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Abstract

Through the use of a recently generalized entropy, we propose, along the lines

of Robinson 1991, a consistent criterion for testing relevant econometric hypothe-

sis such as independence of time series quantities. This criterion recovers that of

Kullback-Leibler as a particular case, and yields a satisfactory alternative to the

criterion proposed by Brock et al 1987.
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The problem of consistent testing (i.e., discrimination between two hypothesis) is a
central one in Econometrics, as well as in many other areas of knowledge. Nonparamet-
ric testing is of course a very neat one, and has been proposed, on an entropy basis, by
Dmitriev and Tarasenko 1973, Ahmad and Lin 1976 and Vasicek 1976, among others. Very
recently, Robinson 1991 has used the Kullback and Leibler 1951 measure of information
(in turn based on Shannon 1948 entropy) to make an elegant discussion of independence
versus dependence in time series of quantities of �nancial interest. He applied this pro-
cedure to analyse the daily, weekly and monthly exchange rates for the Deutschmark,
Japanese yen, Swiss franc and Pound sterling against the US dollar, using data of the
Bank of England covering the period 2 January 1978 through 28 June 1985.

On a quite di�erent background, we have proposed (Tsallis 1988) a generalization
of Shannon entropy. This generalized entropy (hereafter noted Sq, where q is a �xed
arbitrary real number; q ! 1 yields Shannon entropy) has enabled various satisfactory
generalizations such as that of the Boltzmann-Gibbs equilibrium distribution (Tsallis
1988), the Thermodynamics (Curado and Tsallis 1991), the Boltzmann H-theorem (Ma-
riz 1992, Ramshaw 1993 (a,b)), the Ehrenfest theorem (Plastino and Plastino 1993 a),
the von Neumann equation (Plastino and Plastino 1993 b), the Langevin and Fokker-
Planck equations (Stariolo 1993), the Schroedinger equation (Silver and Tsallis 1993), the
Variational Method in Statistical Mechanics (Plastino and Tsallis 1993), among others.
Furthermore, the generalized entropy Sq has enabled (Plastino and Plastino 1993c) a satis-
factory solution of an old paradox in Astrophysics, namely that related to Chandrasekhar
1958 polytropic theory for stellar dynamics (see also Binney and Tremaine 1987).

The aim of the present work is to show how these ideas can be used to generalize the
Robinson 1991 proposal for consistent nonparametric testing.

Let us �rst adapt the generalized entropy to a (normalized) probability distribution
function f(x) where x is a continuous random variable de�ned in a d-dimensional Eu-
clidean space. We de�ne (Tsallis 1988).

Sq(f) �
Z
dx f(x)

1� [f(x)]q�1

q � 1
(1)

with
R
dx f(x) = 1 and q 2 <. Several interesting properties of Sq(f) are presented in

Tsallis 1988 and Curado and Tsallis 1991. Let us retain now that, by using the fact that
[f(x)]q�1 � 1 + (q � 1) ln f(x) in the q ! 1 limit, we promptly obtain Shannon entropy
SS(f) as a particular case. In other words,

lim
q!1

Sq(f) = �
Z

dx f(x) ln f(x) � SS(f) (2)

Let us next establish an interesting property concerning independent random vari-
ables respectively described by f1(x1) and f2(x2) (assumed normalized). De�nition (1)
straightforwardly leads to

Sq(f1f2) = Sq(f1) + Sq(f2) + (1 � q)Sq(f1)Sq(f2) (3)

i.e., Sq is a pseudo-additive (or pseudo-extensive) quantity; it is additive (or extensive)
if and only if q = 1. This property gives a hint on the statistical interpretation of the
entropic parameter q : (q � 1) measures the lack of extensivity of the information on the
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system. Also, it is worthy mentionning at this point that Jumarie 1988 (a,b) suggests,
for a quantity analogous to q, that q = 1, q < 1 and q > 1 respectively correspond to \no
knowledge", \prior knowledge" and \prior misknowledge" (see also Losee 1988).

Let us now tackle with Kullback and Leibler 1951 measure of information I(f; g)
(see Eq. 1.1 of Robinson 1991) for discriminating between two hypothesis respectively
characterized by the generic normalized distributions f(x) and g(x):

I(f; g) �
Z

dx f(x) ln
f(x)

g(x)
(4)

This quantity satis�es (see, for instance, Robinson 1991)

I(f; g) � 0 8(f; g) (5.a)

I(f; g) = 0 if and only if f = g almost everywhere (5.b)

This property is strongly emphasized by Robinson 1991 (see his Eq. (1.2)) since it
constitutes the very basis for consistency of his nonparametric testing. De�nition (1)
naturally leads (see also Ramshaw 1993a and Silver and Tsallis 1993) to the following
generalization of Kullback and Leibler measure of information (or cross entropy):

Iq(f; g) �
Z
dx f(x)

[f(x)=g(x)]q�1 � 1

q � 1
(6)

We can straightforwardly verify that limq�1 Iq(f; g) = I(f; g); 8(f; g).
Let us now generalize (by following along the lines of Plastino and Tsallis 1993) the

very important property (5). If r � 0, we have that

rq�1 � 1

q � 1
� 1�

1

r
if q > 0 (7.a)

= 1�
1

r
if q = 0 (7.b)

� 1�
1

r
if q < 0 (7.c)

(for q 6= 0, the equality holds if and only if r = 1). Consequently, for say q > 0,

[f(x)
g(x) ]

q�1 � 1

q � 1
� 1�

g(x)

f(x)
(8)

hence

Z
dx f(x)

[f(x)=g(x)]q�1 � 1

q � 1
�
Z
dx f(x)

"
1�

g(x)

f(x)

#
= 1� 1 = 0 (9)

But the left-side member of this inequality precisely is Iq(f; g). Consistenly Eqs. (7) yield
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Iq(f; g) � 0 if q > 0 (10.a)

= 0 if q = 0 (10.b)

� 0 if q < 0 (10.c)

The equality holds, for q 6= 0, if and only if f = g almost everywhere. Equations (5) are
thus generalized for arbitrary q. Let us mention that it is also possible to establish Eqs.
(10) by starting from inequalities proved in Plastino and Tsallis 1993 and performing the
transformation q � 1$ 1� q.

