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Abstract

In this article an attempt is made to present very recent conceptual and com-
putational developments in QFT as new manifestation of of old well establihed
physical principles. The vehicle for converting the quantum-algebraic aspects of
local quantum physics into more classical geometric structures is the modular the-
ory of Tomita. As the above named laureate together with his collaborator showed
for the �rst time in su�cient generality, its use in physics goes through Einstein
causality. This line of research recently gained momentum when it was realized
that it is not only of great structural and conceptual innovative power (see section
4), but also promises a new computational road into nonperturbative QFT (sec-
tion 5) which, picturesquely speaking, enters the subject on the extreme opposite
(noncommutative) side relative to (Lagrangian) quantization.

Key-words: Causality; Locality.



CBPF-NF-017/99

Contents

1 Introduction 1

2 Locality and Free Particles 7

3 Renormalized Perturbation, Problems with s� 1 15

4 Modular Origin of Geometric and Hidden Symmetries 24

5 Constructive Modular Approach to Interactions 32

6 Concluding Remarks 41



CBPF-NF-017/99 1

1 Introduction

Among the fundamental physical principles of this century which have stood their ground
in the transition from classical into quantum physics, relativistic causality as well as the
closely related locality of quantum operators (together with the localization of quantum
states) is certainly the most prominent one.

This principle entered physics through Einsteins 1905 special relativity, which in turn
resulted from bringing the Galilei relativity principle of classical mechanics into tune with
Maxwell's theory of electromagnetism. Therefore it incorporated Faraday's \action at a
neighborhood" principle which revolutionized 19th century physics.

The two di�erent aspects of Einstein's special relativity, namely Poincar�e covariance
and the locally causal propagation of waves in Minkowski space were kept together in
the classical setting. In the adaptation of relativity to LQP (local quantum physics1)
on the other hand [1], it is appropriate to keep them at least initially apart in the form
of positive energy representations of the Poincar�e group (leading to Wigner's concept of
particles) and Einstein causality of local observables (leading to observable local �elds
and local generalized \charges"). Here a synthesis is also possible, but it happens on a
deeper level than in the classical setting and results in LQP as a new physical realm which
is conceptually very di�erent from both classical �eld theory and general QT (quantum
theory). The elaboration of this last point constitutes one of the aims of these notes. We
will pay particular attention to those aspects of LQP which are not within the reach of
standard quantum physical intuition.

The most remarkable aspect of QFT in its more than 60 years existence in addition
to its great descriptive and computational success in perturbative QED and the standard
model, is certainly the perseverance of its causality principle. In addition to the exper-
imental support through the validity of the Kramers-Kronig dispersion relations in high
energy collisions up to the shortest accessible distances, it is also the various unsuccessful
theoretical attempts to construct viable nonlocal theories2 which testify to the strength of
this principle. Despite intense e�orts and much talk, nobody has succeeded to construct
a viable nonlocal theory. The cuto� in Feynman-like integrals or in euclidean functional
integrals (which violate the prerequisites for continuability to real time LQP) introduced
by phenomenologists in order to combat the apparent \bad" short distance behavior stem-
ming from perturbative causality down to arbitrary small distances (which threaten the
mathematical existence of models) are no substitute for a conceptual analysis whether a
viable nonlocal theory with an elementary length which maintains a particle interpretation
is possible at all3. Here \viable" is more than mere mathematical existence, it is meant

1We use this terminology, whenever we want to make clear that we relate the principles of QFT with
a di�erent formalism than that based on quantization through Lagrangian formalism.

2The meaning of \nonlocal" in these notes is not that of extended charged objects in a theory of local
observables (example: semiin�nite string like spatial extensions of anyons or plektons in d=1+2 in order
to support their abelian/nonabelian braid group statistics), but rather refers to hypothetical theories
which have a fundamental cut-o� or elementary length in their algebra of observables.

3A good antidote against speculations or light-hearted attitudes that e.g. rotational invariant euclidean
cuto�s (or any other kind of cuto� which formally can be expected to maintain Lorentz covariance) could
de�ne a consistent nonlocal real time theory, is to try to introduce one into one of the exactly solvable
d=1+1 factorizing models.
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in the physical sense of conceptual completeness. One requires that a theory is required
to contain its own physical interpretation i.e. that one does not have to invent or borrow
formulas from outside this theory as it is done in e. g. phenomenological \e�ective"
QFT. In the latter case most formulas linking the calculations with measurable quantities
cannot be derived or justi�ed, but as exprected in a phenomenological approach, have
to be taken from a more complete and fundamental framework. In addition \e�ective
" indicates that objects with this pre�x as Lagrangians, actions etc. should be dealt
with di�erent rules as those in renormalized perturbation theory. On the other hand in
a complete framework as LQP, one cannot only derive (LSZ) scattering formulas which
constitute an important aspect of particle interpretation, but one can also obtain the
composition laws of charges, analytic and crossing properties of �elds in particle states
etc; in fact there is presently no important structural or epistomological property which
the principles of LQP cannot address or account for. Only if it comes to quantitative
understanding of particle interaction processes one has to resort to speci�c models, even
though their full control is often very problematic as a result of absense of systematic and
reliable nonperturbative methods.

Contrary to statements one sometimes �nds in the literature, there is no nonlocal
Poincar�e covariant scheme known, which guaranties the existence of a time dependent (or
its stationary reformulation) scattering formalism together with the analytic and cross-
ing properties of matrix-elements of the S-operator and formfactors of local �elds, and
therefore could be used in particle physics. Hence the importance of causality is also high-
lighted by the failure of nonlocal modi�cations and the conspicuous absense of physically
viable alternatives. It is quite instructive to brie
y look at some of the more prominent
failed attempts.

Already in the 50ies there were proposals to inject nonlocal aspects through extended
interaction-vertices in Lorentz invariant Lagrangians. As mentioned before, this was mo-
tivated by the hope that a milder perturbative short distance behavior in correlation
functions may be helpful for demonstrating the mathematical existence of the theory. It
was soon realized, that if one pursues the e�ect of such modi�cations up to in�nite order
in perturbation theory, these nonlocal vertices would wreck even macrocausality so that
the theory looses its physical interpretation alltogether. A similar fate occurred to the
later proposal of Lee and Wick [2] to allow for complex (+ complex conjugate, in order to
maintain hermiticity) poles in Feynman rules; it led to unacceptable time precursors [3].
In the last section we will present some results on a new nonperturbative framework which
incorporates and explains all the results obtained insofar on explicit non-Lagrangian low-
dimensional model constructions. The very concepts of this approach use causality and
locality in a much more essential way than the various quantization approaches and in
addition this method throws considerable doubt in the belief that the perturbative link
between good short distance behavior and existence of the theory has general validity.

Often the renormalization group ideas are used to justify a physical cuto� with the
hope that by softening short-distance behavior the model becomes mathematically better
de�ned and managable. But physical principles should receive their limitation, as it al-
ways happened in the past, from other more general principles and not from parameters
into which one tries to dump ones lack of knowledge about the mathematical existence of
the theory within the presently known principles. A phenomenological successful param-
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eter with �xed computational prescriptions is by itself is not a substitute for a physical
principle. Physical reality may unfold itself like an onion with in�nitely many layers of
ever more general physical principles towards the small, but it should still be possible to
have a mathematically consistent theory in each layer which is faithful to the principles
valid in that layer. This has been fully achieved for quantum mechanics, but this goal
was not yet reached in QFT as a result of lack of nontrivial d=1+3 models or structural
arguments which could demonstrate that the requirements allow for nontrivial solutions.
Even the recently emphasized duality between asymptotically small/large coupling pa-
rameters only resulted in the rephrasing of the problem to: does there exist a QFT which
pocesses these two asymptotes. The existence problem of interacting QFT's in d=1+3
which persists to present times sets QFT apart from any other physical theory as QM,
Stat. Mech. or classical particles/�eld theories. In all those cases one has explicite exam-
ples as well as proofs that the \axioms" are consistent with nontrivial dynamics. In this
context one should note that lattice theories de�ne a di�erent (mathematically easier)
framework which, if suitably restricted, shares with QFT that it is conceptually complete
as far as the notion of particle excitations and their scattering theory (based on cluster
properties) is concerned. In fact the correlation functions of lattice algebras are expected
to converge towards those of a QFT in an appropriately de�ned scaling limit. Despite
some control of the extremely di�cult scaling limits in certain special models as the d=2
Ising like models, the relation between the two theories remains largely not understood.

Recently there was a more sophisticated attempt to go beyond the causal setting of
LQP via the use of noncommutative space time [4], based on spatial uncertainty relations
following from a quasiclassical quantization interpretation of Einstein's �eld equation of
general relativity and the assumed absence of very small black holes (similar uncertainty
relation for the complete set of coordinates and momenta (i.e. for phase space) have been
postulated on the basis of string theory [5]). These proposals, especially if they are backed
up by uncertainty relations whose derivation is carried out in the spirit of Bohr-Rosenfeld
as in [4], are not that easily dismissed as the two previous ones. Such attempts do not
just try to graft cuto�s or elementary length onto the standard (Lagrangian, functional
integral) local framework, but rather are receptive to more radical changes of the funda-
mentals of QFT. It is not easy to confront such speculative new ideas with LQP, because
it is more di�cult to physically interpret in such unusual frameworks than it is to rule out
implanting cuto�s into the standard framework. Whereas it is easy to agree that su�cent
intelligent noncommutative spacetime proposals may serve as interesting tests for explor-
ing the unknown territory beyond the reign of Einstein causality, they are still far from
being models for the elusive \Quantum Gravity", since they only replace the classical
spacetime indexing of nets with a noncommutative one. However any step beyond the
present causal framework must reobtain Einstein causality as an limiting statement within
some yet unknown new physical principle. Recently there have been a lot of promises on
the basis of string theory. But unfortunately string theory, even aside from the total lack
of experimental motivation, had hardly added anything to conceptual problems despite
its undeniable mathematical enrichments. In fact in its present state it is mainly a loose
set of calculational recipes which su�er from a very unfortunate preference of formalism
over conceptual clari�cations. Whereas LQP allows an intrinsic characterization (e.g. in
terms of correlation functions or observable nets) independent on the way they have been
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manufactured (e.g. Lagrangian quantization, bootstrap-formfactor method in d=1+1),
string theory in its more than 20 years of existence has not led to objects with an intrinsic
meaning independent of the computational rules (in addition to its experimental invul-
nerability after it changed interpretation from the old string theory of the dual model
for strong interaction at laboratory energies to an alleged theory of quantum gravitation
thus jumping 15 orders of magnitude. On the theoretical side such fundamental questions
whether strings are localized objects in spacetime (as the name seems to indicate) or if
the name is a short hand notation for speci�c spectral features have nor yet been settled.
Whereas admittedly many of the the popular formulations of QFT based on canonical
or functional integral quantization start also from extrinsic formal requirements which
in most cases cannot be maintained after renormalization4, there exists at least various
intrinsic formulations.

Causality and locality are in a profound way related to the foundations of quantum
theory in the spirit of von Neumann. In von Neumann's formulation, observables are
represented by selfadjoint operators and measurements are compatible if the operators
commute. The totality of all measurements which are relatively compatible with a given
set (i.e. noncommutativity within each set is allowed) generate a subalgebra: the commu-
tant L0 of the given set of operators L. In LQP, a conceptual framework which was not yet
available to von Neumann, one is dealing with an isotonic \net" of subalgebras (in most
physically interesting cases von Neumann factors, i.e.with trivial center) O ! A(O); such
that unlike quantum mechanics, the spatial localization and the time duration of observ-
ables becomes an integral part of the formalism. Causality gives an a-priori information
about the size of spacetime O -a�liated operator von Neumann algebras:

A(O)0 � A(O0) (1)

in words: the commutant of the totality of local observables localized in the spacetime
region O contains the observables localized in its spacelike complement (disjoint) O0: In
fact in most of the cases the equality sign will hold in which case one calls this strengthened
(maximal) form of causality \Haag duality" [1][6]:

A(O)0 = A(O0) (2)

In words, the spacelike localized measurements are not only commensurable with the given
observables in O, but every measurement which is commensurable with all observables in
O; is necessarily localized in the causal complement O0: Here we extended for algebraic
convenience von Neumann's notion of observables to the whole complex von Neumann
algebra generated by hermitian operators localized inO: If one starts the theory from a net
indexed by compact regions O as double cones, then algebras associated with unbounded
regions O0 are de�ned as the von Neumann algebra generated by all A(O1) if O1 ranges
over all net indices O1 � O0:

4Apart from some less interesting superrenormalizable models, the physically meaningful renormaliz-
able objects (which are also the only ones with a chance of mathematical existence) are neither canonical
nor representable by functional integrals, but still ful�ll the property of Einstein causality together with
certain spectral properties. The so-called \causal perturbation theory" (see later) furnishes a more har-
monious intrinsic formulation for which the initial requirements are also re
ected in the results, and not
only as a \catalyzer" of the mind.
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Whereas the Einstein causality (1) allows a traditional formulation in terms of pointlike
�elds A(x) as

[A(x); A(y)] = 0; (x� y)2 < 0; (3)

Haag duality can only be formulated in the algebraic net setting of LQP. This aspect is
shared by many important properties and results presented in this article. LQP is much
more than a Teutonic pastime of reformulating properties of �elds in terms of algebraic
properties of nets as one realizes immediately if one looks into Haag's book.

