
CBPF-NF-017/97

gr-qc/yymmnnn
March 21, 1997

CBPF-NF-017/97

Cosmological and Black Hole Horizon Fluctuations

L.H. Ford

Institute of Cosmology
Department of Physics and Astronomy

Tufts University
Medford, Massachusetts 02155

N.F. Svaiter

Centro Brasileiro de Pesquisas Fisicas-CBPF
Rua Dr. Xavier Sigaud 150

Rio de Janeiro, RJ 22290-180, Brazil

Abstract

The quantum 
uctuations of horizons in Robertson-Walker universes and in the

Schwarzschild spacetime are discussed. The source of the metric 
uctuations is

taken to be quantum linear perturbations of the gravitational �eld. Lightcone 
uc-

tuations arise when the retarded Green's function for a massless �eld is averaged

over these metric 
uctuations. This averaging replaces the delta-function on the

classical lightcone with a Gaussian function, the width of which is a measure of the

scale of the lightcone 
uctuations. Horizon 
uctuations are taken to be measured

in the frame of a geodesic observer falling through the horizon. In the case of an

expanding universe, this is a comoving observer either entering or leaving the hori-

zon of another observer. In the black hole case, we take this observer to be one who

falls freely from rest at in�nity. We �nd that cosmological horizon 
uctuations are

typically characterized by the Planck length. However, black hole horizon 
uctua-

tions in this model are much smaller than Planck dimensions for black holes whose

mass exceeds the Planck mass. Furthermore, we �nd black hole horizon 
uctuations

which are su�ciently small as not to invalidate the semiclassical derivation of the

Hawking process.

Key-words: Black hole; Cosmological and horizon 
uctuations.
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1 Introduction

One of the characteristics of classical gravitation is the existence of horizons, surfaces
which divide spacetime into causally distinct regions. The most striking example is the
black hole horizon, the boundary which hides the events within from the outside world.
Cosmological models also possess horizons of a di�erent sort; a given observer generally
cannot see all of the other observers in the universe at a given time. If the expansion rate
in comoving time is less than linear, then previously unseen objects enter the observer's
horizon. If it is faster than linear (in
ationary expansion), then objects leave the horizon.
Horizons are of course lightcones, and the notion of an event being within or without a
horizon means being at a timelike or a spacelike separation, respectively.

It is expected that quantum metric 
uctuations should smear out this precise distinc-
tion, and hence smear out the classical concept of a horizon. Information could presumably
leak across the horizon in a way that is not allowed by classical physics. Bekenstein and
Mukhanov [1] have suggested that horizon 
uctuations could lead to discreteness of the
spectrum of black holes. Several other authors [2, 3] have recently made proposals for
models which describe the horizon 
uctuations. In this paper, we will propose a di�erent
model, in which quantized linear perturbations of the gravitational �eld act as the source
of the underlying metric 
uctuations. Our analysis will be based on the formalism for the
study of lightcone 
uctuations proposed in Ref. [4], and further developed in Ref. [5].

The necessary formalism will be reviewed and extended in Sect. 2. It will be applied
to the case of cosmological horizons in Sect. 3, and to black hole horizons in Sect. 4. Our
results will be summarized and discussed in Sect. 5. We will also give a critical assessment
of the previous attempts [2, 3] to estimate the horizon 
uctuations.

2 Basic Formalism

In Ref. [4], henceforth I, a model of lightcone 
uctuations on a 
at background was
developed. It was assumed that the quantized gravitational �eld is in a squeezed vacuum
state. This is the natural quantum state for gravitons produced by quantum particle
creation processes, as for example in the early universe. Here we wish to generalize this
formalism to the case of curved background spacetimes. Consider an arbitrary background
metric g(0)�� with a linear perturbation h�� , so the spacetime metric is [6]

ds2 = (g(0)�� + h��)dx
�dx� : (1)

For any pair of spacetime points x and x0, let �(x; x0) be one half of the squared geo-
desic separation in the full metric, and �0(x; x0) be the corresponding quantity in the
background metric. We can expand �(x; x0) in powers of h�� as

� = �0 + �1 + �2 + � � � ; (2)

where �1 is �rst order in h�� , ect. We now suppose that the linearized perturbation h��
is quantized, and that the quantum state j i is a \vacuum" state in the sense that we
can decompose h�� into positive and negative frequency parts h+�� and h��� , respectively,
such that

h+�� j i = 0; h jh��� = 0 : (3)
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It follows immediately that
hh�� i = 0 (4)

in state j i. In general, however, h(h�� )2i 6= 0, where the expectation value is understood
to be suitably renormalized. This re
ects the quantum metric 
uctuations.

