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Abstract

We propose a new moment technique for the inverse problem of Wave Propagation in

an inhomogeneous (half { space) medium in the acoustical Wave Field Born Approxima-

tion by using the Analytical Regularization Scheme of Bollini, Giambiagi and Dominguez.

Key-words: Seismic; Inverse Problem.

?IN MEMORIAM OF PROFESSOR JUAN JOS�E GIAMBIAGI { CBPF

(DECEASED IN 1996, JANUARY)



{ 1 { CBPF-NF-017/96

One of the most chalenging problem in the inverse methods for the Geophysical prob-

lem of imaging and inhomogeneous medium described by a depth { variable refraction

index M(z)(0 <
=
z < 1) from the backscattered acoustical wave �eld in the Born { ap-

proximation is the problem of its ill { posedeness ([1]) { pag. 323). In this Brief Report

I will propose a solution for this di�culty by considering the Analytical Regularization

Scheme previously used in Quantum Field Theory ([2]) to reduce the imaging of the

medium to the well-know problem of determining a function by knowing its associated

moments ([3]) { theorem 15.26).

Let us start our analysis by considering the corresponding Fredholm integral equa-

tion relating the medium refraction index (M(z) (0 <
=
z <1) to the Born approximated

backscattered acoustical Wave Field US(�; �;!) on the medium Boundary

(� = (x; y) "R2;�1 < ! < +1 and written in the frequency domain
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Z +1

�1

d2�

Z
1

0
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Unfortunately, the direct solution of the Fredholm Integral Equation eq. (1) to evaluate

M(z) is an ill { conditioned mathematical problem since its kernel is not square integrable

and thus, de�ning a non { compact operator in the Square Integrable functions which by

its turn make this operator loses its inverse continuity in this function space.

In order to overcome such mathematical problem, I follow a usual procedure borrowed

from similar distribution multiplication problem in Quantum Field Theory ([2]). I propose

to consider an analitically continued kernel in eq. (1) where the problem of ill { posedeness

is absent and at the end of the calculation, I make an analytical continuation of the result

to the Physical Probem as �rst proposed by Bollini, Giambiagi and Dominguez in 1964.

Let us, then, study the analitically continued problem
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where � is chosen in such way that it guarantee its square integrability. In this region

of � values, it is possible to interchange the � � z integration order by the use Fubbini {
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Tomeli Theorem and evaluate explicitly the � { integration for z > 0 ([2]).
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where we have used the result
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By considering now the existence of power expansion associated to the analitically con-

tinued Back-Scattered Acoustic Wave Field (which is mathematically correct assumption

at least for large time)

�
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1X
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U (�)
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and comparing with the power expansion of Eq. (3), we get the moment problem rela-

tionship
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At this point we implement the Physical Limit of �! 2 (see eq. (1) and taking into

account that U
(��2)
0 has an in�nite piece

U
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The in�nite piece is disregarded in our approach by suppossing that the \medium�area"R
1

0 m(z)dz vanishes identically. Otherwise eq. (7) must be understood as a �nite-part

prescription as in Quantum Field Theory studies ([2]).

By grouping togheter eq. (6) { eq. (7) we reduce the problem of imaging the refraction

index m(z) to the solution of the well-know Moment Problem of determining a function

from its moment of order m

U
(2)
(m>0) = (2i)m�

Z
1

0
dz �m(z) � zm (8.a)
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In the case that m(z) has a Fourier Transform which is an analytical function around

the origin in the Fourier Domain (for instance when m(z) has compact support) I can

solve formally eq. (8.a). The validity of this claim is a result of the equation below

~m(k) =
1

2�

Z
1

0
dz � eikzm(z) =

1X
k=0

m(m)

m!
km (9.a)

with
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As a consequence, I have the �nal result connecting the coe�cients of eq, (9.a) and

eq. (5).

U
(2)
(m>0) = 2m � � �m(m) (10)

Finally, I remark that the above mathematical operations hold true at least if

jm(m)j
<
= 2�m � Cm, where Cm are the Taylor coe�cients of an analytical real function

with the property of � C2
m <1.
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