One can prove that that Haag duality always holds after a suitable extension of the
net to the so-called dual net A(O)d: The latter may be de�ned independent of locality in
terms of relative commutation properties as

A(O)d := \
O1;O

0

1
�O

A(O1)
0 (4)

It is easy to check that the dual net is relatively local to the original net

A(O1) � (A(O)d)0; O1 � O0 (5)

in fact it is the maximal net relatively local to A(O): Repeating this process, one ob-
tains A(O)d � A(O)dd and A(O)d = A(O)ddd: Causality of the original net then means
A(O) � A(O)d; and therefore also A(O)dd � A(O)d = A(O)ddd: It is costumary to use
the word locality instead of causality if one allows �eld algebras which involve fermionic
structures. Local algebras retain all of the mathematical properties of observable alge-
bras in that they contain no local annihilators. The extension by charged objects with
braid group statistics (only possible in spacetime dimension d<1+3) may lead to algebras
(acting in a larger Hilbert space) with weaker locality properties and the appearance of
local annihilators. Such objects are called \localizable" since they maintain their relative
locality with respect to the neutral observable subalgebra. The causal disjoint of the re-
gion of relative commutation is the localization region of these charged operators. These
considerations show that causality, locality and localization in LQP have a close relation
to the notion of compatibility of measurements. The fundamental reason for all such
modi�cations in the interpretation of LQP versus QM is the di�erent structure of local
algebras: the vacuum is not a pure state with respect to any algebra which is contained
in an A(O) with O0 nonempty, and the sharply localized algebras A(O) do not admit any
pure states at all! Since these �ne points can only be appreciated with some more prepa-
ration, I will postpone their presentation. Note that the quantization approach to QFT
based on the use of classical actions in euclidean functional integrals (and the subsequent
use of analytic continuation to get back to real spacetime) is a global attempt to charac-
terize vacuum expectation values of a would be theory. The classical locality in the sense
of local polynomial expressions in �elds and derivatives has no direct conceptual relation
with the real time locality in the above sense; in fact the analytically continued \�elds"
in the euclidean points are extremely nonlocal relatively with respect to the real time
�elds. Unlike in statistical mechanics It does not make sense to restrict the euclidean
integration to localized con�gurations with local supports since this has nothing to do
with the localization of real time physics where one may restrict states to localized subal-
gebras. Nevertheless there are su�cient conditions under which the euclidean correlation
functions do permit to de�ne models of real time QFT.
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If the vacuum net is Haag dual, then all associated \charged" nets share this prop-
erty, unless the charges are nonabelian; in which case the deviation from Haag duality is
measured by the Jones index of the above inclusion, or in physical terms the statistical-
or quantum-dimension. If even the vacuum representation violates Haag duality, this
indicates spontaneous symmetry breaking [7] i.e. not all internal symmetry algebraic au-
tomorphisms are spatially implementable. As already mentioned, in that case one can
always maximize the local algebra to the dual algebras Ad(O) without destroying causal-
ity and without changing the Hilbert space and in this way Haag duality is restored
(\essential duality"). This turns out to be related to the descend to the unbroken part of
the symmetry which allows (since it is a subgroup) more invariants i.e. more observables.
Although these matters are good illustrations of the pivotal role of causality, we will con-
centrate on the closely related modular properties of causal nets which will make their
appearance in the next section. QM does not know these concepts at all, trying to add
them would mean leaving QM, since their realization requires in�nite degrees of freedom.

Another structurally signi�cant deviation is expected to result from the fact that the
vacuum becomes a thermal state with respect to the local algebras A(O): There are two
di�erent mechanisms which generate thermal states: the coupling with a heat bath and
the thermality through restriction or localization and the creation of horizons. The latter
is in one class with with the Hawking-Unruh mechanism; the di�erence being that in the
localization situation the horizon is not classical i.e. is not de�ned in terms of a di�erential
geometric Killing generator of a symmetry transformation of the metric.

Since the algebras of the type A(O) do not possess pure states, the O=O0 situation
is totally di�erent from the tensor product factorization in terms of the quantization
box inside/outside in QM. In order to get back to a tensor product situation and be
able to apply the concepts of entanglement and entropy, one has to do a sophisticated
split which is only possible if one allows for a \collar" (see later) between O and O0.
These considerations show that certain things which one takes for granted as properties
of general QT actually loose their validity in LQP.

Since the thermal aspects of localization are analogous to those of black holes, there
is no chance to directly measure such tiny e�ects. However in conceptual problems, e.g.
the question if and how not only classical relativistic �eld theory but also QFT excludes
superluminal velocities, these subtle di�erences play a crucial role. Imposing the usual
algebraic structure of QM onto the theory of photons will lead to nonsensical results.
Most sensational theoretical observations on causality violations which are not allready
wrong on a classical level su�er from incorrect tacit assumptions.We urge the reader to
read the reference [18] and also look at the source for that rebuttal.

Historically the �rst conceptually clear de�nition of localization of relativistic wave
function was given by Newton and Wigner [8] who adapted Born's x-space probability
interpretation to the Wigner relativistic particle theory. Apparently the result that there
is no exact satisfactory relativistic localization (but only one su�cient for all practical
purposes), disappointed Wigner so much that he became distrustful of the consistency
of QFT in particle physics alltogether (private communication by R. Haag). Whereas
we know that this distrust was unjusti�ed, we should at the same time acknowledge
Wigner's stubborn insistence in the importance of the locality concept as a indispensable
particle physics requirement in addition the positive energy property and irreducibility
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of his representations theory. Modular localization of subspaces of the Hilbert space and
of subalgebras on the other hand are not related to the Born probability interpretation.
Rather modular localized state vectors preempt the existence of causally localized ob-
servables and have no counterpart at all in N-particle quantum mechanics. As will be
explained later modular localization may serve as a starting point for the construction of
interacting nonperturbative LQP's [6][10]5. It is worthwhile to emphasize that sharper
localization of local algebras in LQP is not de�ned in terms of smaller support properties
of classical smearing functions of smeared �elds but rather in terms of intersection of al-
gebras; although in many cases as CCR- or CAR-algebras (or more generally Wightman
�elds) the algebraic formulation (1) can be reduced to this more classical concept.

Since the modular structure is in a deep way related to thermal behavior, it is not
surprising that the issue of thermality is also related with localization. In fact as men-
tioned before, there are two manifestations of thermality, the standard heat bath thermal
behavior which is described by Gibbs formula (or after having performed the thermody-
namic limit by the KMS condition), and thermality caused by localization either with
classical bifurcated Killing-horizons as in black holes [9], or in a purely quantum manner
as the boundary of the Minkowski space wedges or double cones. In the latter case the
KMS state has no natural limiting description in terms of a Gibbs formula (which only
applies to type I and II, but not to type III von Neumann algebras), a fact which is also
related to the fact that the hamiltonian (of the ground state problem) is bounded from
below, whereas the e.g. Lorentz boost (the modular operator of the wedge algebra in the
vacuum state) is not [10]. In [11] the reader also �nds an discussion of localization and
cluster properties in a heat bath thermal state. In these notes we will not enter these
interesting thermal aspects. Recent results indicate that the division between heat bath-
and localization-thermality may not be as sharp as it appears at �rst sight [58]

2 Locality and Free Particles

The best way to make the pivotal nature of causality manifest, is to enter QFT via
Wigner's group theoretical characterization of particles by irreducible positive energy
representations with good localization properties. It is well known that the Wigner wave
functions  of massive spin s particles have 2s+1 components and (di�erently from co-
variant �elds) transform in a manifestly unitary but p-dependent way:

(U(�) W )(p) = R(�; p) �  W (��1p) (6)

The transition to covariant wave function and �elds is done with the help of intertwiners
u(p; s3) resp. the rectangular matrix U(p) constructed from their 2s+1 column vectors of
length (2A+ 1) � (2B + 1)

U(p)D(s)(R()) = D(A;B)(�)U(��1p) (7)

5In fact the good modular localization properties of positive energy properties, with the exception
of Wigner's in�nite component \continuous spin" representations, are guarantied. Only in the in�nite
component case it is not possible to come from the wedge localization to the spacelike cone localization
which is the coarsest localization from which one can still obtain a Wigner particle interpretation.
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i.e. within Wigner's Poincar�e group positive energy representation theory one can in-
tertwine the rotations (with the p-dependent Wigner R-matrix) with the (dotted and
undotted) �nite dimensional spinor representations D(A;B): Since the D(s) representation
of the rotations is \pseudo-real", there exists another intertwiner matrix V (p) which is
\charge-conjugate" to U(p): To each of the in�nitely many intertwiner systems (the only
restriction on A,B for given physical spin s is jA�Bj � s � jA+Bj) one has a local �eld
obeying the spin-statistics connection:

 (A;B)(x) =
1

(2�)
3

2

Z �
e�ipx

X
u(p; s3)a(p; s3) + eipx

X
v(p; s3)b

�(p; s3)
� d3p
2p0

(8)

where a; b are the (creation) annihilation operators associated with the Fock space en-
largement of the Wigner representation space and hence independent of the choice of
intertwiners. All the di�erent �elds are describing the same (m; s) particle physics and
live in the same Fock space. They constitute only the linear part of a huge (Borchers)
equivalence class of �elds. For free �elds, this equivalence class contains in addition all
Wick-monomials, and it is well known that they are indispensible for introducing pertur-
bative interactions. The above di�erent  0s can be mutually solved:

 (A0;B0)(x) =M
(A0;B0)
(A;B) (@) (A;B)(x) (9)

where M (A0;B0)
(A;B) (@) is a rectangular matrix (matrix indices supressed) involving @� deriva-

tives.
Explicit formulas can be found in the �rst volume of [12]. Among the in�nitely many

possibilities essentially only one is \Lagrangian" i.e. can be used in a quantization ap-
proach starting from a classical Hamiltonian principle. The other descriptions are phys-
ically equally acceptable, since there is no quantization principle which enforces to do
quantum physics through a classical parallelism with the Lagrangian formalism. In fact
they describe the same physics in form of a di�erent \�eld coordinatisation".

Indeed for LQP, pointlike �elds (8) are like coordinates in di�erential geometry; it may
be sometimes convenient to use them but structural theorems on charge-carrying �elds
(classi�cation of statistics, including braid group statistics for low dimensional charge
carriers, TCP...) and internal symmetries (symmetries and their spontaneous breaking,
the Schwinger-Higgs screening mechanism...) are best done in terms of the properties of
the net:

O ! A(O) (10)

The causality and spectral properties of these nets constitute the physical backbone of
LQP. The notion \local" is then extended to all Boson and Fermion �elds, because they
allow an unrestricted iterative application to the vacuum without encountering local anni-
hilators, and therefore such an extension preserves the important properties of the original
observables. More general charge carrying �elds which extend the above local (bosonic
or fermionic) net are called \localizable"(with respect to the observables). In particular
plektonic (braid-group statistics) d=1+2 dimensional �elds can never have a Fock space
structure and always locally annihilate charge sectors when the operator domain does
not match the range of the charge sector of the state vector. Although such �elds (as
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some �elds used in gauge theory) have necessarily a semi-in�nite (spacelike) string-like
extension, these charge carriers are associated with a local net of observables i.e. they
do not bring in an aspect of elementary length or any other restriction of the causality
principle. A genuinely nonlocal theory would violate causality in its observable algebra;
as long as the theory admits a causal observable algebra there is no elementary length,
independently of the possibly extended nature of charged operators. With other words
extended operators which transfer charges and communicate between di�erent represen-
tations of the observables are permitted as long as their commutation relations relative
to the observables re
ect their spatial extension in the previously mentioned sense.

It is important to note that the Wigner free �elds have operator dimensions (re-
ferring to the short distance power behaviour) which increase with spin: dim (s=0) =
1; dim (s= 1

2

) = 3
2
; dim (s=1) � 2: This is the deeper reason why the incorporation of

interacting theories into the scheme of causal renormalized perturbation requires special
cohomological tricks (BRS) for s � 1 (the LQP version of gauge theories, see next section).

The Wigner approach for (m = 0; s � 1) leads to a more restricted class of inter-

twiners, since many representations (e.g. the D( 1
2
; 1
2
) vector representation); as a result of

the di�erent nature of the \little group, cannot be intertwined with the physical photon
(0.h=1) of the Wigner representation theory. In fact the range of dotted/undotted indices
in 8 is restricted according to h = � jA�Bj [12]. There are two methods to overcome
this restriction; one physical way of introducing a semiin�nite spacelike localized vector-
potential A�(x; n) depending on a spacelike string direction n into the Wigner photon
space, or the extension by ghost �elds (inde�nite metric or di�erent star-operation) for-
malism which keeps the formal Lorentz-covariance (together with the point-like nature)
in the form of \pseudo-unitarity" representations). Whereas the �rst method is physically
deeper and more promising, the second one is the only one which is compatible with the
presently known formalism of renormalized perturbation theory. The latter does not care
whether the locality is formal instead of physical and whether the boost transformations
are pseudo-unitary instead of unitary, but the interpretation does.

The remaining positive energy representations are Wigner's famous \continuous spin"
representation which are in�nite component (in�nite dimensional representations of the
massless \little group"). They are usually dismissed by saying that nature does not make
use of them. Apart from the fact that a theoretician should not argue in this way (and in
fact he doesn't if it comes to supersymmetry), the dismissal is probably founded on the
naive identi�cation of irreducible positive energy representation with physical particles.
This ignores that particles should be described by states, which in addition to forming
irreducible positive energy representations, must also have good localization properties.
The modular localization method below reveals that any positive energy representation
can be localized in wedges. For all positive energy representations with �nite spin/helicity
the localization can be sharpened; for the m=0 continuous spin representations however
the same methods are inconclusive. It is doubtful that they admit a sharper localiza-
tion, needed for particle interpretation including scattering, and this may cause their
disquali�cation as candidates for physical particles on the theoretical side. There are also
many useful particle-like objects or states which are not described by (m,s=semi-integer)
Wigner representations as e.g. infraparticles (electron with photon cloud), ultraparticles,
quarks... [13]). The borderline between physical particle and other weakly localizable
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objects is the stringlike (more appropriatly spacelike-cone) localization. This localization
is still su�cient to derive scattering theory and on the other hand it follows from the exis-
tence of �eld theoretic charge sectors which ful�ll the mass gap assumption [1]. Operators
with braid group commutation relations in d=1+2 which have one-particle components
with mass gaps, are necessarily stringlike and lead to anyons (abelian, spin arbitrary) or
plektons (nonabelian, spin quantized). Therefore compactly (e.g. double cone) localizable
�elds and particles in d=1+2 are only consistent with the permutation group statistics
which is a special case of braid group statistics.