We now wish to average the retarded Green's function, Gret(x; x0), for a massless �eld
over the metric 
uctuations. In a curved spacetime, Gret(x; x0) can be nonzero inside the
future lightcone as a result of backscattering o� of the spacetime curvature. However, its
asymptotic form near the lightcone is the same as in 
at spacetime:

Gret(x; x
0) � �(t� t0)

4�
�(�) ; � ! 0 : (5)

We will ignore the backscattered portion, and average this delta-function term over the

uctuations, following the method of I. The result is

D
Gret(x; x

0)
E
=
�(t� t0)

8�2

s
�

2h�21i
exp

�
� �20
2h�21i

�
: (6)

The e�ect of the averaging has been to replace the delta-function by a Gaussian with a
�nite width determined by the magnitude of the quantity h�21i, which is the measure of
the lightcone 
uctuations.

The operational meaning of the smeared lightcone can be understood by considering a
source and a detector of photons. If we ignore the �nite sizes of photon wavepackets, then
in the absence of lightcone 
uctuations, all photons should traverse the interval between
the source and the detector in the same amount of time. The e�ect of the lightcone

uctuations is to cause some photons to travel slower than the classical light speed, and
others to travel faster. The Gaussian function in Eq. (6) is symmetrical about the classical
lightcone, �0 = 0, so the quantum lightcone 
uctuations are equally likely to produce a
time advance as a time delay.

In order to �nd the magnitude of the lightcone 
uctuations in a particular situation,
it is necessary to calculate �0 for the metric in question, as well as h�21i in the appropriate
quantum state. This enables one to �nd �t, the mean time delay or advance (measured
in a suitable reference frame). This is an ensemble averaged quantity, not necessarily the
expected variation in 
ight time of two photons emitted in rapid succession. To �nd the
latter quantity, one must examine a correlation function. This is the topic of Ref. [5].
In the present paper, we will not be concerned with correlation functions, and will use
Eq. (6) to estimate the magnitude of the horizon 
uctuations.

We may �nd a general expression for h�21i, which is the curved space generalization of
the result obtained in I. Let us �rst consider timelike geodesics. If we adopt a timelike
metric, then in Eq. (1) we have that ds2 > 0. Let u� = dx�=d� be the tangent to
the geodesic and � be the proper time. We will de�ne h�21i by integrating along the
unperturbed geodesic, in which case u� is normalized to unity in the background metric:

g(0)�� u
�u� = 1 : (7)

The geodesic interval in the unperturbed metric is given by

�0 =
1

2
(�� )2 ; (8)
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where �� is the proper time elapsed along the geodesic. We have

ds

d�
=
q
1 + h�� u�u� � 1 +

1

2
h�� u

�u� ; (9)

and hence the geodesic length between a pair of points in the perturbed metric is �s =
�� +�s1, where

�s1 =
1

2

Z
d� h�� u

�u� : (10)

Thus

� =
1

2
(�s)2 =

1

2
(�� )2 +���s1 +O(h2) ; (11)

and hence �1 = ���s1. If we average over the metric 
uctuations, the result is

h�21i =
1

2
�0

Z
d�1 d�2 u

�
1u

�
1u

�
2u

�
2 hh��(x1)h��(x2)i ; (12)

where u�1 = dx�=d�1 and u
�
2 = dx�=d�2. An analogous expression holds for the case of a

spacelike geodesic, in which the integrations are over the proper length parameter of the
geodesic:

h�21i = �1

2
�0

Z
d�1 d�2 u

�
1u

�
1u

�
2u

�
2 hh�� (x1)h��(x2)i ; (13)

where now u�1 = dx�=d�1 is the tangent to the geodesic, and � is the proper length. Here
we have �0 = �1

2(��)
2

As noted previously, the quantity h�21i is formally divergent and needs to be renor-
malized. This may be done by de�ning the graviton two-point function, hh�� (x1)h��(x2)i
using, for example, the Hadamard renormalization scheme proposed by Brown and Ot-
tewill [7]. These authors give a detailed prescription for expanding the singular, state-
independent parts of the scalar and vector two-point functions in an arbitrary curved
spacetime. Hadamard renormalization consist of subtracting this expansion from a given
two-point function. This procedure seems not to have been developed in detail for the
graviton two-point function, but there seems to be no barrier in principle to doing so.
Allen et al [8] have applied the Hadamard renormalization method to the graviton two-
point function in the vicinity of a cosmic string. In this paper, we will be content with
simple approximations or order of magnitude estimates, and will not require the full
renormalization machinery.

3 Cosmological Horizons

Consider a spatially 
at Robertson-Walker universe, for which the metric may be written
as

ds2 = a2(�)(d�2 � dx2) : (14)

In general, this spacetime has \particle horizons" associated with the comoving observers
across which other observers may appear or disappear, In the case of a radiation or matter
dominated universe with an initial singularity (a / � or a / �2, respectively), a given
observer at a given time has not yet received any light signals from distant observers, who
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are said to be outside of the �rst observer's horizon. In the case of de Sitter space (a /
��1), a given observer eventually ceases to receive signals from other comoving observers,
and views them as having moved outside of the horizon. Clearly, these cosmological
horizons are observer dependent in a way that black hole event horizons are not, and are
basically the past lightcone of a given observer at a given time. Nonetheless, it will be of
interest to estimate the magnitude of the quantum 
uctuation of these horizons in various
models.

