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SPONTANEOUS EMISSION OF PHONONS BY CARRIERS IN A PERFECT
LATTICE AT 0%k
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A charge carrier in a perfect semiconductor at 0°K  will
spontaneously emit phononsy when its speed exceeds the speed
of sound. The average force due to spontaneous emission is
evaluated for both normal and Umklapp processes. An approximate
solution of the Boltzmann equation shows, that in the vieinity
of the speed of sound the excess velocity is proportional to

the fourth root of the applied eleetric field.
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INTRODUCTION

FOR an electron in a perfect semiconductor the mobility
due to phonon scattering is usually assumed to depend on

temperature as prvT“B/Z, Tn the derivation of this law +

the
changes of the electron energy during the scattering process
are neglected. The emission and absorption processes therefore
enter inte the Boltzmann equation in & simmetrlce way, and the
contrivution of the spontaneous emission, which domirate: at
very low temperaturesy is lost. In the present work the effect

of the spontaneous emission alone, in the absence of phonons on

the electron dynamics is studied.

In metals the resistivity due to the phonon interaction
follows a 5 dependence. This law takes into account the
spontaneous emission; at low temperatures the spontaneous emis-
sion processes in the perturbed fermi distributior are supressad

by the exelusion principle for small currents.

THE MODEL

Consider one Bloch electron in a perfect lattice. It is
coupled to lattice vibrations; the matrix element for the
transition of the electron from state k to k' under emission of

a phonon of wave vecteor g is given by 2

M(ksk) = {nq*i-l)% (zvrh/aprqD% a €y O yokreg ? (1)

where p is the density pf the crystal, ng the initial number of



313

phonons in the state g, V the wolume of the crystal, Wy the.

frequency of the phonon, 1 a vector of the reciprocal lattice,

and 81 the coupling constant.

The tempefature is mantained equal to zero. Therefore‘nq?
= 0y and only the spontaneous emlssion processes will contribute.
To avoid difficulties from the exclusion principle, one slectron
only is considered.

The assumption of a moving elsctron excludes such
Insulators in which carriers become trapped by the deformation
of the lattice 2. It applies to the ususl semiconductors with
carriers of high mobility. Furthermore, the assumption that ngf
= 0 at all times eliminates the description of phonon amplifica-
tion,y which has actually been realized by the acceleration of a

large number of charge carriers 31 4,

TREATMENT WITH AN AVERAGE FORCE

For an estimate of thé electric field neceSsary to mantain
an electron in a state k we shall sum over the momentum losses
per unit time, which on the average occur bf spontanéous emission
of phonons. The probability per unit time of a transition from

kK to k' 1s given by the quantum mechanical formula

P(kikr) = (2n/n)iM(k;sk 0|2 8(Ey =€ ,~hw ) .

For the calculation we shall assume & scalar effective mass

*
of the electron, i.e. Ek = thZ/Zm » & linear phonon dispersion -
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Ua = ¢y and p = 3 phonon polarizations. The force on the elec-
ﬁ;On is the momentum loss per unit time

F, =2 p P(ksk') h(g+4) .

& K|
With (1) ard the replacement )_ =>_ = v/(21r)3] 299  this
: Kkt at ) L
becomes _
Fy = Ah% q(g_+g)6E12_lgz/?_m* - (h%/2m” Hie-g-1)2 - heq| a>q, (2)

where A = p €§/4npc combines the congtants which do not ¢:upend

on ge. ‘

A. YNormal Processes, L = 0

Introducing the angle © between the vectors k and g, and
the de Broglie wave vector of an electron which travels with -

the speed of sound ¥ = m*c/h, the force is

@ 1
Fk=(2nﬂm*/hk')J q3dq J‘ cos 8 §[cos6 ~(q+27)/2k] d(cosO) . (3)
- 0 -1

From the properties of the 8-=function, one integration consists
in the replacement

cos 8 = (g+ 2~)/2k ,
which is possible within the limits

I

Ay 2(k=~) for cos® = +1

Ay = 0 for c¢o0s9 =v/k=c/v
Sporttaneous emission can only occur when v/k<1l, that 1s,

when the speed of the electron hk/m* is larger that the speed of

sound ¢. The emission is limited to a cone given In the



215

laboratory system by the angles
6y = cos™I1 = 0 and 8y = cos-l(v/c),”
and in a system moving with the electron by the angles
o, =1 and o, =w2+§ .
This emission of phonons by a supersonic electron is
analogous to Cerenkov radiation. (Fig. 1).
The expression (3) can be integrated:
2(k=7)

Fk==(2ﬂﬁm*/hk?f qB(q+2¢3/2k dq
0

F = (8mam*/5hkZ Y(k=)4(ak+?) for ¥/x<1, (4)

and Fk = 0 otherwise.