If �elds are analogous to coordinates in di�erential geometry, there should be a way
to at least construct interaction free nets directly, without ever using free �elds. The idea
behind this is to characterize wedge localized real subspaces in Wigner space with the
help of modular operators (instead of Cauchy initial value data). Assumefor simplicity
integer spin selfconjugate Bosons and de�ne a real subspace HR(Wst) of HWigner as:

HR(Wst) = closure of real lin: comb: f j s =  g (11)

s � j�
1

2 ; s2 = 1

The notation is as follows: �i� := U(�x;t(2�� )) is the Lorentz boost in the x-t direction
associated to the standard x-t wedge Wst := fx 2 R4;x1 > jx0jg, and j = � � rotx(� = �)
is, apart from a �-rotation around the x-axis, the antiunitary TCP transformation � act-
ing on the Wigner one-particle space, which for non-selfconjugate particles consists of
a direct sum of the particle and antiparticle space. The unbounded �

1

2 > 0 is de�ned
by functional calculus from �it and has a domain consisting of boundary values of an-
alytically continuable 2s+1 component wave function which have the momentum space
rapidity (p0 = m cosh �; px = m sinh � ) analyticity in the strip �� < Im� < 0: s in-

herits the densely de�ned domain from �
1

2 and the antilinearity from j: The best way
to describe this real Hilbert space of wedge localized functions is to say that they are
strip-analytic and ful�ll Schwartz re
ection principle around the line Imz = � i�

2 : In case
of antiparticles6=particles one most double the number of components and use the full
charge conjugated wave functions in the re
ection principle instead of just the complex
conjugate. This is closely related to the crossing \symmetry" (it is not a symmetry in
the standard operational sense of QT) in interacting systems (see later). The involutive
property s2 = 1 on this domain, in mathematical notation s2 � 1, is a consequence of
this de�nition. Such unbounded (but yet involutive) operators did not occur in any other
area of mathematical physics and therefore are not treated in books on mathematical
methods. In fact they seem to be characteristic of the Tomita-Takesaki modular theory.
It is precisely the combination of unboundedness and involutiveness which is responsible
for the emergence of localization and geometrical properties from domain properties of
quantum physical operators. The real closed subspace may be used to de�ne a dense
wedge localization space6 H(Wst) � HR(Wst) + iHR(Wst) on which the operator s acts
as:

s(h+ ih) = h� ih (12)

6A change of sign in the de�nition of HR(W ) would not change the dense complex localization space
(which is a Hibert space in the graph s-norm).
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HR(Wst) is \standard" i.e.

HR(Wst) \ iHR(Wst) = f0g (13)

H(Wst) � HR(Wst) + iHR(Wst) is dense in HWigner

The natural localization topology is the graph norm of s. It is somewhat unusual and
treacherous that the formula for s looks so universal and the di�erences in the localization
for di�erent wedges W� := �Wst ; Wa := T (a)Wst is solely encoded in the domain of
de�nition of s(�;a) (i.e. only where and not how it acts) which he usually considers to be
a �ne and somewhat irrelevant technical point. For positive energy representations the
geometric inclusion Wa := T (a)Wst � Wst; a 2 Wst (translating wedges into themselves)
implies the proper inclusion (D. Guido, private communication 1996) HR(Wa) � HR(Wst);
in fact the geometric inclusion properties are equivalent to the positive spectrum condition.
For the understanding of the latter claim one has to decompose the spacelike a into two
lightlike components a� for which one takes of course the two lightlike vectors by which the
wedge Wst is generated. Di�erent from spacelike translations, these lightlike translations
have a positive generator.

Having constructed a net of wedge-localized real subspaces HR(W ); one may move
ahead and introduce compactly localized spaces HR(O) through intersections \W�OW

HR(O) = \W�OHR(W ) (14)

In order to insure the nontriviality of these intersections, one needs to restrict the positive
energy representations to those with a �nite-dimensional representation of the Wigner
\little group" which amounts to (half)integer spin/helicity. In this way one obtains e.g.
the net of double cones; a direct construction of the associated modular objects is more
di�cult because the modular group behaves \geometric" (i.e. as a di�eomorphism of
Minkowski space) only asymptotically close to the \horizon" (the boundary of the causal
closure) of the region. Note that in order to de�ne these localization spaces, we did not
use any u; v intertwiners. If we had done this, the present intrinsic concept of localization
would have been lost and we would have been back at x-space properties of covariant
wave functions or pointlike �elds i.e. those �eld coordinatisations which destroyed the
unicity. The size of localization is contained in certain Payley-Wiener type of bounds in
imaginary momentum or rapidity directions.

The last step to the nets consists (say for the case of integer spin) in the application
of the Weyl functor which maps real subspaces into the von Neumann subalgebras of a
net:

HR(O) F!A(O) (15)

A(O) = alg fW (f) j f 2 HR(O)g
W (f) = ei(a

�(f1)+h:c:)+i(b�(f2)+h:c:); f = (f1; f2)

where b#; a# stand for (anti)particle Wigner creation and annihilation operators. The
functor F is orthocomplemented i.e. the symplectic or (by multiplication with i) real
orthogonal complement of a real subspace is mapped into the von Neumann algebraic
commutant. The images J;�it; S of j; �it; s under F are the modular objects of the
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algebraic version of the Tomita Takesaki modular theory for the special case of the pair
(A(Wst);
) of wedge algebra and vacuum vector7.

The general theory says that for a von Neumann algebraA with a cyclic and separating
vector 
 , the de�nition:

SA
 = A�
; A 2 A (16)

introduces a closable operator, whose polar decomposition;

S = J�
1

2 (17)

de�nes a unitary �it and a antiunitary involution J which are of fundamental signi�cance
for the pair (A;
): The operator �it de�nes the \modular" automorphism �t of A (a kind
of generalized hamiltonian) with respect to 
 and J the modular involution j (a kind of
generalized TCP re
ection):

�t(A) = A; �t(A) � �itA��it (18)

j(A) = A0; j(A) � JAJ

This basic theorem was stated and proved by Tomita with signi�cant improvements due
to Takesaki [14]. In the context of thermal quantum physics it received an important inde-
pendent contribution in form of the KMS condition from Haag Hugenholz and Winnink;
whereas Kubo, Martin and Schwinger only used this analytic condition in order to avoid
the calculation of traces, the HHW paper elevates this property to one of the most impor-
tant conceptual tools related to stability of states and to the second thermodynamical law
[1]. Its relevance for localization in QFT was �rst seen in full generality by Bisognano and
Wichmann [17] and the thermal aspects of (wedge) localization (the Hawking-Unruh con-
nection) were �rst stressed by Sewell [9]. Although we explained the construction of free
nets only for Bosons, the formalism adapts easily to Fermions. Fermions are preempted in
the modular localization of the Wigner theory by the appearance of a mismatch between
the geometrical opposite of HR(W ) obtained by a 180 degree rotation, and its symplectic
or real orthogonal complement. This leads to a modi�cation of the Tomita involution
in form of an additional twist which can be shown to preempt the Fermi-statistics. Our
inverse use of the Bisognano-Wichmann idea for the purpose of direct net construction
which we exempli�ed for free theories in arbitrary spacetime dimensions can be general-
ized to interacting theories with the mathematical control being restricted presently to
d=1+1. Some of these results will be presented in the last section.

Already in the very early development of algebraic QFT [15] the nature of the single
local von Neumann algebras became an interesting issue. Although it was fairly easy (and
expected) to see that i.e. wedge- or double cone- localized algebras are von Neumann fac-
tors (in analogy to the tensor product factorization of standard QT under formation of
subsystems, it took the ingenuity of Araki to realize that these factors were of type III
(more precisely hyper�nite type III1 as we know nowadays, thanks to the profound con-
tributions of Connes and Haagerup), at that time still an exotic mathematical structure.
Hyper�niteness was expected from a physical point of view, since approximatability as

7A construction of the free net without using modular localization methods can be found in [16]. It is
however the modular method which extends to the interacting case.
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limits of �nite systems (matrix algebras) harmonizes very well with the idea of thermo-
dynamic+scaling limits of lattice approximations. A surprise was the type III1 nature
which,as already mentioned, implies the absence of pure states (in fact all projectors are
Murray von Neumann equivalent to the identity operator) on such algebras; this property
in some way anticipated the thermal aspect (Hawking-Unruh) of localization. Overlooking
this fact which makes local algebras signi�cantly di�erent from algebraic aspects of QM,
it is easy to make conceptual mistakes which could e.g. suggest an apparent breakdown
of causal propagation. For the discussion of such a kind of error and its correction see
[18]), as already mentioned in the introduction. If one simply grafts concepts of QM onto
the causality structure of LQP (e.g.quantum mechanical tunnelling, structure of states)
without deriving them in LQP , one runs the risk of wrong conclusions about e.g. the
possibility of superluminal velocities.

Let me, at the end of this section mention two more structural properties, intimately
linked to causality, which distinguish LQP rather sharply from QM. One is the Reeh-
Schlieder property:

P(O)
 = H; cyclicity of 
 (19)

A 2 P(O); A
 = 0 =) A = 0 i:e: 
 separating

which either holds for the polynomial algebras of �elds or for operator algebras A(O):
The �rst property, namely the denseness of states created from the vacuum by operators
from arbitrarily small localization regions (a state describing a particle behind the moon8

and an antiparticle on the earth can be approximated inside a laboratory of arbitrary
small size and duration) is totally unexpected from the global viewpoint of general QT.
In the algebraic A(O) formulation this can be shown to be dual to the second one (in the
sense of passing to the commutant), in which case the cyclicity passes to the separating
property of 
 with respect to A(O0):

Of course the claim that somebody causally separated from us may provide us with
a dense set of states is somewhat unusual if one thinks of the factorization properties of
ordinary QT. The large enough commutant required by the latter property is guarantied
by causality (the existence of a nontrivialO0) and shows that causality is again responsible
for the unexpected property. If the naive interpretation of cyclicity/separability in the
Reeh-Schlieder theorem leaves us with a feeling of science �ction (and also has attracted a
lot of attention in philosophical quarters), the challenge for a theoretical physicist is �nd
an argument why, for all practical purposes, the situation nevertheless remains similar to
QM. This amounts to the fruitful question: which among the dense set of localized states
can be really produced with a controllable expenditure (of energy)? In QM the asking of
this question is not necessary, since the localization at a given time via support properties
of wave functions leads to a tensor product factorization of inside/outside so that the
inside state vectors are automatically never dense in the whole space. Later we will see
that most of the very important physical and geometrical informations are encoded into

8This weird aspect should not be held against QFT but rather be taken as indicating that localization
by a piece of hardware in a laboratory is also limited by an arbitrary large but �nite energy, i.e. is a
\phase space localization" (see subsequent discussion). In QM one obtains genuine localized subspaces
without energy limitations.
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features of dense domains, in fact the aforementioned modular theory is explaining such
relations. For the case at hand the reconciliation of the paradoxical aspect of the Reeh-
Schlieder theorem with common sense has led to the discovery of the physical relevance
of localization with respect to phase space in LQP, i.e. the understanding of the size of
degrees of freedom in the set:

PEA(O)
 is compact (20)

e��HA(O)
 is nuclear; H =
Z
EdPE

The �rst property was introduces way back by Haag and Swieca [1] whereas the second
statement (and similar nuclearity statements involving modular operators of local regions
instead of the global hamiltonian) which is more informative and easier to use, is a later
result of Buchholz and Wichmann [19]. It should be emphasized that the LQP degrees of
freedom counting of Haag-Swieca, which gives an in�nte but still compact set of localized
states is di�erent from the �niteness of degrees of freedom per phase space volume in
QM, a fact often overlooked in present day's string theoretic degree of freedom counting.
The di�erence to the case of QM disappears if one uses instead of a strict energy cuto�
a Gibbs damping factor e��H as above: In this case the map A(O) ! e��HA(O)
 is
\nuclear" if the degrees of freedom are not too much accumulative (which then would
cause the existence of a maximal Hagedorn temperature. The nuclearity assures that a
QFT, which was given in terms of its vacuum representation, also exists in a thermal
state. An associated nuclearity index turns out to be the counterpart of the quantum
mechanical Gibbs partition function [1] and behaves in an entirely analogous way.

The peculiarities of the above Haag-Swieca degrees of freedom counting are very much
related to one of the oldest \exotic" and at the same time characteristic aspects of QFT
namely vacuum polarization. As discovered by Heisenberg, the partial charge:

QV =
Z
V
j0(x)d

3x =1 (21)

diverges as a result of uncontrolled vacuum 
uctuations near the boundary. For the
free �eld current it is easy to see that a better de�nition involving test functions, which
takes into account the fact that the current is a 4-dim distribution and has no restriction
to equal times, leads to a �nite expression. The algebraic counterpart is the so called
\split property", namely the statement [1] that if one leaves between say the double cone
(the inside of a \relativistic box") observable algebra A(O) and its causal disjoint (its
relativistic outside) A(O0) a \collar" O1 \ O, i.e.

A(O) � A(O1); O � O1 ; properly (22)

then it is possible to construct in a canonical way a type I tensor factor N which extends
into the collar A(O)0 \ A(O1) i.e. A(O) � N � A(O1): With respect to N the vacuum
state factorizes i.e. as in QM there are no vacuum 
uctuations for the \smoothened"
operators in N: The algebraic analogon of Heisenberg's smoothening of the boundary is
the construction of a factorization of the vacuum with respect to a suitably constructed
type I factor algebra which uses the collar extension of A(O): It turns out that there
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is a canonical, mathematically distinguished factorization, which lends itself to de�ne a
natural \localizing map" � which has given valuable insight into an intrinsic LQP version
of Noether's theorem [1], i.e. one which does not rely on any parallelism to classical
structures as is the case with quantization. It is this \split inclusion" which allows to
bring back the familiar structure of QM since type I factors allow for pure states, tensor
product factorization, entanglement and all the other properties at the heart of quantum
theory and the measurement process.

