NOTAS DE FfsIca
VOLUME V
NS 17

ON THE PHYSICAL INTERPRETATION OF COMPLEX
POLES OF THE S-MATRIX - I.

by

G. Beck and H. M. Nussenzvelg

CENTRO BRASILEIRO DE PESQUISAS FiSIcas
Av. Wenceslau Braz, 71
RIO DE JANEIRO
1959



Notas de Fisica - Volume V - Ne hiv

ON THE PHYSICAL INTERPRETATION OF COMPLEX
*
POLES OF THE S-MATRIX - I.

*k
G. Beck and H. M. Nussenzveig

Centro Brasileiro de Pesquisas Fisicas

(Received December 22nd, 1959)

SUMMARY: - To improve the ususl treatment of the transient behaviour of continuous
systems by the "methcd of complex eigenvalues™, it is necessary to take intoaccount
the excitation conditions. This is done by considering initial-value problems.
Three examples are investigated: (l) a harmonie oscillator coupled with a vibrating
string; (2) the electromagnetic oscillations of a perfectly conducting spherical an
tenna; (3) the scattering of Schrodinger particles by a hard sphers. In each case
the general solution of the initiasl-value problem is related to the "method of com-
plex eigenvalues" by associating a propagator with each pole of the S-matrix. In
this way, the difficulty of exponential growbth, which occurs in the usual treatment,
is eliminated, and the dependence of the decay law on the excitation is exhibited.
For Schrodinger particles, the spreading of wave packets restricts the domain of vg
lidity of the exponential decay law. The origin of the ™ransient modes" which are
associated with the poles of the S-matrix is discussed. It is shown that the anten
na modes originate from the effect of inertial forces. The limitations on the physi
cal interpretation in the case of short-lived modes are emphasized.
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1. = Intreduction.

It is well known that the transient behaviour of a discrete
system, such as an electric network with 1lumped parameters or a me~
chanical system with a finite number of degrees of freedom, is closg
ly related to the "complex eigenfrequencies' of the system. Let us
consider; for instance, an electric neftwork with lumped parameters.
Its response to a time-harmonic excitation may be described by giv-
ing a characteristic function of the neftwork (steady-state admit-
tance or impedance) as a function of the frequency. This function
usually has an analytic continuation with poles in the "complex=fre
quency" plane. The poles are assocliated with the "free modes of og
eillation® of the network. The response of the network te inhomo-
geneous initial conditions (given charges in the capacitors or cur-
rents in the inductors), in the absence of external driving func=- |
tions, is a superposition of these modes, with amplitudes determin-
ed by the initial conditions. The poles also play an important role:
in the determination of the response of the network to an arbitrary
excitation, including external driving functions lc

The “method of complex eigenvalues® is also employed in the
theory of transients in continuous systems, but the sitﬁation is far
less satisfactory in this case. Perhaps the earliest example is
Thomson's treatment 2 of the elctromagnetic oscillations of a per-
fecetly conducting sphere. Thomsonts "natural modes of ogcillation®

satisfy the requirement of containing only outgoing radiation. They

1. M.F. Gardner & J.L. Barnes: Trangients in Linear Systems (New York, 1942).

2. JoJ. Thomson: Prog, Lond. Math. Soc. (1), 15, 197 (1884).
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are assoclated with the "complex eigenfreguencies"” w, = fdﬁ --iYn,
pn >0 (n =1y 2y oes)y with a corresponding time factor exp(-igntl
Acecording to Thomson,tnﬁ represents the frequency, and Yn the éamg
ing constant, associated with the nth natural mode., All the modes
are strongly damped. The same method was applied by ABRAHAM 3 to a
thin, perfectly conducting, prolate spheroid. The damping is much
weaker in this case.

