduced Burger-Beltrami turbulent 
ux model below de�ned.

Let us start with the dynamical equation de�ning our one-dimensional Brownian like


uid 
ux

@v(x; t)

@t
+

 
v
@v

@x

!
(x; t) = �(��2)v(x; t) + f(x; t)

v(x; 0) = g(x) (47)

where we have replaced the usual 
uid viscosity term �d2v(x; t)=dx2 by the pure damping

term ���2v(x; t) (the reader should compare our proposed Brownian like 
ux with that

of the Navier-Stokes-Beltrami studied in section 3).

One of the most important observable object in 
uid turbulence is the �xed velocities

measurements at the grid points (x`) and at a common observation time t

h
NY
`=1

�(v(x`; t)� v`)i (48)

where the average h i is de�ned by the random stirring satisfying the gaussian statistics

([10])

hf(x; t)f(x0; t0)i = k(x� x0)�(t� t0) (49)

In momentum space, the observable eq. (48) is given by the following (grid dependent)

characteristic functional (the Hopf wave functional restricted on the N -point grid)

 ((x1; � � � ; xN); (p1; � � � ; pN ); t) =
*
exp

 
i

NX
`=1

p`v(x`; t)

!+
(50)

The Hopf wave equation associated to our model eq. (48) is given in a closed form by

applying straightforward the methods of ref. [10]

�i @
@t
 ((x1; � � � ; xN ); (p1; � � � ; pN ); t)(

NX
`=1

"
p`

@

@p`

 
1

p`

@

@x`

!
� (��2)p`

@

@p`

#

+
NX

`=1;`0=1

(k(x` � x`0)p`p`0

9=
; ((x1; � � � ; xN); (p1; � � � ; pN ); t) (51)
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Note that we must added the deterministic initial date condition to eq. (51)

 (x1; � � � ; xN ); (p1; � � � ; pN ); t! 0+) = exp

 
i

NX
`=1

p`g(x`)

!
(52)

Let us remark that in the physical grid on R3 = fx(a)k ; a = 1; 2; 3; k = 1; � � � ; Ng, eq. (51)
naturally reads

�i @
@t
((x(a)1 ; � � � ; x(a)N ); (p(a)1 ; � � � ; p(a)N ); t)

NX
`=1

3X
a=1

"
p
(a)
`

@

@p
(a)
`

 
1

p
(a)
`

@

@x
(a)
`

!
� ��2p

(a)
`

@

@p
(a)
`

#
+  ((x1; � � � ; x(a)N ); (p(a)1 ; � � � ; p(a)N ); t) +

2
4 NX
`=1;`0=1

Kab(x
(a)
` � x

(a)
`0 )p

(a)
` p

(b)
`

3
5 ((x(a)1 ; � � � ; x(a)N ); (p(a)1 ; � � � p(a)N ); t) (53)

Hereafter as said before we will present our study of eq. (53) for the one dimensional case

eq. (51). By introducing the mixed coordinates de�ned by the transformation law.

pj + xj = uj ; pj � xj = vj: (54)

The turbulent wave equation eq. (51) takes the more invariant form similar to a many-

particle Schr�odinger equation in Quantum Mechanics.

�i @
@t
( (u1; � � � ; uN ); (v1; � � � vN); t)

=
NX
`=1

1

4

"
@2

@2u`
� @2

@2v`
�
�

2

u` + v`

� 
@

@u`
� @

@v`

!
� ��2

2
(u` + v`)

 
@

@u`
+

@

@v`

!#

 ((u1; � � � ; uN); (v1; � � � ; vN); t) + 1

4

2
4 NX
`=1;`1=1

(u` + v`)(u`0 + v`0)K

 
u` � u`0 + (v`0 � v`)

2

!35
 ((u1; � � � ; uN); (p1; � � � ; pN ); t) (55)

and

 ((u1; � � � ; uN); (v1; � � � vN); 0) = exp

 
i
NX
`=1

�
u` + v`

2

�
g
�
u` � v`

2

�!
(56)

The above written closed partial di�erential equation is the basic result of this section. At

this point we can implemente perturbative calculations for our turbulent wave equation

by considering a physical slowly varying (even function) correlation function of the form

K(x) � K(0)� �0
2
x2 ; jxj <<

 
K(0)

�0

!1=2

� L

0 ; jxj >> L (57)
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Which by its turn leads to the Harmonic and quartic anharmonic potential bellow written

NX
`=1;`0=1

fK(0)(u`u`0 + v`v`0 + u`v`0 + v`u`)

�1

8
�0(u` + v`)(u`0 + v`0[u

2
` + u2`0 + v2`0 + v2` � 2u`u`0 � 2v`v`0 ]

�
(58)