We must �rst study timelike and spacelike geodesics in the limits in which these
approach null geodesics over some interval. Because the lightcone 
uctuations are sym-
metrical, we may focus our attention on the timelike case. The geodesic equations for a
timelike path moving in the x-direction in the metric of Eq. (14) may be expressed as

a2
dx

d�
=

1p
2�

(15)

and
d2�

d� 2
+
a0

a

�
d�

d�

�
+

a0

2�a5
= 0 ; (16)

where � is the proper time along the geodesic, a0 = da=d�, and � is a constant. In the

at space limit (a = 1), we �nd from Eq. (15) that � = (1 � v2)=(2v2) where v is the
magnitude of the three-velocity. Thus in the null limit, � ! 0. The geodesic may be
expressed as

x = � � f(�) ; (17)

where f ! 0 in the null limit. For nearly null geodesics, we may assume jf j � 1. To �rst
order in f , the solution of Eqs. (15) and (16), corresponding to a properly normalized
four-velocity, is

f(�) = �
Z �

0
a2(�0)d�0 : (18)

From Eq. (14), we can write

ds =

s
1�

�
dx

d�

�2

d� �
p
2� a2 d� ; (19)

from which we �nd
�� =

p
2�

Z �1

�0
a2(�)d� ; (20)

and

�0 =
1

2
(�� )2 : (21)

Gravitons propagating on a Robertson-Walker background may be quantized in the
transverse, trace-free gauge, which eliminates all of the gauge freedom [9]. Only the
purely spatial components of h�� are nonzero, and they each satisfy the wave equation for
a massless, minimally coupled scalar �eld in this metric. Thus the graviton two-point
function can be expressed in terms of the scalar two-point function, h'(x)'(x0)i, as

hhij(x)hkl(x0)i = �1

3
a2(�)a2(�0)

�
�ij�kl � 3

2
�ik�jl � 3

2
�il�jk

�
h'(x)'(x0)i : (22)
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We may use this result to write

h�21i =
�0
6�

Z �1

�0
d�

Z �1

�0
d�0 h'(x)'(x0)i ; (23)

Note that in this expression, we can replace the unsymmetrized two point function,
h'(x)'(x0)i, by the symmetrized form (the Hadamard function)

G(x; x0) =
1

2
h'(x)'(x0) + '(x0)'(x)i : (24)

The latter function is real, and is hence more convenient. To proceed further, we must
designate the quantum state of the gravitons. In the following two subsections, some
particular examples will be considered.

3.1 Gravitons in a Radiation-Dominated Universe

A radiation-dominated universe, for which

a(�) = a0� ; (25)

is presumably a reasonably good description of a signi�cant fraction of the history of our
universe. Let us consider a thermal bath of gravitons in such a universe, for which the
temperature is always high compared to the scale set by the local radius of curvature, i.e.,
the thermal wavelength is much less than the horizon size. In this case, the minimally
coupled scalar �eld two point function is approximately equal to that for the conformally
coupled �eld, Gcc(x; x0). However, the latter is conformally related to the 
at space
Hadamard function, G0(x; x0), so we have

G(x; x0) � Gcc(x; x
0) = a�1(�) a�1(�0)G0(x; x

0) : (26)

We now need the 
at space renormalized thermal Green's function on the lightcone. This
was calculated in Appendix A of Ref. [5], where it was shown that in the high temperature
limit, this function is given by

G0(x; x
0) � 1

8���
� � � ; (27)

where � is the inverse temperature and � = jx�x0j. We may now use Eqs. (23) - (27) to
write

h�21i =
�0

48� �� a20

Z �1

�0
d�

Z �1

�0
d�0

1

��0j� � �0j : (28)

Unfortunately, this integral diverges because of the singularity of the integrand at � = �0.
This is due to the fact that Eq. (27) is not valid for small �. We can remedy this by
excluding the range j� � �0j < �, where � is a cuto� which will be taken to be of order �.
Thus, the relevant integral is, in the limit of �1 � �0;

h�21i =
�0

48� � � a20

Z �1

�0
d�

�Z �

�0
+
Z �1

�

�
d�0

1

��0j� � �0j �
�0
h
ln(�0=�) + 1

i
24� � � �0a20

: (29)
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In this same limit, one �nds

�0 � 1

9
�a20�

6
1 : (30)

We now wish to de�ne �c as that value of � for which the argument of the exponential
in Eq. (6) is unity, that is,

�20
2h�21i

= 1 : (31)

Thus �c describes a geodesic whose deviation from the lightcone characterizes the 
uctu-
ations. From Eqs. (29), (30), and (31), we �nd that

�c =

r
3
h
ln(�0=�) + 1

i
p
4����0 a30 �

3
1

: (32)

We now wish to de�ne a physical measure of the magnitude of the lightcone 
uctuations.
This may be taken to be the mean time delay or advance, ��, for a photon emitted
at �0 and detected at �1. Equivalently, we can think of �� as the characteristic interval
around �0 within which photons could be emitted and still reach a detector at a coordinate
distance of �x = �1 � �0 at time �1. (See Figure 1.) From Eqs. (17) and (18), we have
that �� is related to �c by

�� = f(�1 � �0) = �c

Z �1

�0
a2(�0)d�0 � 1

3
�c a

2
0 �

3
1 : (33)

It is perhaps more convenient to express this time delay or advance as a coordinate time
interval, �t = a(�0)��, which is given by

�t =
�
2t0
a0

�1

4

r
3
h
ln(�0=�) + 1

i
6
p
��

; (34)

where t0 =
1
2a0�

2
0 is the coordinate time at �0.