Thomson's method was criticized by LAMB 4, on the ground
that the solutions aré not bounded at infinity. In fact, Thomson's
modes behave like r'l exp [-1cun(t - %)] at large dilstances from
the sphere, so that they increase exponentially for r — e . This
"exponential catastrophe" 1s a characteristic feature of such damp-
ed, purely outgoing waves, since the field at large distances was in
the neighbourhood of the source at a corfespondingly remote time.
As was pointed out by Lamb, the difficulty is related to the unphysi
cal assumption that the modes have been in existence for an indefi-
nitely long time. It may be overcome by taking into account the ex
citation conditions, as was shown by Lamb in an example. ‘

Some illustrations of thils point in connections with Thom-
son's problem were given by LOVE S, He considered the case inwhich
the initial field around the sphere is identical to an electrostatic
multipole field. This gives rise to an outgoing disturbance with a

3. M. Abraham: Ann, !!nsj-k éé, 435 (1898)-
4o H, Lamb: Prog. lond, Math. Sec. (1), 32, 208 (1900).
3. A.E.H. Love: Proc. lond., Mathe Sog. (2), 2, 88 (1904).
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sharp front, which travels with the velocity of light. It was shown
by Love that the field beyond the wave front remains undisturbed (so
that there is no exponential catastrophe), whereas the field behind
the wave front is a superposition of Thomsonis modes with constant
amplitudes. Thus; Love'!s paper shows the way to find a proper physi
cal interpretation of Thomson's modes; for a particular type of exci
tation. However, it does not indicate how the results depend on the
excitation.

The solution of Thomsonts problem for an arbitrary initial

6

field was given by HILL and GELBAUM ~ 4 in the form of an expansion
in stationary states. However,; the connection between this form of
the solution and Thomson's modes was not discussed.

The method of complex eigenvalues was introduced in quantum
mechanics by GAMOW 7, in connection with the theory of alpha-decay.
The “complex-energy wave functions" which correspond to Thomsonts
modes are assoclated with "decaying states®. The exponential cata~
strophe is also found in this case. Methods for dealing with this
difficulty have been suggested in many papers. The usunal method 8s

9910911512 55 to consider the decay of a wave packet which is initi=-

6, E.L. Hill % B. Gelbaum: unpublishéd (1954). We are indsbted to Professor W.B.
Cheston for bringing this paper to our attention. We wish to thank Professor E.L.
Hill for sending us a copy of the manuscript.

7. G. Gamow: Z. Phys., 51, 204 (1928).

8. 0.K. Rice: Fhys. Rev., 35, 1538 (1930).

9. HoB.Go Casimir: Physica (Haag), 1, 193 (1934).

10. G. Breit & F.L. Yost: Phys. Rev., 48, 205 (1935).

11. B. Breit: Handbuch der Physik, Bd. XLI/1 {Berlin 1959), p. 28.
12, A.M. Lane & R.G. Thomass Reve Mod, Phys., 30, 257 (1958), 343.
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ally concentrated within the nucleus. For a Schrddinger parficle,
in contrast with the electromagnetic case, there is no limiting ve-
locity,; and an outgoing wave packet with a sharp front is imposgsi=-

bleB° What one tries to show, then, is that the wave function is
very small for r; vt, and differs very little from the "wave func-
tion of a decaylng state" for r « vt, ﬁhere v is a mean velocity

associated with the emitted partiecle. This has been done, however,
only for special choices of the wave packet, and the approximations
are valid only for long-lived and widely separated "decayingétatesﬁ

A general relation between the decay law and the energy speg
trum of the initial state was given by KRYLOV and FOCK'®. However,
their definition of "decay law" cannot be accepted without restric-
tions,

A time-dependent theory of resonance reactions was given by
MOSHINSKY 15, and applied by LOZANO to the problems of decay 16 and
of scattering by a potential 170 The connection betweenMoshinsky's
approach and that of the present paper will be discussed later.

Complex elgenvalues have also been employed in the theory of

emission of light 18 and in the theory of unstable elementary par-

13. N. G. Van Kempen: Phys. Rev., 91, 1267 (1953).

14. N.8. Krylov & V.A. Fock: J. Exptl. Theoret, Phys. (U.S.S.R.), 17, 93 (1947).
See algo LoA. Knalfin: Soviet Physics (JETP), 6, 1053 (1958).

15. M. Moshinsky: Phys. Rev., 84, 525 (1951).
16. J.M. Lozano: Rev. Mex. Fis., 3, 63 (1954).
170 JoMo Lozano: ReVe Mex., FiSo’ 3“? 155 (1953)0

18, V.F. Weisskopf & E.P. Wigner: Z. Physik, 63, 54 (1930); 65, 18 (1930); W.
Heitler: The Quantum Theory of Radiation, 3rd. ed. (Oxford, 1954).
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ticles 12 but these problems will not be considered here.