B. Umklapp Processes, L # 0

These contributions depend on the detalls of the crystal
structure. We shall evaluate a case in which the umklapp process

is most efficient, namely when § lies in the direction of k.
(Fig. 2.

Equation (2) then reads

L
F = [Pram*/n({ =k )] quql (L +q co0s0) §[cos b q2+2q1'+9.2—21k )/ 2q -]
- d(cos® }5

or after integrating over cos®
4 + ‘
F_ = ErAm*/h(,@wk)Z:’} qa(il Z-qZ-ZqY)dq =['rrAm*/h(.l —k)‘?'] [%.gﬁq3_
q.

k
q
+
5 2 q
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The 1imits of integration 4, = Lk ~v + [(k+'r)2-21,'?_’_|
correspond to the possible emissions with cos® = =1, The
transition can only occur when these limits are real, i.e. when

k> (29,0’)%— Yo

The ratio Fl%/Fk is plotted in Fig. 3 for the value r/L =
= (loscm"l/108 cm:l)-= 1072, It is seen that unklapp processes
in this case occur only for electrons with 44 times t»e spead of
soundy which, as will be seen later, would require a fiei:  of
order lO3 Volt/em. The spontaneous emission of qptical phonons

sets in at electron energies which usually 1lie still higher.

DISTRIBUT ION FUNCTION

The above treatment is inconsistent. The electron will not
stay in the state k, but make transitiors. It is therefore
necessary to introduce a statistical distribution f(k), which is
the probability that the electron occupies the state k. It
satisfies a Boltzmarm equation. Once f(k) is known, the average
veloclity of the'electron can be calculated as a function of the

applied field.

The Boltzmann equation for a stationary distribution

(eB/h) 3f(k)/dk = A qf(,_lg+g_)6Ela(,,lg*'g_)Z/Zm*-hzga/&n*nhchIdBQ
J
Algf(x) 6[haga/an*whz(k-g)a/am*whcﬂ a’q (5)

o

states that the change of f(k) per unit time due to an electric
field E in x dlrection is compensated by the transitlons into
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and out of a state k.

‘Transitlons into & given k are possible from the roints of

@ rotationally simmetric surface in k-space. The corresponding

analytlcal expression follows from the first &-function in (5):
q=2(v =k cos9).

Similarly the surface into which a given k ocan radiate 1s

given by - '
q=2(k cos@=7) ,

Note in Fig. 4 that in the limit when k «~»Y, the transi-
tlons occur radially. For an electron in a state k» which lies
near the sphere k =7 in the direection of the electric accelerg
tion, both this aéceleration and the spontaneous trangitions cor-
respond to radial motions. Provided that the distribution has
a sufficiently small angular s'pread, 80 that cosv~1l, where
V = & (k, eE)y 1t is the balance of these two opposite radial

motions which determine the current.

We' shall 1imit the problem to a region near the 7 sphere.
As long as cosv ~ 1, the distribution function will be a product
of a radial and én angular function, where the radial function
alone 1s important for the current. Tt 1s therefore sufficient

to estimate the angular spread.

For this we assume that a spontaneous emission from k
changes the angle v by * %, where actually v = [(k-r)4] 3/2, and
that the subsequent electric acceleration contributes to ¥ with

~ v (k=-7)/¥. Such a sequence reduces v when |v|>Y1’Y/(k_- 7 =
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N

= (k- )/v]él For (k=a)/r
within 0.3 so that cos 0.3 = 0.94 is hot much different from 1.

0.1 the angle will therefore stay

PROJECTED BOLTZMANN EQUATION

We introduce the dimensionless varlables of Fig. 5; where r
has been used as a unit in k-space, and neglect in the following
terms of order 54. A projected traﬁsition rate is obtained by
ingegrating P(§;037) over the plane o = const.:‘

P(E 300 = ZvIP(g 309y de .
Using for this the relation
= (-~ c)(§+o-)% )

the projected Boltzmann equation is obtained

(s o}
ar(cVac =3B | (0-4) £ty - £ Bo7 (o) o>0

8]

o (6)
af(o)/do = % B f (cr-g)a f(g)d; o<0

-0

where B = 8rAm* ’YB/‘heE is dimenslonless.