We may interpret this formula by noting that in an expanding universe, ��1 is a
coordinate temperature, not in general the physical temperature. It is, however, the
physical temperature at a time at which a = 1. Let us take that time to be t0, the time
of emission, at which time the physical temperature is T0. This leads to

�t

t0
=

p
6

6

q
ln(�0=�) + 1

�
T0
Tp

��
tp
t0

�
; (35)

where Tp is the Planck temperature, and tp is the Planck time. The logarithmic factor can
be taken to be of order one, so we see that if T0 = Tp and t0 = tp, then we have �t=t0 � 1.
Otherwise, with T0 � Tp and t0 � tp, we have �t=t0 � 1, and the fractional lightcone

uctuations are small. This is what we should perhaps expect; a bath of gravitons with
the Planck temperature at the Planck time (which would correspond to a few degrees
Kelvin today) results in large horizon 
uctuations, but otherwise the 
uctuations are
small at much lower temperatures.
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3.2 Gravitons in de Sitter Space

If we represent de Sitter space as a spatially 
at Robertson-Walker metric, then the
metric is of the form of Eq. (14) with a(�) = �H=� = H=j�j, where H is a constant,
and �1 < � < 0. These coordinates cover one-half of the full de Sitter spacetime, but
that is su�cient for our purposes. Gravitons are again represented as a pair of massless,
minimally coupled scalar �elds. However, in this case there is a subtlety in that there is
no de Sitter invariant vacuum state which is free of infrared divergences [10, 11, 12]. The
Hadamard function may be represented as [12]

G(x; x0) =
1

(2�)3
Re

Z
d3k k(�) 

�

k(�
0) ei(k�k

0)�x ; (36)

where the time part of the mode function is expressible in terms of Hankel functions as

 k(�) =

p
�

2
H j�j 32

h
c1H

(1)
3

2

(k�) + c2H
(2)
3

2

(k�)
i
: (37)

Here c1 and c2 are functions of k which are required to have the following properties:

c1 ! 0; c2 ! 1; as k !1 ; (38)

and
jc1 + c2j ! 0; as k ! 0 : (39)

These functions de�ne the quantum state in question. Equation (38) insures that the
very high frequency modes are free of particles, whereas Eq. (39) is the condition that the
state be free of infrared divergences.

The Hadamard function given by Eqs. (36) and (37) is the unrenormalized function
which is singular on the lightcone. In principle, one should evaluate the integral for the
given choice of c1 and c2, and then extract the state-independent singular terms to obtain
the renormalized Hadamard function. Unfortunately, this would be very di�cult to do
explicitly. However, in the late time limits (� ! 0 or �0 ! 0) it is possible to give some
approximate forms for the renormalized function. It was shown by several authors that
the coincidence limit grows logarithmically [11, 12, 13, 14] :

G(x; x) � �H
2

4�2
lnHj�j ; (40)

as � = �0 ! 0. The fact that this asymptotic form is state-independent may be understood
as a consequence of the exponential expansion having redshifted away any memory of the
quantum state.

We may use a similar procedure to investigate the behavior as � ! 0 with �0 �xed. If
we insert Eq. (37) into Eq. (36) and then change the variable of integration to q = j���0jk,
we have

G(x; x0) =
H2j��0j 32

32�2 j� � �0j3 Re
Z
d3q

�
c1H

(1)
3

2

�
� j�j
j� � �0j q

�
+ c2H

(2)
3

2

�
� j�j
j� � �0j q

��

�
�
c�1H

(2)
3

2

�
� j�0j
j� � �0j q

�
+ c�2H

(1)
3

2

�
� j�0j
j� � �0j q

��
eiv�q ; (41)
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where v = (x� x0)j� � �0j�1. Now assume that � is su�ciently small that the dominant
contribution to the integral comes from values of q for which the magnitude of the ar-
guments of the Hankel functions in the �rst factor are small compared to unity. In this
case, we can use the small argument forms

H
(1)
3

2

(�x) � H
(2)
3

2

(�x) �
s
2

�
x�

3

2 ; 0 < x� 1; (42)

in this factor and �nd

G(x; x0) �
p
2H2

32�5=2
Re

Z
d3q q�

3

2 (c1 + c2)[c
�

1H
(2)
3

2

(�q) + c�2H
(1)
3

2

(�q)]eiv�q : (43)