There are also interesting \folklore theorems" i.e. statements which are mostly taken
for granted, but for which yet no rigorous argument exists (but also no counter-example).
One is the statement of \nuclear democracy". In the context of LQP it states that an op-
erator from a (without loss of generality) double cone algebra A 2 A(O) or a pointlike �eld
couples to all states to which the superselection rules allow a nonvanishing matrixelement.
In particular we expect: D

'in jAj in
E
6= 0 (23)

if the (say incoming) multiparticle state vector 'in lies in the same charge superselection
sector as A j ini, i.e. \everything communicates with everything" as long as the charges
match9. A special case is the phenomenon of vacuum or better one-particle polarization
through interaction i.e. the idea that there may be no interacting local operator A 2
A(O) at all such that A
 is in the one-particle space without additional p�p-contributions.
In order to suppress this p�p polarization cloud in state vectors of interacting theories, one
has to allow at least a semiin�nite localization region as the wedge region. For any compact
region, or even for those noncompact regions which are tiny bit smaller than wedges, the
in�nite particle clouds and the �eld point of view take over. The polarization cloud
content of a state vector A
 with A 2 A(O) is intimately related to the modular objects
of (A(O);
): If one could back up these expectations (based on model observations)
by rigorous theorems, one would have achieved an intrinsic understanding of interactions.
The section 5 gives a brief account on what is presently known about modular construction
of interacting nets.

3 Renormalized Perturbation, Problems with s� 1

Following Tomonaga, Feynman and Schwinger and the other pioneers of perturbative
renormalization, interactions are traditionally introduced through one of the various forms
of quantization (canonical, path integral,..).

The method which brings out the pivotal role of causality in the most explicite way is
however the so called \causal perturbation method" of St�uckelberg and Bogoliubov [20]
which was formulated as a �nite iteration method within the principles of LQP without
reference to quantization by Epstein and Glaser [21]. Some re�nements of that method,
notably related to curved space time and gauge theories, have been added recently by
[23][22]. Also Weinberg's more formal derivation of Feynman rules for arbitrary spin [12]
is somewhat in the spirit of causal perturbations.

9This forces the substitution of the QM hierarchical concept of bound state particles in favor of charge
fusion in LQP, which in turn means \nuclear democracy" between particles.
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It is a conceptual weakness of any quantization approach that contrary to QM, where
this can be given a rigorous meaning, quantization in �eld theory remains more on the
intuitive artistic side. Only for a so-called superrenormalizable interactions is the as-
sumed canonical or functional Feynman-Kac quantization structure also re
ected in the
renormalized result; in all other cases it only serves as a vehicle which activates physicists
thought and does not survive the renormalization procedure: i.e. with the mentioned
exception no renormalized result ful�lls canonical commutation relations or functional
integral representations, rather the only surviving structure is causality/locality. This
artistic rather than mathematical aspect pervades the standard text book formulation of
QFT. Such a state of a�airs is acceptable, as long as one remains aware that (what I
will summarily call) the Lagrangian quantization is basically an e�cient chain of formal
manipulations and tricks which lead from slightly wrong assumptions after some repair
to the correct perturbative results. Whereas the canonical structure and the functional
integral representation cannot be upheld, the physical causality properties do survive the
necessary repair procedure, better known under the name of renormalization.

In order to rescue the canonical or functional structures at any costs, physicist some-
times resort to imagine the existence of physical cuto�s or regulators and use the eu-
phemism \cuto� canonical variables or cuto� functional representations" without con-
fronting those conceptual problems of noncausal/nonlocal theories mentioned in the in-
troduction. In this way of thinking, the in�nities of the unrenormalized theory relative
to the renormalized, are sometimes attributed more physical signi�cance than just indi-
cating the necessity of repairing a slightly incorrect classical starting point (the classical
Poincar�e-Lorentz particle models within a classical �eld theory, instead of the Wigner-
particle picture), which would be avoided in the causal perturbative approach.

To be fair, these conceptual drawbacks of the quantization artistry are partially o�set
by the e�ciency of renormalizing away in�nities through Feynman rules. Even if e.g.
Schwinger's �nite split point method for the nonlinear terms in �eld equations may be
conceptually cleaner, because one never meets a manifest in�nity (as long as one does
not interchange short distance limits with the other operations), the method is harder to
systematize and practically less e�cient compared to Feynman's method of confronting
in�nities or ad hoc cuto�s.

Di�erent from quantization+repair of in�nities, LQP only uses those physical assump-
tions which are also genuinely re
ected in the results (causality, spectral properties, mod-
ular structure of local algebras etc.). The principles are the same principles as standard
QFT but it does so in a more conscientious way. In such an approach the short distance
properties of individual �elds are, apart from perturbation theory (in�nitesimal deforma-
tions around free �elds), less tightly connected with the existence of the model. We will
come back to this important point in the nonperturbative section 5. In the following we
will illustrate the strength of the LQP point of view in perturbation theory. The renor-
malized results are of course the same as in the functional approach, but the derivation
and the guiding physical ideas di�er in an interesting way.

In causal perturbation theory, which may be considered as a particular form of pertur-
bative LQP, the interaction is implemented by locally coupling the free �elds (any choice
possible,  does not have to be Lagrangian!) by an L-invariant sum over Wick monomials
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Wi(x) and one de�nes the following formal transition operator in Fock space10:

S(g; h) = Tei
R
fg(x)W (x)+h(x) (x)gd4x (24)

~C � supp g � C

gi = const in ~C

where W (x) =
P
giWi(x) and C; ~C are large double cone regions. In the following we

specialize to one �eld and one coupling for simplicity of notation (the notation for the
general case with several �elds and monomials we leave to the reader). Already without
the time-ordering T , the operator exponential is a mathematically delicate object since the
smeared Wick-powers beyond the second are not essentially selfadjoint on their natural
domains. With the time ordering it is more serious: apart from certain W 's with low
operator dimensions (a situation which cannot occur in d=1+3 dimensions), there is
no operator functional S(g) in Fock space for which a mathematical control has been
achieved (no solution of the \Bogoliubov axiomatics" in d=1+3). Causal perturbation
theory does not attempt to make sense of S(g) but only of its nth order power series term
in g. Therefore one proceeds along the following two lines:

� Extraction of general causality properties for S(g) and related operators
(the \Bogoliubov axiomatics"). The basic causality in the time-ordered for-
malism is:

T ( (x1)::: (xn)) = T ( (x1)):: (xk)) � T ( (xk+1):: (xn)) (25)

if xj =2 xi + �V+; i = 1; :::; k; j = k + 1; :::; n

For the purpose of (formally) extracting a causal net it is helpful to reformulate this
property in terms of another relative transition operator:

V (g; h) � S(g; h = 0)�1S(g; h) (26)

causality : V (g; h1 + h2) = V (g; h1)V (g; h2)

if supph1 =2 supp h2 + �V+

With the local algebras being now de�ned as (the notation alg includes the von
Neumann closure):

Ag(O) � alg fV (g; h); supph � Og (27)

In fact a change of the coupling strength g outside C (see 24) does not change the
net Ag(O) for O inside ~C; except for a common unitary (the nets are isomorphic
i.e. considered to be identical)

V (g + �g; h) = AdU(g; �g)V (g; h) (28)

supp �g outside ~C

10There is no compelling physical reason besides the historical success in QED and the analogy with
QM why outside of deformation of free �elds the introduction of interactions should follow this pattern.
The existence of perturbation theory in the sense of a deformation theory has in general no bearing on
the existence of an associated nonpertubative version.
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With this formula, the transition from the BPS-EG to the LQP net formalism has
been achieved [23]. The algebraic content has been constructed in an auxiliary Fock
space whose particle content is not necessarily identical with the physical particle
content, and the adiabatic limit of the E-G approach (which would have forced the
coalescence of the two) has been avoided.

� Perturbation as a deformation of free �elds. Having no control over the ob-
jects in the Bogoliubov axiomatics, we satisfy ourselves with existence and properties
of causal power series for S(g) := S(g; h) jh=0

S(g) =
X in

n!

Z
g(x1)::::g(xn)TW (x1)::::W (xn) (29)

which allows an iterative construction in n with W serving as the input. The main
inductive step is the construction of the total diagonal part in n+1 order, assum-
ing that the nth order time ordered product has been fully (i.e. as an operator-
valued distribution on all Schwarz test functions) constructed. Causality de�nes
the n+1 order object on all test functions which vanish on totally coalescent di-
agonal point [23]. The (Hahn-Banach) extension problem allows for totally locally
supported terms with a priori undetermined coe�cient. These local terms are often
(as \counter-terms") lumped together with the n=1 term. Mere perturbative lo-
cality and unitarity requirements do not �x this ambiguity (i.e. perturbatively one
always operators in Hilbert space11). Rather the introduction of a suitable degree
function allows to control this ambiguities in terms of a �nite number of physical
parameters, at least in the case of so-called renormalizable interactions W with
dimW � 4 = d: Perturbation is a deformation around known theories which in the
present case are free �elds. It only explores an in�nitesimal neighborhood around
free �elds and is not suited for deciding questions about the mathematical existence.
In fact beyond deformation theory it is not physically compelling to implement the
idea of interactions by coupling free �elds to W 0s in Fock space. Rather this is the
perturbative way of introducing interactions and not a general consequence of the
general framework. Indeed the nonperturbative attempts based on modular theory
use a di�erent implementation of \interaction", as will be shown later. The causal
perturbation theory leads to the same renormalized correlation functions as e. g.
the one based on functional integrals. However, as shown in the sequel, the physical
concepts and calculational rules are somewhat di�erent. In particular all di�eren-
tial identities (as equations of motion) can be used freely in the causal formulation,
whereas this is not the case in the o�-shell functional (euclidean) approach. For
the (m,s) free �elds one may take any of the many possibilities in (8) independent
of whether the �eld results from a classical Lagrangian (in which case its covariant
transformation follows from the Euler equation of motions) or not. But since for
given (m,s) there always exists a Lagrangian \�eld coordinatization" in terms of
which one may rewrite the given interaction W; one does not loose anything if one

11This is not necessarily so in other (e.g. functional integral) formulations, where the connection with
operator aspects of QT may get lost (even the introduction of cut-o�s or regularizations is no assurance
for maintaining it).
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starts from Lagrangians. The main bene�t of the causal perturbation viewpoint lies
in the fact that one liberates oneself from the moral obligation to repair something
which came by quantization from classical theory. Instead the main question is how,
by using the terms in the formal power series expansion, can I obtain something
which is well de�ned in Fockspace, ful�lls causality and unitarity requirements, and
has the right to be called time-ordered product of (the well-de�ned) W 0s? The last
statement can be made more precise by saying it should coalesce with the naive
time-ordered product of W 0s if one smeares them with test functions which have
non-coalescent supports. So renormalization in the causal approach just amounts
to an (Hahn-Banach-like) extension of operator-valued distributions from the sub-
space of test functions with this restriction to all test funtions. In addition one has
to reparametrize the theory in terms of physical masses, charges and couplings, and
use a �eld normalization which harmonizes with the asymptotic scattering inter-
pretation. Since there was no classical (bare) particle picture from quantization in
this approach, there is also nothing to be repaired by dumping in�nities. Hence the
causal approach is �nite, as is the Schwinger point-split methods, albeit much easier
to handle than the latter. For dimW � 4 the procedure works in terms of obtaining
a deformation theory with �nitely many masses, charges and coupling parameters.
To prove that this extension idea works in an inductive manner is not easy and the
explanation of the necessary technical steps would throw this conceptually oriented
presentation out of balance.

The above formal counting argument, if taken serious as a de�nition of renormaliz-
ability, would rule out all massive higher spin s � 1 �elds as candidates to be used for
interaction polynomials W since there are no intertwiners from the Wigner particle to
covariant local representations  with dim < 2. For example a massive s = 1 object
in the vectormeson description has operator dimension dimA� = 2 (the use of di�erent
intertwiners does not improve this increase of quantum versus classical dimension), so
that any trilinear interaction involving A� (and lower spin) has dimW � 5: Fortunately
this barrier against renormalizability created by Wick-polynomials of free �elds involving
s � 1 has an interesting loophole, namely it can be undermined by a \cohomological
trick" which consists in the following observation. One is asked to �nd a cohomological
representation of the e.g. (m; s = 1) physical Wigner space:

HWigner =
ker s

im s
; s2 = 0 (30)

Here s acts on Hext and the Poincar�e group is still covariantly represented on Hext (the
pseudo-unitary nature of the boost representors however turns out to be unavoidable).
The transversality of the covariant inner product of the vectorpotential (which was the
origin of dimA� = 2 instead of the classical dimension 1) only emerges in the cohomological
descend from Hext to HWigner: The answer to the question why a cohomological extension
and not another one which reduces the dimension to the classical value, lies in the hope
that cohomological structures tend to be more stable under perturbative deformations. In
other words one expects a better chance to return to the the physical space at the end of
the perturbative calculations, in fact one expects the physical space to be the cohomology
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space. The simplest cohomological extension of the Wigner wave function space which
allows a nilpotent operation s with s2 = 0; such that the physical transversality condition
p�A�(p) = 0 follows from the application of s; needs besides two scalar ghosts wave
functions ! and �! another scalar ghost �eld ' (often called the St�uckelberg �eld):

(sA�)(p) = p�!(p) (31)

(s!)(p) = 0

(s�!)(p) = p�A�(p)� im'(p)
(s')(p) = �im!(p)

One immediately realizes that s2 = 0 and that s(�) = 0 enforces the vanishing of ! and
relates ' to p�A�: At this point there is no grading in the formalism, i.e. the ! and ' are
simply ungraded wave functions. However the functorial transition from Wigner theory
to QFT in Fock space requires the introduction of a grading with deg ! = 1;deg �! = �1;
and degA� = 0; with s transferring degree 1. The reason is that only with this grading
assignment [27] the s allows a natural tensor extension to multiparticle spaces with stable
nilpotency,

s(a
 b) = sa
 b+ (�1)degaa
 sb (32)

which insures the commutativity of the Wigner/Fock cohomological ascend and descend:

Hext
#
!Hext

#
(33)

HWig ! H
where the calligraphic notation stands for the bosonic Fockspace and its graded extension.

This suggests to view the Fock space version � of s as the image of a (pseudo) Weyl
functor � as � = �(s) and to write the � in the spirit of a formal Noether symmetry charge
Q

Q =
Z
(@�A

�(x) +ma�(x))
 !
@ 0!(x)d

3x = Qy (34)

The experienced reader will easily recognize that we arived at a special version of the
BRS formalism [24] which which remains unchanged by interactions [25].