In the important case of the single 
uid velocity average, our turbulent wave equation

takes the following form, after making an analitic continuation v! iv; namely

i
@

@t
 (u; v; t) = (L0 + L1) (u; v; t) (59)

With the initial condition

 (u; v; t! 0+) = exp
�
i
�
u+ iv

2

�
g
�
u� iv

2

��
(60)

Here the Kinetic and perturbation terms are:

L0 = �1

4

 
@2

@u2
+

@2

@v2

!
+
k(0)

4
(u2 � v2)

L1 =
2

u+ iv

 
@

@U
� 1

i

@

@v

!
� ��2(u+ iv)

 
@

@u
+

1

i

@

@v

!
(61)

The Harmonic oscilator propagator of the kinetic term eq. (61) is determined in a straight-

forward way and a Feynman diagramatic analysis may be easily implemented for � << 1

by the same perturbative procedure used in quantum mechanical problems. Similar re-

marks hold true in the general case eq. (55).

It is worth point out that analogous results are easily obtained in the physical case of

turbulent Beltrami 
ux in the three dimensional case.

Let us comment the case of general turbulent 
ux. In this case, although being

impossible to write a closed partial di�erential equation as we did in this section 4, we can

develop approximate schemes to solve the full functional Hopf equation by approximating

the 
uid shear stress tensor by �nite di�erences, namely:(
�
d2v(xj; t)

dx2j
� �

�
(�2v(xj; t) + v(xj+1; t) + v(xj�1; t))

)
(62)

With the grid spacing � = jxj+1 � xjj.
Let us now write a trajectory functional integral representation for the initial-value

problem eq. (55) after taking into account the analytic continuation v` ! iv` there.



{ 15 { CBPF-NF-018/01

As a �rst step to achieve our goal, we write the associated Green functional of eq. (55)

in an operator form (the Feynman-Dirac propagation) for the free case k � 0

G[(u`; u`); (u
0
`; v

0
`; t)] = h(v`; v`)j

exp

 
it

"
NX
`=1

1

4
�(v`;v`) �

�
2

u` + iv`

� 
@

@v`
� 1

i

@

@v`

!

���
2

2
(u` + iv`)

 
@

@u`
+

1

i

@

@v`

!#!
j(u0`; v0`)i (63)

As in the usual Feynman analysis we write eq. (63) as an in�nite product of short-time

t-propagation and consider the standard short-time expansion

lim
s!0+

h(u(I)` ; v
(I)
` )jexp(isH)j(v(I�1)` ; u

(I�1)
` i = lim

s!0+

Z
dNpId

NqI �

exp

(
is

"
p2I + q2I

4
�
 

2

u
(I)
` + iv

(I)
`

!�
ip

(`)
I � q

(`)
I

�#)
�

���
2

2
(u(I)` + iv

(I)
` )

�
ip

(`)
I � q

(`)
I

�
�

exp

(
NX
`=1

h
ip

(`)
I (u

(`)
I � u

(`)
I�1)

i)
� exp

(
NX
`=1

h
ig

(`)
I (v`I � v`�1I�1)

i)
(64)

where H denotes the second order di�erential operator inside the brackets of eq. (64).

If we substitute eq. (65) into the short-time product expansion of eq. (64), namelly

hu`; v`j`itH ju0`0; v0`i =
MY
I=1

Z +1

�1
duIdvIh(uI` ; vI` )jexp

�
i
�
t

M

�
H
�
j(uI�1` ; vI�1` )i (65)

and evaluate the (pI ; qI)-momenta functional integrals (see ref. [11] for a detailed exposi-

tion), we get our searched trajectory path integral representation for the Green-function
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of eq. (55)-(56) in the free case k � 0

G [(u`; v`); ((u
0
`; v

0
`); t] =Z

U`(0)=u`
U`(t)=u`

Z
v`(0)=v`0
v`(t)=v`0

exp

8<
: i4

Z t

0
d�

2
4
 
d

@�
U(�)

!2

�2
NX
`=1

 
d

@�
U

(`)
(�)

! 
� 2

U `(�) + iV `(�)
� (��2)(U `(�) + iV `(�))

!

+
NX
`=1

 
� 2

U `(�) + iV `(�)
� (��2)(U `(�) + iV `(�))

!2
3
5
9=
;

exp

8<
: i4

Z t

0
d�

2
4 @

@�
V `(�)

!2

� 2
NX
`=1

 
@

@�
V `(�)

!35�
 
� 2 � i
V`(�) + iV `(�)

+ i(��2)(V `(�) + iV `(�))

!2

NX
`=1

 
� 2i

U `(�) + iV `(�)
+ i(��2)(U `(�) + iV

(`)
I (�))

!)
(66)

Note that the discrete index I = 1; � � � ;M has became the continuous time parameter

� ranging in [0; t].