Note that the dependence upon both � and �0 has dropped out. The integral in Eq. (43)
has a logarithmic ultraviolet divergence on the lightcone, but the leading quadratic diver-
gence has disappeared. A similar disappearance of divergent parts occurs in the derivation
of Eq. (40). (See, for example, Ref. [12].) The renormalization of this logarithmic diver-
gence require a subtraction of a term proportional to the scalar curvature R = 12H2. We
expect the result to be a constant which is of order of H2. By symmetry, we obtain the
same result if �0 ! 0 with � �xed, so that

G(x; x0) � H2 ; � ! 0 or �0 ! 0 : (44)

The integral in Eq. (23) requires us to know G(x; x0) in the square illustrated in Fig. 2,
which also illustrates the regions in which either Eq. (40) or Eq. (44) is applicable. For
the purposes of obtaining an order of magnitude estimate for h�21i, we will assume that
G(x; x0) is of the form

G(x; x0) � H2 f(�; �0) (45)

throughout this region, where f is either a constant of order unity or else a logarithmic
function which will contribute multiplicative constants of order unity to the integral in
Eq. (23).

The result of the evaluation of this integral is

h�21i = �
H2�0
�

(�1 � �0)
2 ; (46)

where � is a constant of order unity. From Eq (20) we �nd

�0 =
�(�1 � �0)2

H4 �21 �
2
0

: (47)

The value of � which is characteristic of the lightcone 
uctuations is

�c �
p
2�H3 �1�0 : (48)

If we follow the line of reasoning in the previous subsection, we �nd that the characteristic
time associated with the de Sitter horizon 
uctuations is

�t �
p
2� : (49)
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This is of order unity, and hence again the horizon 
uctuations are of Planck dimensions.
We may use �t to �nd the frequency 
uctuations observed at �1 from a constant

frequency source. Suppose that the source is emitting photons with a constant frequency
�0. In the absence of metric 
uctuations, the photons will be detected at frequency
� = �0 a(�0)=a(�1). The e�ect of the metric 
uctuations is equivalent to a drift in the
source frequency whose magnitude is ��0 = �20 �t. Consequently, the fractional variation
of frequency at the detector is

��

�
= �0�t : (50)

However, this is an ensemble averaged frequency variation, not necessarily the drift in
frequency that would be observed in any one trial. The reason for this is that pulses
emitted close together in time tend to have correlated time delays or advances [5]. Thus,
Eq. (50) should be interpreted as giving an upper bound in the frequency drift seen by
the detector.

4 Black Hole Horizons

Here we wish to discuss the 
uctuations of the event horizon of a Schwarzschild black
hole, for which the metric is

ds2 =
�
1 � 2M

r

�
dt2 �

�
1 � 2M

r

�
�1

dr2 � r2(d�2 + sin2 � d�2) : (51)

Timelike radial geodesics in this metric satisfy [16]

�
dr

d�

�2

= ~E2 � C(r) (52)

and
dt

d�
= ~E=C ; (53)

where C(r) = 1 � 2M=r and ~E is a constant of the motion which is equal to the energy
per unit rest mass of the particle, as measured at in�nity. From these relations, one may
show that �

dr

dt

�2

= C2
�
1� C

~E2

�
; (54)

and that �
dr�

dt

�2

= 1� C
~E2
; (55)

where
dr

dr�
= C : (56)

From Eq. (53), we see that the proper time elapsed along a segment of a geodesic is

�� = ~E�1
Z t1

t0
C(r)dt ; (57)
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where r is understood to be a function of t along the geodesic. We are primarily interested
in the case of nearly null geodesics, for which ~E � 1. In this limit

dr

dt
� �C(r) ; (58)

where the plus sign refers to outgoing geodesics, and the minus sign to ingoing ones. Thus,
j�� j � j�rj= ~E and

�0 � (�r)2

2 ~E2
; (59)

where �r is the radial coordinate interval traversed. An analogous treatmentmay be given
for spacelike geodesics. The constant of the motion ~E no longer has a simple physical
interpretation, but we can express �0 in this case as

�0 � �(�r)2

2 ~E2
: (60)

We now turn to the task of estimating h�21i near the horizon of a Schwarzschild black
hole. From Eq. (12) and the fact that

dr

d�
� ~E (61)

for nearly null outgoing timelike geodesics, we have that

h�21i �
1

2
�0 ~E

�2
Z
dr1 dr2 u

�
1u

�
1u

�
2u

�
2 hh��(x1)h��(x2)i : (62)

If we are interested in a black hole radiating into empty space, then the relevant quantum
state for the quantized graviton �eld is the Unruh state. It would be a rather formidable
task to explicitly compute the renormalized graviton two point function in the state.
Instead, we will content ourselves with a order of magnitude estimate. First we must
choose a convenient gauge. Again we wish to impose the transverse, tracefree gauge, which
eliminates all gauge freedom. Because all of the modes of the graviton �eld are propagating
waves which either originate at I� or reach I+, we can impose the requirement that these
mode satisfy the 
at space transverse, tracefree gauge condition at r =1.