The Fock space version of s yields an object � of a di�erential algebra with �2 = 0
which changes the Z-grading by one unit and acts on vectors and operators inHext similar
to a global Noether charge:

�A = i [Q;A] = �A � i
n
QA� (�1)degAAQ

o
(35)

Q in Hext; Q2 = 0

Note that the nilpotency together with the formal hermiticity Q = Qyprevents a posi-
tive inner product in *-representation of such algebras. It is costumary (and helpful for
mathematical controll) to work with two inner products, one positive de�nite in order to
stay with the mathematics of operators in Hilbert spaces, and a Krein operator � which
is used to de�ne another inde�nite one as well as (pseudo)hermiticity. For many oper-
ators the two notions coalesce (they commute with Q); e.g. for all Poicar�e generators
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except Lorentz-boosts. In order to introduce interactions, one now uses the extended
formalism in the same way as at the beginning of this section. For an interaction between
vectormesons (for simplicity without additional matter) one may start with a trilinear
expression (fabc are independent couplings)

WA = fabc : Aa�Ab�@
�A�

c : (36)

which in the extended space has dimW = 4: The important question to be answered
now is: what is the criterion which selects the physical operators in H in every order
of perturbation theory ? Obviously they should commute with Q or rather the physical
projection of the commutator should vanish. In addition to �nding local operators with
this property, one is interested in the S-matrix for the scattering of the massive particles
which is the adiabatic limit of S(g) for g(x) � const: = g: A su�cient condition on the
operator-valued functional S(g) which guaranties this property is that S(g) commutes
with Q up to surface terms in g which are localized in the collar (24). For the W and
their time-ordered products which appear as integrands in these relations this means the
validity of the following divergence equations:

[Q;W (x)] = i@x�W
�
1 (x) (37)

[Q;T (W (x1):::W (xn))] = i
nX
l=1

@xl� T (W (x1):::W
�
1 (xl):::W (xn))

The W1 must be constructed in the process of checking these relations. These equations
where introduces by [26] and called \operator gauge invariance". Whereas we will use
these divergence relation, we will not follow this terminology because it creates the er-
ronous impression that a QFT involving massive vectormesons has to rely on a gauge
principle in addition to renormalizability and the cohomological return to physics. It
turns out that the to the contrary of what happens with low spin s<1, the renormaliza-
tion+cohomological descend requirement (the latter having no counterpart for low spin)
are in fact so stronly restrictive, that not only the masses ase forced to be equal and
the couplings in (36) have to ful�ll the Jacobi identity known from Lie-algebra structure,
but all other couplings, including the quadrilinear couplings induced from the divergence
equations, are such that modulo renormalization terms they follow the pattern of classical
gauge group theory, even though the group theory is not required by physical symmetries.
However the relation to the di�erential-geometric gauge structure is the opposite from
that in the standard literature. Whereas classical gauge principles, which select among
the many polynomial couplings (increasing number with increasing spin) involving vector
�elds those which nature (classical e.m.) prefers, usually enter QFT via quantization,
the LQP approach produces a unique interaction between massive vectormesons in the
way sketched before. In particular one obtains the inverse of the 't Hooft renormalization
statement namely the zero mass (semi)classical limit of the unique perturbatively renor-
malizable massive vectormeson theory is a classical gauge theory. Without going into
more details [28] we will collect the important results of the above causal perturbation
approach

� The masses of the vectormesons are equal and the coupling among vectormesons
and ghosts is determined by one coupling strength. The theory would show incon-
sistencies in higher than �rst order without the introduction of additional physical
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degrees of freedom. The minimal (and perhaps only) possibility are (Higgs) scalars
but without the usual vacuum expectations which go with the name of \Higgs mech-
anism".

� As expected from Schwinger's screening ideas [29], The physical F��- �elds (those
with commute with Q) have vanishing Maxwell charge and this would continue to
be true in the presence of additional spinor matter.

� The uniqueness of the renormalizable spin=1 part follows already from the speci�-
cation of the physical particle content [28]; only the coupling between s<1 matter
introduces the usual additional parameters.

Comments: The results show that although the gauge point of view which requires
the Higgs-Kibble mechanism (\fattening of photons by eating Goldstone Bosons") is not
incorrect, there is nothing physical-intrinsic about it; it is a mnemotechnical device which
allows to di�erential-geometrically inclined physicist a rapid access to the perturbative
results. It has the disadvantage that the necessity of the presence of additional physical
degrees of freedom for reasons of consistency within renormalized perturbation theory
(the Higgs degree of freedom) is not as convincing as in the present approach, in fact
one usually puts the Higgs �elds into the Lagrangian from the beginning. The present
method leads to the same physical correlation functions but with a slightly di�erent con-
ceptual ring. The ghosts are more clearly recognizable as kinematical (via extension of
HWig) auxiliary unphysical objects whereas the dynamical presence of additional physical
degrees of freedom (the alias Higgs �eld, but without vacuum condensates) for matters of
perturbative consistency becomes more manifest and the observable particle content re-
ceives greater emphasis. Classical di�erential geometric concepts as the gauge idea are put
into their proper place: they appear via Bohr's correspondence principle on the classical
side as a result of the uniqueness of the implementation of perturbative renormalizability.
Since gauge theories play a very prominents role, this point of view is not without interest.
In fact it is close to the original viewpoint about massive vectormesons by Sakurai. The
idea of the BRS like cohomological extension certainly takes care of those cases covered
also by the gauge quantization and the Higgs-Kibble mechanism, but it may have a larger
range of applicability to spin beyond one. The present method also suggests to consider
the conceptually simpler (validity of scattering theory) massive case and approach the
zero mass situation with its infrared problems as a limiting case, i.e. the inverse of the
Higgs approach. Since one knows that the physical charge carrying �elds in Maxwell-like
theories have a noncompact extension [13](spacelike cones with a semiin�nite string-like
core), the physical massive �elds cannot converge without the necessity of a prior modi�-
cation. The attractive feature of such an idea is that such a modi�cation becomes related
to the decoupling of the Higgs particle.

There is a special feature of abelian massive s = 1 theories with additional spinor
matter which is absent in the nonabelian case. Namely in addition to the massive theory
constructed in tha analogous way with all matter �elds being renormalizable, there ex-
ists also \massive QED" for which the  -�eld cannot be simultaneously renormalizable
(polynomially bounded correlation function with a dominating degree independent on
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perturbative order) and physical i.e. commuting with Q: This massive QED has no Higgs
degree of freedom which is apparantly necessary in order to have both properties.

A direct causal perturbative approach to s=1 massless theories was recently formulated
by Duetsch and Fredenhagen [22]. The necessity to avoid the (physically controversial)
adiabatic limit requires the use of the full nonlinear BRS structure and to confront a
situation in which (unlike as in the above case with bilinear Q) the position of the physical
cohomology space keeps changing with the perturbative order. Lacking a �xed physical
reference space (e.g. an incoming scattering space) the physical space only appears at the
end as a representation space of a perturbative observable *-algebra. This construction
was carried out in QED, but there is little doubt that with more work it also works for
the nonabelian case.

We do of course not claim that the BRS-like cohomological construction for the preser-
vation of renormalizability in the face of higher spin advocated in these notes is less mys-
terious then the quantization gauge principle. It remains essentially magical why and how
the cohomological trick produces local physical �elds which at the end do not seem to be
di�erent from those obtained with the standard causal perturbation method, except that
the latter cannot reconcile spin=1 with renormalizability. However despite its present
magical touch, it is a bit closer to the spirit of LQP and perhaps less so to quantization
and di�erential geometry. It keeps the attention on the unsolved infrared problems12 and
it exposes the weird role of ghosts analogous to chemical catalyzers: they are introduces
into the original physical problem in order to improve the W -powercounting and they
are removed at the end without any visible trace. The only di�erence to more standard
renormalizable couplings is the participation of s = 1 vectormesons in the interaction
vertex.

This situation cries out for a deeper understanding without ghosts. From the more
than 30 years struggle of physicist with this conceptual problem one should conclude
that if there exists a formulation without ghosts in intermediate steps, than it cannot be
anywhere near to the present formulation. In fact the naturally ghostfree object is the S-
matrix S which in contradistiction to the above transition operator of the causal approach
S(g) is on-shell. If one could �nd an iteration scheme directly for S which in intermediate
steps avoids o�-shell extrapolations, then this would be automatically ghostfree in every
order. It would be a multivariable dispersion theoretical approach based on unitarity and
crossing symmetry. The lowest order input consists of the on-shell tree diagrams (di�erent
from the o�-shell W ): Such an approach has only been carried out for d=1+1 factorizing
S-matrices where there exists a partial classi�cation of admissable S-matrices even without
the use of perturbation theory: the famous bootstrap-formfactor program of factorizable
models. Outside of such restrictive situations a perturbative on-shell approach for S does
not yet exist. The idea would be to use the perturbative ghostfree S-matrix in order to
construct polarization free generators of wedge algebras (PFG's). These are operators
which are similar to free �elds in that their one time application onto the vacuum is a
one-particle vector without admixtures of particle/antiparticle polarization clouds (see
last section). In the mentioned special case of factorizable models they are uniquely

12From a physical point of view the estetical lure of di�erential geometry of �bre bundles in gauge
theories is a bit dangerous, because it takes one away from the harder but physically more important
infrared phenomena of the LQP of s=1..
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determined (see last section) by the S-matrix via modular theory. Having generated
the wedge algebras from the S-matrix, one can than use modular ideas to de�ne and
investigate a chiral conformal light ray theoy which is a canonical way associated with the
wedge algebra. Although many of these statements sound futuristic, I think that this is the
only way to avoid ghosts. One has to bypass the use of a Wick-basis for the description of
physical ghostfree operators as linear combinations of composite �elds. Such a basis is not
intrinsic and inevitably brings in the necessity of ghost �eld contributions. The approach
dealing with algebras is the only basis free intrinsic approach to the problem. The di�culty
is the conversion of these rather abstract sounding ideas into concrete computational
scheme. The perturbative version of that only very incompletely understood scheme for
low-spin renormalizable models which did not need ghosts in the old treatment should
just reproduce the known renormalized results. Although our main present motivation
for going to such extremes was to have a ghostfree renormalizable formalism for higher
spin s � 1; the interest in it would by far exceed the present motivation. The idea of
circumvention of the naive power counting on W 0s in terms of physical �elds which rules
out s � 1 by a radical reformulation of pertubation theory which directly leads to �nite
parametic physical theories for s � 1 is worth any e�ort since it may turn out to be the
tip of an iceberg.

We will return to this issue of generation of wedge algebras by modular methods in a
more general context in the last section.

4 Modular Origin of Geometric and Hidden Symmetries

From the wedge localization in section 2 we have seen that the modular objects associated
to a standard (cyclic and separating vector 
) pair (A(O);
) has, under certain circum-
stances, a geometrical signi�cance, e.g. for the wedge in a massive (Poincar�e-invariant)
theory, or the double cone in a massless (conformally-invariant) theory. This suggests the
question whether all space-time symmetries (di�eomorphisms) can be viewed as having a
modular algebraic origin, i.e. if they can be thaught of as originating from the relative po-
sitions of individual algebras in a net. This would elevate spacetime from its role of merely
indexing individual algebras in the net, to a structure which is on the one hand more inti-
mately related with the physical aspects of LQP, and on the other hand emphasizes already
structural properties whose understanding seems to be a prerequisite for the formulation of
the elusive \Quantum Gravity". It turns out that in chiral conformal theories the Moebius
group, together with the net on which it acts, can be constructed from only two properly
positioned algebras which give rise to two \halfsided modular inclusions" (see below). In
fact mathematically the world of chiral conformal nets is equivalent with the classi�cation
of all \standard halfsided modular inclusions". In this conformal setting the Haag duality
is automatic and there is no spontaneous symmetry breaking. The analogue in the higher
dimensional case is to assume wedge duality (always achievable, as previously mentioned,
by maximalization) and to prove the equality of the modular group with the Lorentz-boost
without assuming (as Bisognano and Wichmann did) that the algebras are generated by
local �elds. Presently this cannot be done without making additional assumptions e. i.
assumptions which cannot be expressed in terms of modular positions only, but are sug-
gested by space-time geometry [58]. Amazingly one again succeeds to build up the whole
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Poincar�e group as well as the net from a small �nite number of algebras in appropriate
modular positions (using modular inclusions and modular intersections).

Since modular groups exist for each space time region one may ask about their physical
interpretation. Let us start with posing the opposite question in a context where there
are geometric candidates without obvious modular origin. In chiral conformal theories
one has a rich supply of di�eomorphisms of the circle which have been around since
the beginning of the 70ies: The way these mathematical structures were discovered by
physicist is somewhat bizarre and confusing. It is interesting to take a brief look at
history by permitting a short interlude, before presenting our modular interpretation.

