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Abstract

A magnetic plasmon (MP) is an acoustic mode of the degenerate electron gas

which exhibits spin modulation but not charge modulation. It is driven by the ex-

change interaction. Its energy lies within the continuum of one particle excitations.

Here we estimate the life-time of the MP and its cross section for the inelastic scat-

tering of spin polarized neutrons. We conclude that its detection might be feasible

in simple metals with large electron densities such as Aluminum.

Key-words: Plasmons; Electron gas; Neutron scattering.

PACS: 72.45.Gm, 75.25.+z, 76.20.+q

1On leave from Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico.



{ 1 { CBPF-NF-017/94

INTRODUCTION

When a degenerate electron gas is considered as a two-component plasma, one with

spin-up and the other with spin-down electrons, it exhibits two collective excitation modes.

One of them is the well known optical plasmon, whose frequency in the long wave-length

limit is given by !p = (4�e2N=m)1=2, where e and m are the charge and mass of the elec-

trons and N the total electron density. The other mode is an acoustical excitation.1 While

the optical plasmon2 describes a charge modulation, the acoustical plasmon describes a

neutral magnetic modulation where the charge modulation of the up and down-spin gases

compesate each other. Thus, it was called magnetic plasmon (MP) in Ref. 1 (hereafter

referred to as (I)). For a one-dimensional electron gas these two types of modes describe

the complete spectrum of excitations; this is not the case in three dimensions3, where

single particle excitations are also possible.

Acoustic plasmons are modes common to multicomponent degenerate Fermi

systems.4;5 For example, they were observed in photoexcited electron-hole plasmas in

GaAs6. Their existence in MOS structures as a result of carriers in di�erent subbands

was theorestically studied with application to GaAs.7 Acoustic plasmons in two8 and

one9;10 dimensional systems have also been discussed. We want to emphasize that the

MP here considered is entirely di�erent in nature from those just mentioned, as it results

from plasma components of two spin states and not on the existence of particles with

di�erent e�ective masses or belonging to di�erent subbands.

The energy dispersion of the optical and magnetic plasmons are shown in Fig. 1,

together with the one particle excitation spectrum, in the case of non-magnetic electron

gas. Since the frequency of the MP lies within the continuous spectrum of individual

particle excitations, no further attention was given to this mode. It was believed to be

quickly Landau damped, as was explicitly stated in Ref. 1. Nonetheless, it is clear from

the hydrodynamic treatment of the electron liquid that the optical plasmons alone cannot

give a complete description of the collective modes of this system. The transformation to

collective modes requires also the magnetic plasmons for the description of electrons with

spin. To the best of our knowledge the existence of these modes was no more discussed
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in the literature, most probably due to the belief that they are overdamped. In closer

scrutinizing the problem, however, we became aware that the MP is only driven by the

exchange interaction which, in some cases, could be weak enough to allow the realization

of the MP. We thus decided to evaluate the life time of the MP using the simplest, albeit

widely used, model of replacing the exchange interaction by an adequately parameterized

e�ective local potential.

In this work two basic points are discussed. First, it is shown that within traditionally

accepted approximations for the exchange interaction the concept of MP is meaningful in

the sense that its life-time is larger than its reciprocal frequency. Secondly, since the MP

is an electrically neutral excitation possessing magnetic modulation it could be excited

by polarized neutrons through the magnetic dipole-dipole interaction. The corresponding

cross section is calculated.

LANDAU DAMPING OF THE MAGNETIC PLASMON

The life-time of the magnetic plasmon is limited mainly by its interaction with the

individual particle excitations (conduction electrons) since its energy dispersion falls en-

tirely within the one-particle spectrum (Fig. 1). The interaction of magnetic plasmons

with conduction electrons is, however, weaker than that of optical plasmons since only

the spin dependent exchange coupling can act.

For simplicity we consider the case of a non-magnetic metal, although the following

treatment can be extended to a magnetized electron gas as well.