We now make the assumption that in this gauge, the renormalized two point function
measured in the frame of an infalling observer who starts from in�nity at rest can be
estimated by dimensional considerations. Near the horizon at r = 2M , the geometry and
the quantum state are characterized by a single scale, M . If we were to reinstate explicit
factors of Newton's constant, G, then h�� / G�

1

2 / mp where mp is the Planck mass.
However, h�� is dimensionless in any set of units, so our assumption tells us that the
two point function should be proportional to m2

p=M
2. However, the actual values of the

components of this bitensor depend upon the choice of frame. Our assumption is that
infalling observers with ~E � 1 should be regarded as preferred in the sense that they do
not introduce any very large or very small dimensionless redshift or blueshift factors. Let
v� be the four velocity of such an observer. Our assumption may be expressed as

v�1v
�
1v

�
2v

�
2 hh��(x1)h��(x2)i �

m2
p

M2
(63)
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near the horizon. The components of the infalling observer's four velocity are

vt = C�1; vr = �p1 � C � �1 ; (64)

and those for an outgoing observer are

ut = ~E C�1; ur =
q
~E2 �C � ~E : (65)

Thus ju�j = ~E jv�j and we can write

u�1u
�
1u

�
2u

�
2 hh��(x1)h��(x2)i � ~E4 m

2
p

M2
: (66)

Our basic assumption receives some support from the work of York [15] who estimates the
magnitude of the quantum 
uctuations of the lowest modes of vibration of a Schwarzschild
black hole. He treats these modes as quantum mechanical harmonic oscillators, and
calculates their root-mean-square 
uctuation amplitudes. The amplitudes of the �rst few
modes yields a result consistent with Eqs. (63) or (66). Of course, this is heuristic support,
and by no means a proof of our assumption. A full proof would require one to sum over
an in�nite number of degrees of freedom, and then extract any ultraviolet divergent parts.

The graviton two point function in this approximation is a constant in the vicinity of
the horizon. It must also fall o� to zero at large distances from the black hole. Thus the
integral in Eq. (62) gets its dominant contribution over an interval in r of the order ofM ,
regardless of the upper limit of the integration. In any case, we can stop the integration
at a maximum value of r which is just a few times M . Whether the outgoing photons
emitted in the vicinity of the horizon are detected at r = 4M or at a much larger value
of r has little e�ect on the discussion of the horizon 
uctuations. Thus we may let

h�21i � �0 ~E4 (�r)
2

M2
: (67)

In analogy to the discussion in the previous section, we wish to de�ne a characteristic
value ~Ec, which is the value of ~E at which Eq. (31) holds. From Eqs. (59) and (67) we
�nd

~Ec �
p
M : (68)

We may �nd the associated time delay or advance, �t, from Eq. (55), which tells us that
when ~E � 1

dt � dr� +
C

2 ~E2
dr� = dr� +

1

2 ~E2
dr : (69)

A radial null geodesic in the classical background geometry covers an r� distance of �r� in
a coordinate time �r�. The second term on the right hand side of the above equation tells
us the extra amount of time required by a timelike particle. Analogous expressions hold
for spacelike geodesics, and yield the same magnitude of time variation. Thus we are led
to an expression for the characteristic time delay or advance due to horizon 
uctuations:

�t � �r

M
: (70)
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As discussed above, we can take �r to be of order M , although we might also want to
consider the possibility of taking it to be much smaller. Thus let

�r = 
 M ; (71)

where 
 is a constant of the order of or less than unity. Now we have

�t � 
 ; (72)

so the time delay, measured in coordinate time, is of Planck dimensions. However, a more
physical measure is obtained by expressing this time interval in terms of the proper time
of a local observer. Let the photons be emitted at r = r0 = 2M(1 + �), with �� 1, and
let C0 = C(r0) � �. The time interval in the frame of a static (nongeodesic) observer at
rest at r = r0 is

��s � 

q
C0 ; (73)

that in the frame of an infalling observer with ~E = 1 is

��i � 
 C0 � 
 � ; (74)

and that in the frame of an outgoing geodesic observer with ~E = 1 is

��o � 
 : (75)

One might regard ��i, the characteristic time as measured by an infalling observer,
to be the best measure of the magnitude of the horizon 
uctuations. Such an observer
can cross and continue beyond the classical event horizon at r = 2M . Suppose that an
outgoing photon emitted by this observer reaches in�nity. An observer at in�nity who
detects this photon and who is unaware of the lightcone 
uctuations might trace the
history of this photon backwards in the classical Schwarzschild geometry and infer that it
was emitted at a proper time of �0 on the infalling observer's worldline. In fact, it could
have been emitted anywhere in a band of width ��i centered around �0. (See Fig. 3.)
The remarkable feature of the result Eq. (74) is that ��i ! 0 as �0 ! �H , the proper time
at which the infalling observer reaches r = 2M . In the cosmological models discussed in
Sect. 3, the 
uctuation in emission time was typically of the order of the Planck time.
In the black hole case, the horizon 
uctuations are more strongly suppressed. Note that
the proper time required for the infalling observer to pass from r = r0 = 2M(1 + �) to
r = 2M is T � 2�M . This is always large compared to ��i for large black holes:

��i
T

� 

mp

M
: (76)

Thus the only outgoing photons which manage to cross the classical horizon are part of
an extreme tail of a Gaussian distribution.