By performing a di�erent transformation, namely q � 1=2 � 1=2 � q, into Eqs. (10),
we can prove that

I1�q(f; g)

1� q
=

Iq(g; f)

q
(11)

Consequently, as a family of nonparametric entropy-based testings, it is enough to consider
q � 1=2 with

Iq(f; g) � 0 (12)

the equality holding if and only if f = g almost everywhere. The particular case q = 1
has been extensively discussed by Robinson 1991. The criterion for the particular case
q = 1=2 becomes

Z
dx
q
f(x)g(x) � 1 (13)

The criterion for the particular case q = 2 becomesZ
dx[f(x)]2=g(x) � 1 (14)

Let us now adapt the main results of this paper to the problem of independence of a
time series fXtg (t = 0; 1; 2; � � �) : Xt could be the daily (or weekly or monthly) enchange
rate of some currency, or alternatively, following Robinson 1991, it could be given by
Xt � ln(Yt=Yt�1) where Yt would be the just mentionned exchange rate. The relevant
random variable would be z � (x; y) � (Xt;Xt�1), (i.e., a d = 2 problem), and the
corresponding distribution function would be f(x; y) such that

R
dxdy f(x; y) = 1. The

marginal distribution functions are given by

h1(x) �
Z
dy f(x; y) (15.a)

h2(y) �
Z
dx f(x; y) (15.b)

The discrimination criterion for independence of course concerns the comparison of f(x; y)
with g(x; y) � h1(x)h2(y). We now address the particular case h1 = h2 � h, which is if
course the most frequent case for �nancial quantities. Criterion (12) becomes
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Z
dxdy f(x; y)

[ f(x;y)
h(x)h(y)

]q�1 � 1

q � 1
� 0

�
q �

1

2

�
(16)

The evaluation if this quantity gives a satisfactory measure of the degree of dependence
between x and y; when and only when it vanishes, x and y can be considered independent.
In the q ! 1 limit, Eq. (16) becomesZ

dxdy f(x; y) ln f(x; y)� 2
Z
dxh(x) lnh(x) � 0 (17)

thus recovering the expression (2.3) of Robinson 1991. For the 1=2 � q < 1 cases, Eq.
(16) becomes Z

dxdy[f(x; y)]q[h(x)h(y)]1�q � 1 (18)

The q = 1=2 particular case becomes
Z
dxdy

q
f(x; y)h(x)h(y) � 1 (19)

For the q > 1 cases, Eq. (16) becomes

Z
dxdy

[f(x; y)]q

[h(x)h(y)]q�1
� 1 (20)

The q = 2 particular case becomesZ
dxdy[f(x; y)]2=[h(x)h(y)] � 1 (21)

In some sense, we can say that this is a satisfactory \quadratic", criterion, in contrast
with the quantity ((5.3) of Robinson 1991)Z

dxdy[f(x; y)]2� (
Z
dx[h(x)]2)2 (22)

basically introduced by Brock et al 1987. Indeed, as properly criticised by Robinson 1991,
the quantity (22) has no de�nite sign and its zero value does not guarantee independence
of x and y. In other words, it cannot be considered an optimal criterion, and could
conveniently be replaced by the present criterion (21).

To conclude, let us stress that, for the q 6= 0 generic case, Iq(f; g) 6= Iq(g; f) if f 6= q.
Consequently, if we want, for some reason, to think of a reciprocal \distance" between f
and g, it might be convenient to de�ne a symetrized quantity, for instance

ISq (f; g) �
1

2
[Iq(f; g) + Iq(g; f)] (23)

hence ISq (f; g) = ISq (g; f); 8(f; g). Adapting this to the problem of measuring the degree
of dependence between x and y, we �nally propose the use, for practical purposes, of the
following family of criteria:

ISq (f(x; y); f[
Z
dy f(x; y)][

Z
dx f(x; y)]g) � 0

�
q �

1

2

�
(24)
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The generalization for d > 2 is straightforward, namely

ISq (f(x1; x2; � � � ; xd); g(x1; x2; � � � ; xd)) � 0
�
q �

1

2

�
(25)

with

g(x1; x2; � � � ; xd) � [
Z
dx2dx3 � � � dxdf(x1; � � � ; xd)]� (26)

� [
Z
dx1dx3 � � � dxdf(x1; � � � ; xd)]�

� � � [
Z
dx1dx2 � � � dxd�1f(x1; � � � ; xd)]

The equality in (25) holds if and only if (x1; x2; � � � ; xd) are all independent. The study of
the q-dependence of speci�c results (e.g., on �nancial time series) could be very enlight-
ening.

I am indebted to R. Guenzburger for calling my attention onto Robinson 1991 work.
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