The decay rate of a magnetic plasmon of wave vector q, in the �rst Born approxima-

tion, is given by

��1q = (2�=�h)jMqj2I(q) (1)

where

I(q) =
2

(2�)3

Z
dk3f(Ek)[1� f(Ek+q)]�(Ek+q � Ek � �h
q) (2)

is an integral over the available phase space. f(E) is the Fermi distribution function and

Ek = (�hk)2=(2m) the conduction electron energy dispersion. A normalization volume

V = 1 is used. The factor two in front comes from the contribution of the two spin states
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of the electron. The dispersion of the acoustical magnetic plasmon is given by 
q = v0q,

with11

v0 = v

 
1 � Ge2(N=2)1=3

mv2

!1=2

(3)

where v = (3=5)1=2(�hkF =m); kF = (3�2N)1=3 and the constant G = (6=�)1=3 = 1:24 is a

parameter of the exchange interaction.12 The integral in (2) is straighforward; we obtain

I(q) =
m2v0

2�2�h3
for q=(2kF ) < 0:48 (4)

Mq is the matrix element for the scattering of an electron by the magnetic plasmon.

It does not depend on k as a consequence of the local approximation of the exchange

interaction by an e�ective potential. As a resultMq and I(q) are decoupled. This matrix

element is here calculated using the electron-plasmon interaction HamiltonianHep derived

in I:

Hep =
X
p;k;�

a+p�k;�ap;�

 
4�e2

k2
(�k;" + �k;#)�

Ge2

3N
2=3
�

�k;�

!
(5)

Here a+p and ap are the creation and annihilation electron operators and �q;� are density

uctuation operators which are given in terms of creation and annihilation plasmon op-

erators in Eq. (28) of I. N� is the density of electrons with spin �. In the case of a non

magnetic metal considered here N� = N=2. We obtain

jMqj2 = �hq2

2mN
q

 
Ge2(N=2)1=3

3

!2

: (6)

The concept of magnetic plasmon is meanigful if the quantity P = (�q
q)�1 is consid-

erably smaller than one. From Eqs. (1), (3) and (4) we obtain, with EF = (�hkF )2=(2m),

P =

p
15�

8E2
F

 
Ge2(N=2)1=3

3

!2  
1 � Ge2(N=2)1=3

mv2

!�1=2

: (7)

Values of P , v0 and kF for several metals are given in Table I. For values of

kF < 1:1 �A�1 the MP cannot exist, its velocity v0, given by Eq. (3), becomes imagi-

nary. P is independent of q within the range q=kF < 0:96 and goes approximately like

k�2F .
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INELASTIC CROSS SECTION FOR THE SCATTERING OF SPIN PO-

LARIZED NEUTRONS BY MAGNETIC PLASMONS

The general formalism for neutron di�raction13;14 yields the following formula for the

inelastic scatering cross section of a neutron with creation of a magnetic plasmon of

momentum q:

d2�

d
dE0
=

p0

p

�
Mn

2��h2

�2
j < p0; s0z;qjHjp; szj2 �(Ep � Ep0 � �h
q) (8)

Here Mn is the neutron mass, p and sz are the momentum and z-spin component of

the neutron in the initial state and p0 and s0z the corresponding values in the �nal state.

q = p� p0 is the momentum of the created magnetic plasmon. Ep is the neutron energy.

The HamiltonianH describes the dipole-dipole magnetic interaction between the neutron

and the magnetic plasmon:

H =
Z
d3R 	+(R)Hn(R)	(R) (9)

where

	(R) =
X
p;sz

cp;sze
ip:Rjszi (10)

is the neutron �eld operator with cp;sz the neutron annihilation operator, R the neutron

position coordinate and jszi and eigenstate of the neutron spin operator Sz.

Hn(R) = �
Z
d3r ~�pl(r):BS(r�R) (11)

where

~�pl(r) = ge�B�(r)z (12)

is the density of magnetic moment of the MP, z is a unit vector in the z-direction, ge is

the electron gyromagnetic factor, �B the Bohr magneton and

�(r) =
X
q

(�q;" � �q;#)e
iq:r (13)

is the MP spin density at the site r.

BS(r�R) = curlr

 
~�n � (r�R)

jr�Rj3
!

(14)
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is the magnetic �eld operator.14 It corresponds to the magnetic moment operator of the

neutron at position R:

~�n =
gnjej�h
Mnc

S (15)

which acts at site r through the dipole-dipole interaction. Here gn = �1:91 is the neutron
g-factor, c the velocity of light and S the neutron spin operator.