As in Sect. 3.2, we may express the time delay or advance in terms of the variation in
frequency seen by the observer at in�nity. In the black hole case, the analog of Eq. (50)
is

��

�
= �0��i � �0 
 � : (77)
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Thus as the source approaches r = 2M , the fractional variation in frequency observed at
in�nity goes to zero, and the observed frequency approaches that predicted by classical
relativity.

Let us now turn to the question of whether horizon 
uctuations are capable of invali-
dating the semiclassical derivation of the Hawking e�ect. First let us recall the essential
features of this derivation, as given in Hawking's original paper [17]. Consider the space-
time of a black hole formed by gravitational collapse (Figure 4). The null ray which
forms the future horizon leaves I� at advanced time v = v0. The modes into which the
outgoing thermal radiation will be created leave I� at values of v slightly less than v0,
pass through the collapsing body, and reach I+ as outgoing rays, on which the retarded
time u is constant. Hawking shows that the relation between the values of v and of u is

u = �4M ln
�
v0 � v

A

�
; (78)

where A is a constant. Thus u!1 as v! v0. As seen by an observer at in�nity, these
outgoing rays must hover extremely close to the horizon for a very long time. If one starts
with a black hole with a mass M large compared to the Planck mass, the semiclassical
description should hold for the time required for the black hole to lose most of its original
mass. Let

tevap =M3 =M
�
M

mp

�2

(79)

be this characteristic evaporation time. The basic problem posed by the horizon 
uctu-
ations is that they may cause an outgoing ray to either fall back into the black hole, or
else to prematurely escape. In either case, the semiclassical picture of black hole radiance
would need to be modi�ed at times less than tevap.

At a large distance from the black hole, u = t�r� � t�r. If the observer at \in�nity"
is at a �xed value of r (e.g. 100M), then u � t for most of the black hole's lifetime. Thus,
in order not to invalidate the semiclassical treatment, outgoing rays with u < umax = tevap
need to be unin
uenced by the horizon 
uctuations. In order to investigate this question,
let us consider an infalling observer with ~E = 1. From Eq. (54), we have that near r = 2M

dt

dr
� �C�1 (80)

and hence
du

dr
=
dt

dr
� dr�

dr
� �2C�1 : (81)

This equation may be integrated to yield

u(r) = �4M ln
�
r � 2M

A0

�
; (82)

where A0 is a constant. This relation tells us the value of r at which the infalling observer
crosses a given constant u line. The constant A0 is determined by which infalling observer
we consider. Here we are interested in observers who fall into the black hole not long after
its formation, and we can set A0 � M . Let rc be the value of r at which this observer
crosses the u = umax line, given by

rc � 2M =M e�umax=4M : (83)
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Near the horizon, Eq. (52) tells us that dr=d� � �1 along the worldline of the infalling
observer. Thus the proper time required for this observer to cross from u = umax to the
classical horizon at r = 2M is

�� � rc � 2M =M e�umax=4M �M e�M
2=m2

p : (84)

We should compare this quantity with ��i, where C0 is evaluated at r = rc, so C0 =
1
2
e�umax=4M . Thus,

��i =

mp

2M
�� ; (85)

and hence so long as M � mp, ��i � �� . From this result, we conclude that the horizon

uctuations do not invalidate the semiclassical derivation of the Hawking e�ect until the
black hole's mass approaches the Planck mass. This is the point at which we would expect
the semiclassical treatment to fail.

The presence of frequencies far above the Planck scale, in the form of the modes leaving
I�, has concerned numerous authors. There have been suggestions that one might be able
derive the Hawking e�ect in a way that transplanckian frequencies do not arise, using
some form of \mode regeneration" [18, 19]. So far, it has not been possible to implement
these suggestions in detail. As seen from the our analysis of horizon 
uctuations, the
semiclassical treatment is remarkably robust.

5 Summary and Conclusions

In the preceeding sections, we have analyzed the horizon 
uctuation problem using a
formalism which takes account of the e�ects of quantized linear perturbations of the
gravitational �eld upon lightcones. In the case of the cosmological models treated in
Sect. 3, the resulting horizon 
uctuations were found to be of Planck dimensions for both
de Sitter space and a radiation �lled universe with a Planck density of gravitons at the
Planck time. These 
uctuations are measured as 
uctuations in the time of emission of a
photon as measured in the frame of a comoving observer. The order of magnitude of the
results is what one might have guessed before doing the calculation.

In the case of black hole horizon 
uctuations, the results are somewhat more subtle.
Whether the time scale which characterizes the horizon 
uctuations (the time delay or
advance) is of Planck dimensions or not depends crucially upon the frame of reference.
It is indeed of Planck dimensions as measured by an observer at in�nity. However, as
measured by an infalling observer, this time is much less than the Planck scale, and
vanishes as the infalling observer approaches the classical event horizon at r = 2M . We
further found that this suppression of the horizon 
uctuations is exactly what is needed to
preserve Hawking's semiclassical derivation of black hole radiance for black hole of mass
large compared to the Planck mass.