Apart from some early work of mathematicians (Gelfand, Fuchs) on di�eomorphisms
of S1 and their associated Witt algebra (in�nitesimal di�eomorphisms without the central
extension), the �rst observation by physicist of this Witt algebra structure was made in
the Veneziano dual S-matrix model by Virasoro [30]. At that time it was realized that
the on-shell dual S-matrix model allowed for a nice o�-shell presentation in terms of a
massless free �eld theory in d=1+1. Parallel to this, but without any interrelation, there
were detailed �eld theoretic investigations of the representation of conformal generators
in terms of the energy momentum tensor T and their action e.g. on the Thirring �elds
[33] and the problem (formulated in Lowenstein's thesis and going back to Greenberg) of
classifying so-called \Lie-�elds" [34], the predecessors of what in the rediscovered version
25 years later were called W-�elds. The next contribution came again from the dual
model calculations and consisted in the correct computation of the central term (for free
massless fermions) which was previously overlooked [35]. My own contribution was the
computation in 1973 of the general structure of the T -T commutation relation in chiral
conformal theories as a structural consequence of translational covariance and causality
which I presented together with other results at the January 1974 V Brazilian Symposium
in Rio de janeiro[36]. Apart from not knowing the afore-mentioned free fermion results,
my motivation was quite di�erent and consisted in the search for nontrivial \Lie �eld"
of which the energy momentum tensor was the �rst illustration13. In the same year the
conformal block decomposition was discovered (called decomposition of local �elds into
nonlocal components) which solved the Einstein \causality paradox" by noticing [37] that
local �elds were irreducible only with respect to a �nite neighbourhood of the identiy but
not with respect to the center of the covering of SL(2; R) � SL(2; R): The illustration
of this decomposition theory by nontrivial models (minimal models) beyond exponential
Bose �elds had to wait for another 10 years [38]. By that time the increased knowledge
by physicist about in�nite dimensional Lie-algebras (a�ne algebras, di�eomorphism alge-
bras) was leaving its marks on low-dimensional QFT. This had besides many gains also one
disadvantage because the use of those in�nite dimensional Lie-algebras seperated these
low-dimensional QFT sharply from higher dimensional standard type of QFT to which
such structures are not available. The modular point of view which I will present in the
sequel admits a higher dimensional analogue and incorporates conformal and factorizing

13The reason why many �eld theoretical results on low dimensional �eld theories were only published
in conference proceedings was sociological and not scienti�c. Low-dimensional �eld theory for the bene�t
of higher dimensional S-matrix models was considered of greater physical relevance than its use as a
theoretical laboratory for the test of general ideas on interactions, a point of view which was later uphold
by string theorist.
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theories back into the framework of general QFT.
Returning to the modular issue, let us look at a special subgroup whose Lie-algebra is

isomorphic to that of the Moebius group. Its action on the circle is

z !
s
a+ bz2

c+ dz2
;

 
a b
c d

!
2 SU(1; 1) (38)

where the cuts connecting both poles and zeros are chosen outside the unit circle. In
fact this de�nes a two-fold covering of the Moebius group. Given an interval, its square
root (inverse image of z ! z2) consists of two disjoint intervals which are separately left
invariant under the above transformation group. The obvious conjecture is of course that
(as for the case of a single interval) the covering dilation subgroup is the modular group of
the pair (A(I1[I2);
):But this cannot be, because this action restricted to one interval is
the same as that of the dilation in the Moebius group but this, according to a theorem by
Takesaki [44] this is not possible if the vacuum state ful�lls the Reeh-Schlieder property of
being cyclic and separating for only one interval. Since it never happens that two disjoint
square root intervals are contained in one interval of another such pair, there will be no
contradiction with the lack of the Reeh-Schlieder property for one interval. A (quasifree)
state on the Weyl algebra (which we take as an illustration of a simple conformal model)
which is invariant under the above covering transformation [32] is easily found in terms
its two-point function which belongs to the following scalar product:

hf; gi =
Z

f(x)g(y)

[(x� y) (1 + xy) + i"]2
(1 + x2)(1 + y2)dxdy (39)

where we used the linear presentation instead of the circular one (SL(2; R) instead of
SU(1; 1)). This is to be compared with the standard inner product belonging to the
vacuum representation

hf; gi0 =
Z

f(x)g(y)

(x� y + i0)2
dxdy (40)

One easily checks that this inner product belongs to the same symplectic form as the
standard one namely

!(f; g) = Im hf; gi =
Z
fg0dx = !0(f; g) = Im hf; gi0 (41)

As for the standard case the criterium for a Fock representation is that the inner product
can be represented in terms of ! with the help of a complex structure I0; I20 = �1; with

hf; gi0 = !(I0f; g) = �!(f; I0g) (42)

(I0f) (x) �
Z �1

(x� y + i")
f(y)dy

the analogous statement holds for hf; gi with I0 replaced by I

I = ��1 � I0 � � (43)

(�f) (x) �
Z
f(
x

2
+ sign(x)

s
1 +

�
x

2

�2
)

h�f;�gi0 = hf; gi
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The changed inner product de�nes a changed quasifree state on the Weyl algebra. The
proof that the covering dilation

U(�) = ��1 � V (�) � � (44)

(V (�)f)(x) = f(�x)

is indeed the modular group for the algebra of the disjoint intervals [�1;�1] [ [0; 1] in
this quasifree state, we only have to check the appropriate KMS condition. From:

lim
�"2�

< U(�)f; g >1=lim
�"2�

< V (�) � �(f);�(g) >= h�(g);�(f)i = (45)

= hg; fi1
one sees that the U(�) ful�ls the KMS condition if both f and g are from one of the two
intervals since � transforms the space of [0; 1] localized functions into [�1;�1] localized
ones and vice versa.

This situation is very interesting, since although the chiral di�eomorphisms allows no
geometric generalization to di�eomorphisms in higher dimensional LQP, the disconnected
(and multiply connected) algebras have modular groups which act in a non-pointlike
manner inside these disconnected local regions14. This is what we mean by \hidden
symmetries". There is another closely related aspect which strengthens the physical
relevance of disconnected regions. It was well-known for some time [1] that such situations
break Haag duality i.e.

A((I1 [ I2)0) � A(I1 [ I2)0
if the net A has nontrivial superselection rules. For models resulting from the maximal
extension of the abelian current algebra the mechanism which causes this obstruction
against Haag duality has been completely analyzed in [46]. Very recently this has been
understood in complete generality (for rational theories i.e. those with a �nite number of
sectors) in [45] by using very powerful methods of subfactor theory. In the context of the
above use of \geometric states", one would conjecture that their lack of cyclicity leads
to a Jones projector which contains the information about the additional superselection
sectors, but this remains to be seen.

In the following we will look at two more illustrations of modular constructions.
As a reference wedge we may take the wedgeW (l1; l2) spanned by the light like vectors

l1;2 = e� = (1; 0; 0;�1); in which case we call z,t the longitudinal and x,y the transversal
coordinates (the light like characterization of wedges is convenient for the following).
This situation suggests to decompose the Poincar�e group generators into longitudinal,
transversal and mixed generators

P� =
1p
2
(P0 � Pz); M0z; M12; Pi; G

(�)
i � 1p

2
(Mi0 �Miz); i = 1; 2 (46)

The generators G
(�)
i are precisely the \translational" pieces of the euclidean stability

groups E(�)(2) of the two light vectors e� which appeared in Wigner's representation

14Observable algebras in disconnected regions have also played a role as indicators of the presence of
charge sectors [31][43][46].
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theory for zero mass particles. More recently these \translations" inside the homoge-
nous Lorentz group appeared in the structural analysis of \Modular Intersections" of two
wedges [39][40]. Apart from the absence of the positive spectrum condition, its role is anal-
ogous to that of the true translations P� with respect to halfsided \Modular Inclusions"
[40].

As one reads o� from the commutation relations, Pi; G
(+)
i ; P� have the interpretation

of a central extension of a transversal \Galilei group"15 with the two \translations" G
(+)
i

representing the Galilei generators, P+ the central \mass" and P� the \nonrelativistic

Hamiltonian". The longitudinal boost M0z scales the Galilei generators G(+)
i and the

\mass" P+: Geometrically the G(+)
i change the standard wedge (it tilts the logitudinal

plane) and the corresponding �nite transformations generate a family of wedges whose
envelope is the halfspace x� � 0: The Galilei group together with the boost M0z generate
an 8-parametric subgroup G(+)(8) inside the 10-parametric Poincar�e group16:

G(+)(8) : P�; M0z; M12; Pi; G
(+)
i (47)

The modular re
ection J transforms this group into an isomorphic G(�)(8):
The Galileian group is usually introduced as a \contraction" of the Poincar�e group.

But as the present discussion, the wedge (or rather as in the following remarks, two wedges
in a special modular intersection position) shows , it also appears as a genuine subgroup
of the Poincar�e group. The latter fact seems to be less known.

All observation have interesting generalizations to the conformal group in massless
theories in which case the associated natural space-time region is the double cone.

This subgroup G(+)(8) is intimately related to the notion of modular intersection see
[39][40]. Let l1; l2 and l3 be 3 linear independent light like vectors and consider two
wedges W (l1; l2);W (l1; l3) with �12 and �13 the associated Lorentz boosts. As a result
of this common l1 the algebras N = A(W (l1; l2));M = A(W (l1; l3)) have a modular
intersection with respect to the vector 
: Then (N \M) �M;
) is a so-called modular
inclusion [40][41]. IdentifyingW (l1; l2) with the above standard wedge, we notice that the
longitudinal generators P�; M0z are related to the inclusion of the standard wedge algebra

into the full algebra B(H); whereas the Galilei generators G(+)
i are the \translational" part

of the stability group of the common light vector l1 (i.e. of the Wigner light-like little
group).

To simplify the situation let us take d=1+2 with G(4); in which case there is only
one Galilei generator G: In addition to the \visible" geometric subgroup of the Poincar�e
group, the modular theory produces a \hidden" symmetry transformation UN\M;M(a)
which belongs to a region which is a intersection of two wedges:

UN\M;M(a) := exp(
ia

2�
(ln�N\M � ln�M)) (48)

15This G's are only Galileian in the transverse sense; they tilt the wedge so that one of the light like
directions is maintained but the longitudinal plane changes.

16The Galileian group is usually introduced as a \contraction" of the Poicar�e group. But as the present
discussion about the wedge (or rather the following remarks about two wedges in a special modular
intersection position) shows , it also appears as a genuine subgroup of the Poincare group. The latter
fact seems to be less known.
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is a unitary group with positive generator. Moreover one has:

UN_M;M(1� e�2�t) = �it
M��it

N_M (49)

UN\M;M(e�2�ta) = �it
MUN\M;M(a)��it

M (50)

AdUN\M;M(�1)(M)=N \M (51)

and
JMUN_M;M(a)JM = UN_M;M(�a): (52)

Similar results hold for N replacingM. Due to the intersection property we �nally have
the commutation relation

[UN_M;M(a); UN_M;N (b)] = 0 (53)

which enables one to de�ne the unitary group

UN_M(a) = UN_M;M(�a)UN_M;N (a): (54)

This latter group can be rewritten as

UN_M(1 � e�2�t) = �it
M��it

N (55)

and thereby recognized to be in our physical application the 1-parameter Galilean sub-
group G (47) in the above remarks.

Now we notice that for a < 0

AdUN_M;M(a)(M) = Ad�
�i( 1

2�
ln�a)

M UN_M;M(�1)(M) (56)

= Ad�
�i( 1

2�
ln�a)

M (N \M)

Because �it
M acts geometrically as Lorentz boosts, we have full knowledge of the geomet-

rical action of UN_M;M(a) onM for a < 0: For a > 0 we notice

AdUN_M;M(1)(M) = AdUN_M;M(2)(M\N ) = AdJMJN_M(M\N ) (57)

= AdJM(M0 [N 0)

and again, due to the geometrical action of JM we have a geometrical action on M for
a > 0:

AdUN\M;M(a)(M)=Ad�
�i( 1

2�
ln a)

M JM(M0 [N 0) (58)

From these observations and with UN\M;M(1� e�2�t) = �it
M��it

M\N we get for t < 0 :

Ad�it
N\M(M) = Ad�

(� i

2�
ln(e�2�t�1))

M JM(M0 [N 0) (59)

and in case of t > 0 :

Ad�it
N\M(M) = Ad�

(� i

2�
ln(1�e�2�t))

M (N \M): (60)

Similar results hold for N replacingM . With the same methods we get:
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Ad�it
N\M�is

N (M) = Ad�it
N\M�is

N�
�is
M (M) (61)

= Ad�it
N\MUM\N (e

�2�s � 1)(M)

where UN\M is the 1-parameter Lorentz subgroup (the Galilei subgroup G in (47) asso-
ciated with the modular intersection. This gives:

Ad�it
N\M�is

N (M) = AdUM\N (e
�2�t(e�2�s � 1))�it

N\M(M) (62)

= AdUM\N (e
�2�t(e�2�s � 1))�

� 1

2�
ln(1�e�2�t)

M (M\N );

if t > 0 and similar for t < 0.Therefore we get a geometrical action of �it
N\M on

Ad�is
N (M):

A look at the proof shows that the essential ingredients are the special commutation
relations. Due to

�it
M\N = �it

MUN\M;M(1 � e�2�t) = �it
MJMUN\M;M(e�2�t � 1)JM (63)

and the well established geometrical action of �it
M and JM; it is enough to consider the

action of UN\M;M or similarly UN\M;N : For these groups we easily get

AdUN\M;M(a)�is
N�

�it
M (N ) = Ad�is

N�
it
MUN\M;M(e�2�(s+t)a)(N ) (64)

and due to the above remarks the geometrical action of �it
N\M on the algebras of the type

Ad�is
N�

�it
M (M).

Now, the lightlike translations Utransl1 (a) in l1 direction ful�ll the positive spectrum
condition and map N \M into itself for a > 0: Therefore we have the Borchers commu-
tator relations with �it

M\N and get

Ad�it
N_MUtransl1(a)(M) = AdUtransl1(e

�2�ta)�it
N_M(M) (65)

The additivity of the net tells us that taking unions of the algebra corresponds to the
causal unions of localization regions. The assumed duality allows us to pass to causal
complements and thereby to intersections of the underlying localization regions. Therefore
the algebraic properties above transfer to unions, causal complements and intersections
of regions. We �nally get [32]:

Theorem 1 Let R be the set of regions in R1;2 containing the wedges W [l1; l2];
W [l1; l3] and which is closed under:
a) Lorentz boosting with �12(t);�13(s);
b) intersection
c) (causal) union
d) translation in l1 direction
e) causal complement
Then �it

W [l1;l2]\W [l1;l3]
maps sets in R onto sets in R in a well computable way and

extends the subgroup (47) by a \hidden symmetry".
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Similarly we can look at a (1+3)-dim. quantum �eld theory. Then we get the same
results as above for the modular theory to the region W [l1; l2]\W [l1; l3]\W [l1; l4]; where
li are 4 linear independent lightlike vectors inR1;3:Moreover in this case the set R contain
W [l1; l2];W [l1; l3] and W [l1; l4] and is closed under boosting with �12(t);�13(s);�14(r):

The arguments are based on the Borchers commutation relation and modular inter-
section theory and apply also if we replace modular intersection by modular inclusion.
One recovers in this way easily the results of Borchers and Yngvason, [42] who found an
illustration of hidden symmetries in thermal chiral conformal QFT ( Note that in ther-
mal situations we have no simple geometrical interpretation for the commutants as the
algebra to causal complements. Therefore in these cases we have to drop e) in the above
theorem.).

The �nal upshot of this section is to show that there might be a well de�ned meaning
of a geometrical action of modular groups by restricting on certain subsystems.