The general k � 0 case is straightforwardly obtained from eq. (66) by only considering

the additional weight

exp

8<
:i
2
4 NX
`=1;`0=1

(U
`
(�) + iV

`
(�))(U

`0
(�) + iV

`0
(�))�

K

0
@(U `

(�)� U
`0
(�)) + i(V

`0
(�)� V

`
(�))

2

1
A
3
5
9=
; (67)

It is obvious from the above written N -body (complex valued!) trajectory path inte-

grals representations that any analytical analysis will be somewhat combersome. However,

its numerical (Monte-Carlo and F.F.T alghoritmos) studies may be usefull to implement

approximated evaluations on applied problems.
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5 Appendix A { The Vortex Phase Factor in Scalar

Advected Di�usion

In this somewhat pedagogical appendix, we show the appearance of vortex phase factors

in hydrodymaic advected di�usion as used in section 3 of this paper and similar in it

structure to the loop space approach used on Quantum Chromodynamics ([9]). Let us,

thus, consider the motion equation for a scalar �eld �(x; t) advected by a incompressible


uid with velocitty ~v(x; t), namely

@�(x; t)

@t
= (D(t)D0)��(x; t)�

�
[~v � ~�]�

�
(x; t) + j(x; t)�(x; t) (68)

with the initial value condition

�(x; t! 0+) = f(x) (69)

Here D(t) is a time dependente molecular di�usion constant. j(x; t) is an external source

�eld and D0 a reference value for the scalar di�usion constant.

As a �rst step to analyze eq. (68), let us consider the following time variable change

� =
Z t

0
D(s)ds (70)

�(x; � ) � �(x; t(� )) (71)

j(x; � ) � � (x; t(� ))
.
D((t)(� )) (72)

~�(x; � ) � ~v(x; t(� ))
.
t(� ) (73)

We obtain, thus, the more amenable form for eq. (69) with a constant molecular

di�usion constant in this new time scale � .

@�(x; � )

@�
= D0��(x; � )�

�
[~a � ~r]�

�
(x; � ) + j(x; � )�(x; � ) (74)

lim
�!0+

�(x; � ) = f(x) (75)

At this point let us remark that in the simple case of eq. (68) with ~v(~x; t) = 0 and

j(~x; t) = 0, the problem Green function is easily given by

Gdif ((x; t
0); (x; t0)) =

�
D0

Z t

t0
D(s)ds

�� 3

2 � exp

8<
:� [(~x� ~x 0)2]

D0

�R t
t0 D(s)ds

�
9=
; (76)
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and leading thus to the quadratic mean desviation

h(~x)2i = 3

2
D0

Z t

0
D(s)ds (77)

which, by its turn, leads to a super-difuse behavior if D(s) � s� for � > 0

Usual perturbative calculations may be formally implemented by considering the

zeroth-order Green function as given by eq. (76).

Let us write a (non-perturbative) path-integral representation for the Green function

G ((x; � ) : (x0; � 0)) { eq. (74)-eq. (75). In order to implement such analysis we com-

pare it with the analogous problem in Quantum Mechanics of a particle interacting with

an eletromagnetic �eld ~A and a scalar potential V . The Schr�odinger equation for this

quantum mechanical problem in Landau gauge ~r ~A = 0 is given by

i~
@ (~x; � )

@�
=

(
� ~

2

2m
� +

ie~

mc
( ~A � ~r ) + ie~

2mc2
(~r � ~A) +

 
e2

2mc2
( ~A)2 + V

!
 

)
(~x; � )

(78)

It is well-known that the Green function associated to a initial value problem is given

by the following (formal) Feynman path-integral

~G [(x; � ); (x0; � 0)] =
Z
~r(� 0)=x0;~r(�)=x

DF [~r(�)]�

exp

8<
: i~

Z �

� 0

d�

2
41
2
m

 
~r(�)

d�

!2

+ ie ~A (~r(�); �)� V (~r(�); �)

3
5
9=
;
(79)

It is straightforward to note that if one makes the following identi�cation on eq. (79)

~ = �i ; ~A = �~v ; V = � 1

4D0
(~a)2 + j ;

m =
1

2D0
;

e

c
=

1

2D0
; c = 1 (80)

one can see that the Schr�odinger equation (78) reduces to our scalar advected equation

(76).