In the present paper, we shall investigate three examples of
transients in continuous systems. The excitation conditions will be
taken into account by locking for the general solution of the ini=
tial-value problem. The treatment is based on an extension of the
standard methods which are employed in the case of discrete systems.
In this way, it is possible to obtain a rigorous foundation for the
method of complex eigenvalues. The "complex eigenvalues" are the
poles of the S-matrix. Thus, the main questions to be considered
are: (a) What is the relation between the transient behaviour of the
system and the poles of the g«matrixg (b) How does the behaviour of
the system depend on the execitation?

The first example (section 2) is the problem of a harmonic
oscillator coupled with a vibrating string, a special case of which
was solved by Lamb 40 This is one of the simplest illustrations of
the theory, and it is particularly suitable for explaining the method
The second example (section 3) is Thomson's problem of the perfectly
conducting sphere, which is of special interest in connection with
antenna theory. The third example (section 4) is the analogue of
Thomson's problem in non-relativistic quantum mechanics, lceoy the
initial~value problem for a hard sphere,

In each case, we shall find the general solution of the ini-
tial=value problem. The solution will be expressed in terms of pro-
pagators, which are very convenient for visualizing the results. The

The only parameters which appear in the solution are the poles of the

19, See G. Hohler: Z. Fhysik, %2%, 546 (1958),where further references are given,
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S-matrix. Their role is similar to that of the "complex eigenfrequen-

cles" of discrete systems. A propagator may be associated with each
pole of the S-matrix. These "propagators of transient modes" are
closely related to the "complex-frequency wave functions" which are
employed in the method of complex eigenvalues, but the excitation ata
definite instant introduces a cut-off factor, whieh eliminates the ex
ponential catastrophe. |

The idea of exponential decay, which is usﬁally.associated
with the method of complex eigenvalues, may be appiied,.in general,
only to the propagators, and not to the actual wave function. In the
cage of short~1ived modes (e.g. in Thomson’s problem cr in the hard~-
sphere problem),the decay law depends very strongly on theexcitatlon.
In the Schrodinger case, one mist also take into account the effect
of the spreading of wave packets; as will be shown in section 4, this
introduces further limitations on the domain of validity of the expo-'
nential decay law. _

The origin of the "transient modes" will also be discus=
sed. It will be seen that there are significant differences, in this
respect, between the first example and the others.

It will be shown in the second part that the "expansioh
in transient modes" introduced in this paper may have as a limiting
case an expansion in stationary states. In general, however, the tran
sient modes are not even approximately orthogonal, and one cannot ag-

scribe an independent physical meaning to each term in the expansion.
2. = Vibrating string and oscillator.

The problem which will be treated in this section may be

formulated as follows: a harmonic oséillator is attached to the ex-
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tremity of a semi-definite string; given the initial displacement and

velocity of the osclillator and the string, it is reguired to determine

the subsegquent motion. This differs only slightly from Lanmb's ex-

ample 40 However, while Lamb restricted himself to the case in which
the string is at rest, and a sudden blow is given to the oseillator,
we shall-consider an arbitrary initial excitation.

Let the rest position of the string coinelde with the
positive x-axis, and let y(x,t) denote the transverse displacement of
the string. We shall assume that the oscillator is constrained to
move only in the y direction, so that y(0,t) represents the displace~-
ment of the oscillator. Let m denote the mass of the oscillator, and
W its natural frequency. Let T be the tension of the string, and
let us define 7 = T/m. If we take the wave velocity in the string to
be unity, its equation of mction is

(1) °’Z-"2’- °’§Y=o (x>0).
IdX It

The equation of motion of the oscillator

2
- d 2 .y 2X
(2) (52 * %o ) ¥(0,8) =y 2X (0,¢t)

may be considered as a boundary condition for the motion of the

string. Let the initial conditions be
(3) y(x,0) = u(x) 5 SLx,0) = v(x) (x >0).