For conformal LQP in any dimension, one obtains a generalization of the previous
situation. In particular the modular group with respect to the vacuum of the double cone
algebra is geometric [1]. Consider now a double cone algebra A(O) generated by a free
massless �eld (for s=0 take the infrared convergent derivative). Then according to the
previous remark, the modular objects of (A(O);
)m=0 are well-known . In particular the
modular group is a one parametric subgroup of the proper conformal group. The massive
double cone algebra together with the (wrong) massless vacuum has the same modular
group �t however its action on smaller massive subalgebras inside the original one is not
describable in terms of the previous subgroup. In fact the geometrical aspect of the action
is wrecked by the breakdown of Huygens principle, which leads to a nonlocal reshu�ing
inside O but still is local in the sense of keeping the inside and its causal complement
apart. This mechanism can be shown to lead to a pseudo-di�erential operator for the
in�nitesimal generator of �t whose's highest term still agrees with conformal zero mass
di�erential operator. We are however interested in the modular group of (A(O);
)m with
the massive vacuum which is di�erent from the that of the wrong vacuum by a Connes
cocycle. We believe that this modular cocycle will not wreck the pseudo-di�erential
nature and that as a consequence the geometric nature of the conformal situation will still
be asymptotically true near the horizon of the double cone, however we were presently
not able to show this. This modular aspect of the horizon could be linked with what
people think should be the quantum version of the Bekenstein-Hawking classical entropy
considerations, in particular the ideas about \holographic properties". To be more precise,
we expect that even for double cones in Minkowski space (i.e. without a classical Killing
vector as for black holes) there will be a �nite relative quantum entropy as long as one
allows for a \collar" between the double cone and its spacelike complement and that with
vanishing size of this collar these entropies will diverge in such a way that ratios (e.g. for
di�erently sized double cones) will stay �nite and be determined by the conformal limits.
In this way one could hope to prove that e.g. the speculations about entropy, holography
and the occurrence of the central terms in the energy momentum commutation relations
are nonperturbative generic properties of ordinary LQP [6]. For the thermal aspects this
is of course well known..

The modular group structure also promise to clarify some points concerning the physics
of the Wightman domain properties [10]. In fact these groups act linearly on the "�eld
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space" i. e. the space generated by applying a local �eld on the vacuum. Therefore this
space, which is highly reducible under the Poincar�e group, may according to a conjecture
of Fredenhagen (based on the results in [47]) in fact carry an irreducible representation
of the union of all modular groups (an in�nite dimensional group Gmod which contains
in particular all local spacetime symmetries). The equivalence of �elds with carriers of
irreducible representations of an universal Gmod would add a signi�cant conceptual element
to LQP and give the notion of quantum �elds a deep role which goes much beyond that of
being simply generators of local algebras. Our arguments suggest that in chiral conformal
QFT Gmod includes all local di�eomorphism.

A related group theoretical approach to LQP which uses both modular groups and
modular involutions in order to formulate a new selection principle for states ("The Con-
dition of Geometric Modular Action") was proposed in [48]. In addition to the modular
groups which leave the de�ning local algebras invariant, these authors obtain a discrete
group (from the conjugations) which transform the (spacetime) index set. All these true
QFT properties remain invisible in any quantization approach. Combining modular the-
ory with scattering theory, the actual J together with the incoming J in can be used to
obtain a new framework for nonperturbative interactions [10]. This last topic will be
presented in the following section; more details can be found in a separate paper together
with H.-W. Wiesbrock [55].

5 Constructive Modular Approach to Interactions

The starting observation for relating the modular structure of LQP nets to interactions
is that the latter is solely contained in those anti-unitary re
ections of the full Poincar�e
group which contain the time reversal. The continuous part (as well as those re
ections
which do not involve time) is, thanks to the fact that scattering (Haag-Ruelle, LSZ) theory
is a consequence of LQP, the same for the free incoming particles as for the interacting
net [46]:

U(�; a) = U(�; a)in (66)

J = SscJ
in

ST = J�
1

2

STA
 = A�
 (67)

Here S is the scattering matrix. The subscript T is used in order to distinguish the
Tomita, operator from the scattering matrix and the J is the Tomita re
ection for inter-
acting wedge algebras whereas J in refers to the algebra generated by the incoming free
�eld. The standard point of view, where the interaction is introduced in terms of a pair of
Hamiltonians (Lagrangians) H;H0; accounts for the interaction in another (more pertur-
bative) way which uses di�erent states. It is well-known that this standard perturbative
approach cannot be directly formulated in in�nite space because translational invariance
together with invariance of the vacuum is in contradiction with the existence of another
hamiltonian H once a bilinear H0 has been speci�ed (Haag's theorem). In perturbation
theory this is not a series obstacle; it is formally taken care of by leaving out the pure
vacuum Feynman graphs or more carefully by using the Feynman-Gell-Mann formula in
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a quantization box and taking the thermodynamic limit. The modular approach does not
have this problem.

The most promising candidates for a modular construction are obviously massive the-
ories with a known S-Matrix i.e. models which permit a bootstrap construction of S
on its own, without using the o�-shell �elds or local operators. For such S-matrix inte-
grable models, there already exists a constructive formfactor program which goes back to
Karowski and Weisz and has been signi�cantly extended by Smirnov [56][57]. It uses sug-
gestive prescriptions and assumptions within the dispersion theoretical LSZ framework.

Since the bulk of the LSZ formalism is a consequence of the more basic algebraic QFT,
it is reasonable to ask if our modular localization framework is capable to shed additional
light on this program in particular whether it can be understood as a special (analytically
simple) case of a more general nonperturbative construction without the restriction to
d=1+1 factorizing theories [10]. The crucial vehicle which carries the o�-shell modular
and thermal properties of wedge regions to on-shell crossing properties of formfactors are
very subtle polarization-free wedge generators (PFG) which we will now explain.

Let us start with a very simple-minded generalization of free �elds in d=1+1. For the
latter we use the notation:

A(x) =
1p
2�

Z
(e�ipxa(p) + h:a:)

dp

2!
(68)

=
1p
2�

Z
(e�im�sh(���)a(�) + h:a:)d�; x2 < 0

=
1p
2�

Z
C

e�im�sh(���)a(�)d�; C = R[f�i� +Rg

where in the second line we have introduced the x- and momentum- space rapidities
and specialized to the case of spacelike x, and in the third line we used the analytic
properties of the exponential factors in order to arrive at a compact and (as it will turn
out) useful contour representation. Note that the analytic continuation refers to the c-
number function, whereas the formula a(� � i�) � a�(�) is a de�nition and has nothing
to do with analytic continuations of operators17.

With this notational matter out of the way, we now write down our Ansatz

F (x) =
1p
2�

Z
C

e�im�sh(���)Z(�)d� (69)

Z(�)
 = 0; Z(�1)Z(�2) = SZ;Z(�1 � �2)Z(�2)Z(�1) (70)

Z(�1)Z
�(�2) = �(�1 � �2) + SZ;Z�(�1 � �2)Z�(�2)Z(�1)

For the moment the S
0

s are simply Lorentz-covariant (only rapidity di�erences appear)
functions which for algebraic consistency ful�l unitarity S(�) = S(��): We assume (for
simplicity) that the state space contains only one type of particle.

17Operators in QFT never possess analytic properties in x- or p-space. The notation and terminology
in conformal �eld theory is a bit confusing on this point, because although it is used for operators it really
should refer to vector states and expectation values in certain representations of the abstract operators.
The use of modular methods require more conceptual clarity than standard methods.
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A �eld operator F(x) is called \one-particle polarization free" (PF) if F(x)
 and
F�(x)
 have only one-particle components (for any one of the irreducible particle spaces
in the theory)

Obviously the above F (x) with Z(�)
 = 0 (but yet without the algebraic relations
which specialize the interactions to the relativistic counterpart of quantum mechanical
pair interactions) is the most general PF in d=1+1. The PF property is an on-shell
concept , but note that nothing is required about the nature of state vectors which are
created by several PF's. As a result of an old structural theorem of QFT, a PF is pointlike
local, if and only if it is a free �eld [54], i.e. if and only if the Fourier-components Z#(�)
ful�l the free �eld commutation relation which coalesce with those of the above Ansatz for
SZ;Z = 1 = SZ;Z�: Although interacting PF's are necessarily nonlocal, it is an interesting
question how nonlocal they must be in order not to fall under the reign of the structural
theorem. It turns out that they can be localized in wedges but any sharper localization
requirement reduces them to free �elds. In the more special context of the above Ansatz
we �nd [55]

Proposition 2 The requirement of wedge localization of a PF operator
F (f) =

R
F (x)f(x)d2x; suppf 2 W is equivalent to the Zamolodchikov-Faddeev struc-

ture of the Z-algebra. The corresponding F's cannot be localized in smaller regions i.e. the
localization of F(f) with suppf2 O � W is not in O but still uses all of W:

Before doing the necessary calculation, let us put on record two more de�nitions of a
general kind which are suggested by the proposition.

De�nition 1 We call PF's which generate the wedge algebra18

A(W ) = alg
n
F (f̂);8f suppf̂ 2 W

o

PFG or one-particle polarization free wedge generators [55].

We omitted the w for wedge in our short hand notation because on the one hand
wedges are the \smallest" regions in Minkowski space which do not have the full space
as the causal closure and possess PF's. In view of the fact that we work more frequently
in momentum space and its rapidity-parametrized mass-shell restriction (often referred
to as one-particle wave functions), we reserve the simpler notation f without hat to the
Fourier transforms.

De�nition 2 We call the improvement of localization obtained by intersecting A(W )0s
for di�erent wedges an improvement of \quantum localization" [55], whereas the standard
localization in suppf with the use of smeared out pointlike local �elds A(f) is referred to
as classical (albeit in a quantum �eld theory).

18In this letter we do not discuss the necessity to distinguish between localized von Neumann algebras
A(O) of bounded operators and polynomial algebras P(O) of a�liated unbounded operators as those
formed from products of F (f)'s and their precise relation.
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We now prove the proposition by employing the so called KMS condition for localized
algebras. This property originally arose in thermal systems in cases where the thermody-
namical limit for the in�nitely extended system cannot be described in terms of a Gibbs
formula (volume divergencies), but it later turned out to be generally valid for all systems
which result von Neumann algebras A in a cyclic and separating state vector 
 :

(
; A�t(B)
) = (
; �t+i(B)A
) (71)

where �t(B) � Ad�it(B) is the action of the modular group. Local algebras in QFT are
known to have this commutation property with respect to the vacuum state at least as
long as the localization region has a nontrivial causal complement, but they generally do
not admit a natural thermodynamic limit description in terms of a sequence of increasing
quantization boxes. For the wedge regions at hand, the localized �eld algebras are known
to have the wedge a�liated Lorentz boost as their KMS automorphism group �t.
Proof. Consider �rst the KMS property of the two-point function

hF (f1)F (f2)i =
D
F (f2�i2 )F (f1)

E
=
D
F (f�i2 )F (f�i�1 )

E
(72)

Rewritten in terms of the f's we haveZ
f1(�) �f2(�)d� =

Z
f2(� � i�) �f1(� + i�)d� (73)

which is an identity in view of the fact that the wedge support properties for the test
functions f together with their reality condition imply f(� � i�) = �f (�):

The 4-point function h1; 2; 3; 4i consists of 3 contributions, one from an intermedi-
ate vacuum state vector associated with the contraction scheme h12i h34i ; another one
from the direct intermediate two-particle contribution h14i h23iand the third one from
its exchanged (crossed) version h13i h24i : The latter is the only one which carries the
interaction in form of the S-coe�cients. In the would be KMS relation

hF (f1)F (f2)F (f3)F (f4)i =
D
F (f�2�i4 )F (f1)F (f2)F (f3)

E
(74)

f z(�) : = a:c:f j�!�+z

the vacuum terms and the direct terms interchange their role on both sides of the equation
and cancel out, whereas the crossed terms are related by analytic continuation. The
required equality for the crossed term brings in the S-matrix via the relations (70) and
yields Z Z

d�d�0S(� � �0)f2(�) �f4(�)f1(�0) �f3(�0) (75)

=
Z Z

d�d�0S(� � �0)f1(�) �f3(�)f4(�0 � 2�i) �f2(�
0)

Again using the above boundary relation for the wave functions we rewrite the last product
in the second line as �f4(�0 � i�)f2(�0 � i�) and performing a contour shift �0 ! �0 + i�;
renaming � $ �0 and �nally using the denseness of the wave functions in the Hilbert
space, we obtain the crossing relation for S

S(�) = S(��+ i�) (76)
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Note that we already omitted the subscripts on S, since the identity SZ;Z� = SZ;Z � S
follows from the two di�erent ways of calculating the crossed term, once by interchanging
the two creation operators in Z�(�3)Z�(�4) and then performing the direct contraction
and another way by interchanging Z(�2)Z

�(�3) and then being left with the vacuum
contraction. Let us look at one more KMS relation for the six-point functions of the
would be PFG's.

hF (f1)::::F (f6)i =
D
F (f2�i6 )F (f1):::F (f5)

E
(77)

This time one has many more pairings In fact ordering with respect to pair contraction
times 4-point functions one may again group the various terms in those for which the
pairing contraction is between adjacent Z 0s and those where this only can be achieved by
exchanges. The �rst group satis�es the KMS condition because of the previous veri�cation
for the 2- and 4- point functions. For the crossed contributions the wave functions say
fi and �fk: Those terms only compensate by shifting upper C-contours into lower ones
and vice versa. If S would contain poles in the physical sheet, then there are additional
contributions and the KMS property only holds if these poles occur in symmetric pairs
i.e. in a crossing symmetric fashion.

We will not pursue the fusion structure for the Z's resulting from poles beyond noting
that the particle spectrum already shows up in the fusion of the wedge localized Z(f)0s:
One of course expects agreement of the fusion structure of our PFG's with the formal
Zamolodchikov conjecture19, however a detailed discussion of fusion would go beyond the
aim of this letter and will be the subject of a separate paper. It should be stressed that the
simple quantum mechanical picture of fusion in terms of bound states only holds for the
above model with pair interactions and not for more realistic models with real (on-shell)
particle creation. All models whether they are real particle conserving or not (except free
�elds) have a rich virtual particle structure (as will shown later), i.e. the particle content
of operators A with compact localization e.g. A 2 A(O) complies with the \folklore"
that all particle matrix elements

out hp1; :::; pk jAj q1; :::; qliin 6= 0 (78)

as long as they are not forced to vanish by superselection rules.
Although we have explained the basic concepts in the case of diagonal S-coe�cients in

the Z-algebra, one realizes immediately that one can generalize the formalism to matrix-
valued \pair interactions" S. The operator formalism (the associativity) then leads to
the Yang-Baxter conditions and the crossing relations are again equivalent to the KMS
property for the wedge generators F (f).