Replacing Eqs. (12) and (13) into Eq. (11), we are left with a Fourier transform of

BS(r � R) which can be carried out analytically. Finally, the integral in the space R

in Eq. (9) leads to a delta function of momentum conservation, namely �(p � p0 � q).

The integrals can be performed easily because Eq. (9) is clearly a Fourier transform of a

convolution. We thus obtain

H = C
X
sz;s

0

z

p;q

c+p�q;s0

z

cp;sz(�q;" � �q;#)G(S;q) (16)

where C = 2��h2e2gegn=(mMnc
2) and

G(S;q) = S:z� (z:q)(S:q)

q2
: (17)

It is convenient to introduce the spin operators S� = Sx � iSy and the variables q� =

qx � iqy. Thus,

G(S;q) = Sz � qz
q2

 
S+q� + S�q+

2
+ Szqz

!
: (18)

Let us consider the case of incoming neutrons with spin polarized along the +z-

direction (up-spin). We then have

W+ = jh1=2jG(S;q)j1=2ij2 = 1

4

 
1� q2z

q2

!2

(19)

for scattering without spin-ip, and

W�jh�1=2jG(S;q)j1=2ij2 = 1

4

q2z
q4
(q2 � q2z) (20)

for scattering with neutron spin-ip. The inelastic cross section then becomes

d2��

d
dE0
=

p0N(�hqgegnr0)2

2pm�h

W��(E � E0 � �h
) : (21)

Here r0 = e2=(mc2) is the classical radius of the electron and the indices � refer to

scattering with and without neutron spin-ip. E and E0 are the initial and �nal neutron
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energies respectively. In view of the �nite life-time of the magnetic plasmon, it is more

appropriate to replace the delta function in Eq. (21) by the lorentzian distribution15

�=�

1 + (E + E0 � �h
q)2� 2
: (22)

CONCLUSIONS

Within the hydrodynamic approximation, the degenerate electron gas considered as

a two component plasma, constituted by the electrons with up and down spin, displays

two collective modes: the usual optical plasmon and an acoustical magnetic plasmon with

dispersion 
 = v0q where v0 is given by Eq. (3). The later, however, is meaningful only for

su�ciently large electron densities such that P = (
� )�1 is considerably smaller than one,

where � is the life-time. Table I lists some metals in which the magnetic plasmon could

be detected. Aluminum seems to be a good candidate. The inelastic cross section for the

scattering of neutrons shows a broad resonance centered at 
q. The order of magnitude of

the MP inelastic cross section, given by Eq. (21), is comparable to that of magnons, given

by Eq. (75) of Ref. 13, with an \e�ective form factor" jFqj2 ' 2q=kF . In the present case,

however, energy and momentum conservation require neutrons with the Fermi velocity of

the electron gas, which means neutron energies of the order of (M=m)EF which is in the

range of several KeV . The experiment is thus di�cult. If feasible, experiments with spin

polarized neutrons in which the scattered beam is both energy and spin analyzed might

detect the magnetic plasmons also through the di�erence between the cross sections with

and without spin ip and their q-dependences.
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FIGURE CAPTIONS AND TABLE

Fig. 1 - Excitation spectrum of the electron gas displaying the individual particle con-

tinuum (between the full lines), and the optical (OP) and the acoustical magnetic

plasmon (MP) dispersions (dashed lines). The values are appropriate for Aluminum

(kF = 1:75 �A�1; EF = 11:6 eV; �h!p = 15:7 eV ). Note that the acoustical plasmon

dispersion falls entirely within the continuum.

Table I - Values of kF ; P = (
�)�1 and v0 for several metals. 
; � and v0 are the

frequency, life-time and group velocity of the magnetic plasmons, respectively, and

kF is the Fermi wavector of the metal in a free electron model.
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TABLE I

ELEMENT kF (�A�1) P �hv0(eV:�A)

Al 1:75 0:12 6:67

Sn 1:63 0:15 5:95

Pb 1:58 0:16 5:55

ln 1:50 0:19 5:06

Au 1:20 0:42 2:84
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