As a direct consequence of the above made remark, we obtain the result anounced on

the begining of our study. Namely, the Green function G[(x; � ); (x0; � 0)] is given explicitly

with a closed form by the following (now well-de�ned) Wiener path-integral weighted with
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the vortex phase factor used in the studies presented in section 3

Gdif [(~x; � ); (~x
0; � 0)] =

Z
~Z(�)=~x;~Z(� 0)=~x0

DF
h
~Z(�)

i

� exp

8><
>:�

1

4D0

0
B@Z �

� 0

d�

2
4d~Z
d�

� ~a (~z(�); �)
3
52
1
CA
9>=
>;� exp

�
�
Z �

� 0

d�j(~z(�); �)
�

�
Z
~Z(�)=~x;Z(� 0)=~� 0

dWiener
� [z(�)]exp

8<
:� 1

4D0

Z
�

� 0

~a(~Z(�); �)
d~Z

d�
(�)

9=
;�

exp

(
�
Z �

� 0

 
~a 2

4D0
+~j

!�
~Z(�); �

�)
(81)

in the other words

�(x; � ) =
Z �

0
d� 0

Z
dx0G [(x; � ); (x; � 0)]�(x; � 0) (82)

At this point let us remark that in the pratical important case of large-scale transport

where one can set D0 � 0 on eq. (68) (with j(x; � ) � 0 for simplicity), an exactly

expression for the �rst-order resulting equation

@�(x; � )

@�
+
h
~r � (~a�)

i
(x; � ) = 0 (83)

is exactly obtained by considering the limit D0 ! 0 on eq. (81) and producing the result

�Gdif [(~x; � ); (~x
0; � 0)] = �(3)

h
~x� ~Z(x0;� 0)(� )

i
(84)

where ~Z(x0;� 0)(� ) satis�es the Saddle-point (minimum) of the positive path-integral weight,

namely: ~Z(x0;� 0)(� ) � ~Z(�)
���
�=�

, here ~Z(�) satis�es the Liouville boundary value problem

d~Z(�)

d�
= ~a

�
~Z(�); �

�
(85)

with

~Z(� 0) = ~x ~Z(� ) = ~x (86)

Next D0 corrections are implemented on the path-integral eq. (81) by similar proce-

dures used in the Feymann path-integral theory. We, thus, consider the following back-

ground decomposition of the path manifold on eq. (81)

~Z(�) = ~Z(x0;� 0)(�) +
p
D ~Y (�) (87)
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with the \fractal" path ~Y (�) such that

~Y (� 0) = ~Y (� ) = ~0 (88)

As a consequence eq. (87) { eq. (88), we get the next
p
D-correction for the di�usion

Green function eq. (81)

Gdif [(~x; � ); (~x
0; � 0] � ~Gdif [(~x; � ); (~x

0; � 0)]�
det

� 1

2

F

(
� d2

d2�
�AB + [(@Aas)(@Bas)]

�
~Zx0;� 0(�)

�

� 2 [@AaB]
�
~Zx0;� 0(�)

�
� d

d�

)
+ 0(D0) (89)

where A;B = 1; 2; 3 denote the vectorial indixes on R3 (~a(~x) � (aA)(xB)) and the func-

tional determinant associated to the 
uctuation operator at the one-loop order should be

evaluated with Dirichlet boundary conditions de�ned by eq. (88). Exactly evaluation of

the above cited functional determined needs the closed form of the transport 
uid 
uxe

~a(~x).

Let us exemplify this last point for the two-dimensional vortex con�guration with

constant vorticity (~x = (x; y))

~a(~x; t) =
�
�1

2
wy ;

1

2
wx
�

(90)

In this case the classical trajectory equations eq. (85) { eq. (86) are given exactly by

z1(�) = A1sen
�
�w
2
� + �1

�
(91)

z2(�) = A2sen
�
�w
2
� + �2

�
(92)

where the integration constants (A1; A2; �1; �2) must be choosen in order to satisfy the

boundary conditions eq. (86). Namely,

A1sen
�
w

2
� 0 + �1

�
= x01 (93)

A1sen
�
w

2
� + �1

�
= x1 (94)

A2sen
�
w

2
� 0 + �2

�
= y01 (95)

A2sen
�
w

2
� 0 + �2

�
= y1 (96)
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The functional determinant on eq. (89) is easily evaluated by the usual path-integral

techniques applied to the problem of a particle can the presence of a harmonic oscillator

and a constant magnetic �eld

det
� 1

2

F

8>><
>>:

2
664 �

d2

dv2
+

1

4
w2 �w d

dv

w
d

dv
� d2

dv2
+

1

4
w2

3
775
9>>=
>>; =

w

4�(� � � 0) � sen
�
w(��� 0)

2

� (97)

As a last point worth remarking let us consider the Boltzman-Vlasov advected damped

equation on R6 wiht an external stirring f(~x; t)

@N(~x; t)

@t
= ��N(~x; t)�

�
[~V � ~r]N

�
(~x; t) + f(~x; t) (98)

with the inital condition

lim
t!0+

N(~x; t) = f(~x) (99)

By following the above exposed study, it is straighforward to write the solution of eq.

(98) as the sum of the homogneous case with non zero initial condition added with that

of the non-homogenous case but now with zero initial condition, namely
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Here ~Zx0;t0(t) � ~Zx0;t0(�)
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�=t

satis�es the equations (85) { (86)).