It is noteworthy that B disappears from the equation (6)

with the transformation s =3Bl/4 Oy X = 31/45.
. ed)
af(s )/ds = %_f (‘s-x)-2 f(x) dx - % s7 £(s) s>0
s
(7)
@

]

ar(sVas = 3 [ (%)% £Go) ax . s <0
' -8
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The mean velocity
<vd = c(1+<ad) = o(l +<s> B4 (8)
therefore again shows the El’/4 dependence implied in éQo (4) for

k =7,

An asymptotic solution of (7) for large s is f(s)=exp[;s4/é]9
which shows a very rapid decay. Forjs = 0 eq. (7) shows that
[df(s?/dé]s=0)>0 and [dzf(s7/d£]S=0'<Oo More information about
f(s) may be obtained by iteration procedures. Starting with

f{x) = 1/a for 0<{x<g and f(x) = O otherwise, we obtain after one

step = —
£(s) = {2 (a%- g%y « L (a-si® | < 0<s<a
E 48 | &8
£fis) = % (a%+ g%y - %@ (a-g)% é% -2 <5 <0 (9)
| - 1 a
£(s) = 0 |sl>a ,

where the constants @f_integration have been chosen so that f(s)
is continuous for s ::o and vanishes at symetrie points + a. Note
that with the ébprcxiﬁate solution (9) df(Obﬁsgdeﬁé)/dsag and
dBfGBKdSB are continuous at s = 0y as required by (7) for the

exact solution.

The parameter a can be determined by some aditional require
ment. A physical condition is that the total momertum irradiated
by the distribution per unit time equals the force on the charge.

From (4) this is given by

B -
—= | K™(k-r? (41+9) £(k) cosg a3k = 1 ,

577 ks



320

where ¢= ¥ (x, eE). Similarly, the total energy irradiated per
unit time 1s equal to the energy dissipated by the electric
field, if

B
= J e L(-v)® £(x) a3k = | kf(k) cosedk .
k>v

In the one dimensional case both equation read to lowest order

s a a
_f £(s) stas =_f f(slds ,
0 -8,

which is satisfied with (9) and a = 2.32. This determine the

mean value of s
a

(s> =_I sf(s) ds = % = 0.38 .

=a
Owing to the rough calculation this value may be in error by as

much as 20%. The velocity of the electron by (B) is

{v> = c(l+ 0.38 B“l/é)

CONDITIONS ON A MEASUREMENT

Although this improved treatment changes the earlier result
(4) only slightly, the effect on the electric field is consider
able owing to the El/4 dependence. For an order of magnitude
estimate, we insert numerical values, which may be typical for
Germanium,; although the use of a scalar effectlve mass is a con-

5 cm/sec. )

siderable source of error. Let 81 = 4.8 ev.y ¢ = 3.9 10
m* =0.3m, p= 5.46 gr/cmE. Then Y = 10° cm“l, A = 0.66 10—29

erg cm4/sec., B =2.7 :LO"'2 Volt cm'l/E. A mean veloelty <v> =



w3
s

\rl

= 1.1 is sustained by an electric fleld E = 1.3 10~ Volt/em.
Typical emitted phonons then have a wave vector q = 0.lv=
10% on™l. Therefore a relaxation time between emissions T is
glven by eET = hq, from which 7T = 4.5 10“8 sec. This cor=
responds to a mean free path for spontaneous phonoﬁ‘emission A=
=1.1 ev =2 1072 en. This requires that a sample used for
observation be sufficiently pure, so that the density N of scal
tering centers with a cross section statisry NS << A™%, In
order that phonons of wave vector g éfé not excited thermally,
the temperature must be less than hcq/kB =735 1072 %k,

For a ten time$ higher field F= 1,5 10~ Volt/cm, we obiain <v)=
= 1.18, T =8,10"7 sec., A= 3.7 1073 om, T<5 1072 %K, where,
however, the velocity may already exceed the range 6f validity

of this approximation.

The values show that an observation should be rather

delicate.
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