The relation of the above observation with local quantum physics (LQP) becomes
more tight, if one remembers that the Lorentz boost, which featured in the above KMS
condition, also appears together with the TCP operator in the Tomita modular theory
for the pair (A(W );
):

STA
 = A�
; A 2 A(W ) (79)

19In fact it is only through the PFG's F(x) that the Z-F algebra and the fusion rules for the Z's receive
a space-time interpretation. The close relation to a kind of relativistic QM only happens on the level
of wedge localization; the algebras resulting from intersections of wedge algebras loose this quantum
mechanical aspect and show the full virtual particle creation/annihilation polarization structure.
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which de�nes the antilinear, unbounded, closable, involutive (on its domain) Tomita op-
erator ST : Its polar decomposition

ST = J�
1

2 (80)

de�nes a positive unbounded �
1

2 and an antiunitary involutive J and the nontrivial part
of Tomita's theorem (with improvements by Takesaki) is that the unitaty �it de�nes an
automorphism of the algebra i.e. �t(A) � �itA��it = A and the J maps into antiuni-
tarily into its commutant j(A) � JAJ = A0: The wedge situation is a special illustration
for the Tomita theory. In that case both operators are well-known; the modular group
is the one-parametric wedge a�liated Lorentz boost group �it = U(�(�2�t); and the
J in d=1+1 LQP's is the fundamental TCP-operator (in higher dimensions it is only
di�erent by a �-rotation around the spatial wedge axis). The prerequisite for the general
Tomita situation is that the vector in the pair (algebra, vector) is cyclic and separating
(no annihilation operators in the von Neumann algebra resp. cyclicity of its commutant
relative to the reference vector). In LQP these properties are guarantied for localization
regions O with nontrivial causal complement O0 thanks to the Reeh-Schlieder theorem.
Returning to our wedge situation we conclude from the Bisognano-Wichmann result that
the commutant of A(W ) is geometric i.e. ful�ls Haag duality A(W )0 = A(W 0); a fact
which can be shown to be modi�ed by Klein factors in J in case of deviation from Bose
statistics.

There is one more structural element following from \quantum localization" beyond
wedge localization.

Proposition 3 Operators localized in double cones A 2 A(O) obey a recursion relation
in their expansion coe�cients in terms of PFG operators

A =
X 1

n!

Z
C

:::
Z
C

an(�1; :::�n) : Z(�1):::Z(�n) : d�1:::d�n

=
X 1

n!

Z
:::
Z
ân(x1; :::xn) : F (x1):::F (xn) : d

2x1:::d
2xn; suppâ 2 W
n

ilim�!�1(� � �1)an+1(�; �1; :::; �n) = (1�
nY
i=2

S(�1 � �i))an�1(�2; ::; �n)

Remark 1 In order to compare (see below) with Smirnov's [57] axioms we wrote the re-
cursion in rapidity space instead of in x-space light-ray restriction which would be more
physical and natural to our modular approach. The series extends typically to in�nity.
Only for special operators (e.g. bilinears as the energy momentum tensor) in special mod-
els with rapidity independent S-matrices (e.g. Ising, Federbush) for which the bracket
involving the product of two-particle S-matrices vanishes, the series restricts to a poly-
nomial expression in Z. Therefore apart from these special cases, an operator A 2 A(O)
with a1 6= 0 applied to the vacuum creates a one-particle component which an admixture
of an in�nite cloud of additional particles (particle-antiparticle polarization cloud). The
above recursion together with Payley-Wiener type bounds for the increase of the a0ns in
imaginary �-directions (depending on the shape and size of O):

The prove follows rather straightforwardly from the quantum localization idea

A(O) =
h
U(a)A(W )U�1(a)

i0 \ A(W ) (81)
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i.e. we are considering the relative commutant inside the wedge algebra. Using the PFG's
F (f); the A 2 A(O) are characterized by [55]

h
A;F (f̂a)

i
= 0; 8f̂ 2 W (82)

where f̂a(x) = f̂ (x � a); a 2 W: One immediately realizes that the contribution of the
commutator to the nth power in F yields a relation between the an�1 and an+1 (from the
creation/annihilation part of F (f̂a)): The details of this relation are easier, if one passes
to the light-ray restriction which in the present approach turns out to be a very nontrivial
result of modular theory [55][58][59].

Proposition 4 The relative commutant for light-like translations with a+ = (1; 1) de�nes
a \satellite" chiral conformal �eld theory via the (half) net on the (upper) +light ray

A(Ia;e2�t+a) = U(a; a)��it
�
A(Wa+)

0 \ A(W )
�
�itU�1(a; a) (83)

where Ia;b with b > a � 0 denotes an interval on the right upper light ray. This net is
cyclic and separating with respect to the vacuum in the reduced Hilbert space

H+ = M+
 = P+H � H = A(W )
 (84)

M+ � [tA(I0;e2�t); E+(A(W )) =M+ = P+A(W )P+

where the last relation de�nes a conditional expectation. The application of J to gives the
left lower part of this light ray which is needed for the full net.

Remark 2 The most surprising aspect of this proposition is that this light-ray a�liated
chiral conformal theory exhibits the \blow-up" property i.e. can be activated to reconstitute
the two-dimensional net by association of the -light ray translation

A(W ) = alg [a>0 fM+; U�(a)g (85)

A = A(W ) _ A(W )0

The Moebius groups SL(2,R)� account for 6 parameters in contradistinction to the 3
parameters of the two-dimensional Poincar�e group of the massive theory. Most of the
former are \hidden" and the original theory perceives these additional symmetries only in
its P� projections (for the proofs see [55][59]).

The light-ray reduction reduces the derivation of the recursion relation to a one-
dimensional LQP problem and the reader may carry out the missing algebra without
much e�ort. This reduction also helps signi�cantly in the demonstration that the A(O)
spaces are non-trivial i.e. contain more elements than multiples of the identity. It is a
fascinating experience to see that the existence problem for nontrivial QFT's which in
the quantization (Lagrangian, functional integral) approach always pointed into the di-
rection of getting good short distance properties and in particular the renormalizability
requirement dimLint � dimspacetime, the modular approach which does not use indi-
vidual \�eld-coordinatizations" relates the existence of nontrivial �eld theories associated
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with interacting PFG's to the nontriviality of intersections which represent double cone
algebras. The above constructions only determine operators in the sense of bilinear forms.

At this point it is appropriate to address the question of what we learned from this
approach as compared to the Karowski-Weisz-Smirnov \axiomatics" [56][57]. Actually a
considerable part of that axiomatics has been reduced to specializations of general �eld
theoretic properties within the LSZ framework [50], apart from the algebraic and analytic
aspects of the fundamental crossing property. Since the LSZ formalism itself can be
derived from the basic causality and spectral properties of say Wightman QFT, one may
even want to have a more direct physical understanding of the other properties. This
is achieved by realizing that the an-coe�cients have the interpretation of the connected
part of formfactors of A; for selfconjugate models

an(�1; :::; �n) = h
 jAj �1; :::; �niin (86)

�1 < �2 < :: < �n

an(�1; ::��; ��+1 � i�; ::; �n� i�) (87)

= out h�1; ::�� jAj ��+1; ::; �niinconn
The relations for di�erent orderings of �0s follows from the algebraic structures of the Z's.

In the diagonal case this connection between Z's and in- and out- creation/annihilation
operators can be seen directly via representing the Z's in a bosonic/fermionic Fock space
of the incoming particles in the form

Z(�) = ain(�)e
i
R
a�
in
(�)a(�)d� (88)

However such representations are not known for the nondiagonal case. But once one
obtained the double cone localized operators the theory itself (scattering theory as a
consequence of the locality+spectral structure) assures the existence of Z in terms of in-
coming particle creation/annihilation operators, albeit not in terms of simple exponential
formulas.

The modular theory for wedges in terms of PFG's really explains the KWS axiomat-
ics by integrating it back into the fundamental principles of general QFT. In particular
the notoriously di�cult crossing symmetry for the �rst time �nds its deeper explanation
in Hawking-Unruh thermal KMS properties once one realizes that a curved space-time
Killing vector (a classical concept) is not as important quantum localization of opera-
tor algebras. With these remarks we have achieved our goal of deriving and explaining
all axioms of the KWS approach in terms of localization properties of PFG's with pair
interactions.

This raises the question if the PFG's F (x) in their property as wedge algebra genera-
tors, could not exist also for higher dimensions. In that case their application more than
one time to the vacuum would generate state whose particle content (the real particle
structure) is already very complicated. As often in general QFT, it is easier to see what
does not work, i. e. to prove No-Go theorems. Indeed if the interacting PFG's exist at
all, their causally closed living space O cannot be (even a tiny little bit) smaller than
a wedge O � W . As was already stated at the beginning, if there would be spacelike
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directions with an arbitrarily small conic surrounding which are contained in W but not
in O; it is fairly easy to generalize the proof of the Jost-Schroer theorem [54] and show
that the commutators of such PFG's must be a c-number which is determined by their
two-point function. However the method used in those No-Go theorems has no extension
to the wedge region. If wedge algebras can indeed be generated by PFG's, one expects
again that modular theory does not only relate them to the S-matrix so that their corre-
lations can be expressed in terms of products of S-matrix elements and furthermore that
the elusive crossing symmetries for the S-matrix and formfactors �nd their explanation
in the thermal KMS properties. This surprising relation between particle physics and the
thermal properties of Hawking-Unruh wedge horizons has attracted the attention of many
physicist, the ideas most close to those of the present work and several older articles [46]
of the present author are those in [49]. However it should be clear that as long as higher
dimensional PFG's have yet to be constructed or at least their existence established, the
mediators between o�- and on-shell are still missing and there is no proof beyond the one
for factorizing models presented before.

There is also an interesting extension of the KWS axiomatics in form of a pair of
satellite chiral conformal theories. In contradistinction to the standard short distance
association the light ray association via modular theory is not just a one way street; the
blow-up property with the help of adjoining the opposite light cone translation allows to
return, so that hidden conformal symmetries become relevant for the massive theory or
more precisely for the massive theory projected into the H� subspaces.

Note that the present construction principle can be directly used for the systematic
construction of chiral conformal theories. For the construction of W-like algebras one
starts with PFG generators on a half line. Modular theory assures that in principle every
system of S-coe�cients ful�lling the Z-F algebra leads to a bosonic/fermionic conformal
theory granted that the previous relative commutator algebra is non-trivial. This is a
construction scheme which could not have been guessed within the framework of pointlike
�elds.

Another apparently simple but untested idea suggested by the present concepts is the
classi�cation of wedge algebras with non-geometric commutator algebras via statistics
Klein factors or constant S-matrices in J: Examples are the Ising �eld theory and the
order/disorder �elds. For the more interesting case of plektonic R-matrices which appear
in the exchange algebras [61] of charge carrying �elds, one knows that these algebras in
contradistinction to bosonic/fermionic (e.g. W-algebras) are incomplete since the distri-
butional character at coalescent points is left unspeci�ed. This is not the case if one uses
the R-data as an input into plektonic Z#(�): The Hilbert space obtained by iterative
application of Z-creation operators is not compatible with a Fock space structure. Rather
the n-particle subspace has the structure of a path space as known from the represen-
tation theory of intertwiner algebras. The combinatorial complications should be o�set
by the simplicity of constant S-matrices. As the operator representation of the massive
Ising model shows, the constant S case should even have a simple coe�cient series in the
massive case.

.
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6 Concluding Remarks

Whereas causality and locality principles used to play an important role in the past (the
LSZ framework, the Kramers-Kronig relations in high energy physics and their experi-
mental check in high energy nucleon scattering), they have been less prominent in the
more global functional integral formulationof QFT. In S-matrix models as the Veneziano
dual model the role of these principles is even harder to see, but the idea that crossing
symmetry which underlies duality is a deep on-shell manifestation of causality always car-
ried a lot of plausibility. The di�culty here is that crossing symmetry was primarily an
observation on Feynman diagrams whose relation to the causality- and particle- structure
was never clari�ed as that of other symmetries e.g. as it happened with the simpler TCP
symmetry. In fact the dual model which was originally intended to probe the structure
of a nonperturbative S-matrix and to shed light on the elusive crossing symmetry, was
soon treated as a separate issue with the original QFT motivation being forgotten. After
several abrupt changes of interpretation and �nally also of the mathematical formalism
(the so called \string revolutions") it �nally reached its present form of string theory with
interesting mathematical connections but without convincing conceptual content. The
status of locality within interacting string theory is unknown (the answer one gets de-
pends on the person asks asks20). If the word string could be interpreted as indicating a
spacetime localization and not just referring to certain spectral properties, then it would
be part of local QFT and all the structural statements in this article would immediatly be
applicable. However in this case it should be possible to have an intrinsic formulation (say
analogous to the Wightman framework). As it stands now, string theory is synonymous
with a collection of computational steps. Related to this is the total lack of an answer to
the question: what physical principle is it which asks for a string-like extension in order
to be realized? One should like to have a physically more compelling reason than just
saying that after having been interested for many years in pointlike �elds one wants to
study string-like extensions.

The development of physical theories has been (and still is in my opinion) the unfolding
of ever more general realizations of physical principles. For example the semiin�nite
stringlike localization of d=2+1 anyons/plektons or topological charges (in the sense of
algebraic QFT [1]) is requires by the more general realization of causality; if one allows
only compact extensions, one would fall back on bosons/fermions and ordinary charges.
Most structural properties in LQP have been understood as an unfolding of realizations
of physical principles. One hopes that this fruitful viewpoint of this century may not get
completely lost in the ongoing process of marketing and globalization in the production
of publications which is taking place at the end of it.

Acknowledgment: I am indebted to H. W. Wiesbrock for discussions and for critical
reading of the manuscript.
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