Our result seems to con
ict with the arguments of Sorkin [2] and of Casher et al

[3]. These authors claim that the horizon 
uctuations are much larger than found in the
present manuscript. It should be noted, however, that the physical mechanisms being
postulated in Refs. [2] and [3] are quite di�erent from that of the present paper. In our
opinion, the physical basis of both of these calculations seems to be open to question.
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Casher et al obtain large gravitational perturbations of the horizon by postulating an
\atmosphere" of particles near the horizon in large angular momentum modes. This
arises by decomposing the physical quantum state of an evaporating black hole (the Unruh
vacuum) into two pieces which separately have divergent stress tensors on the horizon,
the contribution from the Boulware vacuum state and a term which these authors call the
\atmosphere" of particles. The large stress tensor 
uctuations arise in the Casher et al
analysis when this \atmosphere" undergoes thermal 
uctuations. Our objection to this
procedure is that the 
uctuations of the Boulware vacuum energy density are not being
considered. The splitting of the �nite Unruh vacuum energy density into two singular
parts seems rather arti�cial. If one chooses such a splitting, then care must be taken
to prove that 
uctuations in one part are not cancelled by correlated 
uctuations in the
other part. Casher et al have not done this.

Sorkin [2] uses a Newtonian treatment to estimate the gravitational �eld of a mass

uctuation near the horizon, and its e�ects on the Schwarzschild geometry. One can
certainly question whether a Newtonian analysis can be trusted in black hole physics.
However, our primary objection to Sorkin's treatment is that the dominant contribution
to the horizon 
uctuations comes from modes whose wavelength is very small compared
to the size of the black hole. The same line of reasoning would seem to lead to large stress
tensor 
uctuations, and hence large lightcone 
uctuations, in all spacetimes including 
at
spacetime. In our view, a more reasonable result is one in which signi�cant 
uctuations
arise only on scales characterized either by the spacetime geometry, or else the chosen
quantum state. An approach to de�ning stress tensor 
uctuations on a 
at background
which has this property was given in Ref. [20]. Here the stress tensor 
uctuations are
de�ned in terms of products of operators which are normal ordered with respect to the
Minkowski vacuum state.

Recently, the 
uctuations of the Hawking 
ux, as measured in the asymptotic region,
have been computed [21] by a similar approach. It was found that this 
ux undergoes

uctuations of the same order as its average value over times scales of the order ofM . This
average 
ux is of order M�2, so the characteristic associated black hole mass 
uctuation
is of order M�1. The corresponding metric 
uctuation near the horizon is then of order
�h �M�2. For macroscopic black holes, this is much smaller than the metric 
uctuations
due to the quantized linear perturbation, estimated in Eq. (63) to be of order M�1. This
analysis does not rule out the possibility of much larger stress tensor 
uctuations in the
vacuum energy near the horizon. However, the diagonal and o�-diagonal components of
the expectation value of the stress tensor in the Unruh state near the horizon are of the
same order [22]. It is thus plausible that the 
uctuations in these various components
near the horizon are also of the same order. If so, then the e�ects of quantized linear
perturbations of the gravitational �eld dominate over those of stress tensor 
uctuations.

It must be emphasized that all of the conclusion obtained in the present manuscript
are in the context of a model of linearized quantum gravity. Furthermore, much of our
discussion is of a heuristic, order-of-magnitude nature. If the basic picture of horizon

uctuations which we have drawn is correct, much work remains to be done to make the
picture more precise.
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Figure Captions

� [1] A photon is received by a detector at conformal time �1. In the absence of metric

uctuations, it has traveled along the classical lightcone (dashed line) from a source
at a coordinate distance j�xj = �1 � �0, and was emitted at conformal time �0. In
the presence of metric 
uctuations, it could have been emitted a characteristic time
�� before or after �0, and traveled along a mean trajectory which is either timelike
or spacelike, respectively (dotted lines).

� [2] The domain of integration for h�21i is the interior of the square. The integrand,
G(x; x0) is known in the shaded regions to be approximately H2, and in the cross-
hatched region to be approximately �(H2 lnHj�j)=4�2.

� [3] An observer falling across the future horizon, H+, of a black hole emits photons
which reach I+. In the presence of metric 
uctuations, these photons need not
follow the classical lightcone (solid line), but rather may follow timelike or spacelike
paths in the background geometry (dotted lines). The characteristic variation in
emission time, as measured in the frame of the infalling observer, of photons which
reach I+ at the same point is ��i.

� [4] The spacetime for a black hole formed by gravitational collapse. The shaded
region is the interior of the collapsing star. A null ray which leaves I� with advanced
time v0 becomes the future horizon, H+. A ray which leaves at an earlier time v
passes through the collapsing body and reaches I+ at retarded time u. The dashed
line is the worldline of a observer who falls into the black hole after its formation.
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
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