The stationary solutions of (1) and (2) may be written

as (up to a constant factor)
(4) y(xsty w) = exp [-1w(x+t)] - S(w)exp[iw(x-t)] ,

where
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Wwo- W —-'i'Yw (W +w0) ) (W + W

= 2
+i'¥co (W~ w)(w-w)

(5) S(w) =

ONON

We. w

is the S-matrix (in this case, an ordinary function of u>), whieh sat

isfies the well-known unitarity and symmetry conditionsoTheparameters
(6) W = Hw? --}Ivz)?-%if
are the poleé-of S(w), which, in agreement with causality, are located
in the lower half of the complex w-plane. ‘According to the method
of complex eigenvalues, they repregsent the "complex eigenfrequenciles?
of the system.

The general soiution of (1) and (2) may be expressed as
a superposition of stationary solutions (Fourier integral)o The ex-
pansion coefficlents have to be determined by the requirement that the
solution must satisfy the initial conditions (3). It may be seen that
although the stationary solutions do form a complete set'ao,lthey'are
not orthogonal in this case. The physical reason for this 1s the ad~ _
ditional degree'of freedom due to the presence of the oscillator. In
spite of the non-orthogonality, however, it is still possible to find
formulae for the evaluation 6f the expans;on coefficients. |

Perhaps the most obvious way of findihg“the connection
with the method of complex eigenvalues would be to deform,the path of
integration in the Fourier integral into the complex wW-plane. The
connection would appear by taking the r931dues of the integrand at the
poles of §(cu)e We shall, however, follow a different procedure,
which, besides being much simpler, leads more directly to the physical
interpretation. This procedure is an extension of d'Alembertﬁs clas=-
20. N.G.Van Kampen: Physica, 21, 127 (1955).
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sical solution of the Cauchy problem for the vibrating string.
. - The general solution of (1) is

e .
A

(7) y(x,st) = £f(z=t) + g(x+t),

where f and g  are arbitrary functions of their arguments. To

satisfy the initial conditions (3), it suffices to take

X
(8) £(x) =t ux) -+ [ wx)axr (x> 0),
: ©
. X '
(9 gx) =+ u(x) +% f v(xt) dx! (x 20).
' (e

W'e may add an arbitrary constant to f , and subtract the same con-
stant from g , without modifying the results. However, the choice of
the lower 1limit O in the above integrals simplifies the subsequent
calculations.

Since we are interested in the solution of the initial -
value problem for t>0, the function g{x+t) in (7) is completely de
‘fined by (9). However, f(x=-t) is defined by (8) only if x2t . In

this case, (7) becomes

x+t
(10) y(xyt) = #lulx+) +ux-8)) ++ [ v(znaxr & zt)

x=t
which is the v;ell-known d'Alembert solution, corresponding to free prg
i:agation in the string.

In order to determine the solution for x <t, we need the
continuationlof f to negative values of its argument. Physically,
this means that we must find the "reflected wave", l.e., that part of
the outgoing wave which has interacted with the oscillator. For this
purpose, we must employ the boundary condition. Replaecing (7) in (2),
and introducing the notation f(t) = f(~t) , we find
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(11)  Fr(t) + yFr(t) + wg (t) = -gﬂ(-t)_ +agi(t) -wg g(t) (t=0),

where the primes stand for derivatives with respect to the argument.
According to (9), the second member of (11) is known, so that this is
an ordinary differential equation for the unknown function T(t).

Since the dlsplacement of the oscillator is gi#en by
y(0,t) =y (t) = F(t) + g(t), (11) may be rewritten as

2

(123 ya(t) + 7y3(8) + WSy (£) = 2981t =y[ur(t) +v(t)] .

This is the equation of mqtion of a damped harmonic osclllator, with
natural frequency W, and damping constant ¥ , subjeet to the exter;
nal driving fofce_ 2mygi(t) ), Thus,_the effect of the coupling
to the string on the motion of the‘osci;lator‘is equivalent to a_da@g.
ing term gradiatiog damping) and a given external force, due to the

incoming waves.

Introducing the notations u(0) = uj and v(0) =v_  for

the initial displacement and initial velocity of the oscillator, re-

spectively, we find from (8) and (9)

(13)  £(0) = g(0) = du, 5 T#(0) = F[v - ur(0)); g'(0) = #[v_+u'0).

o
The solution of (11) subject to the conditions (13) is a
typical problem of the theory of transients in discrete systems, to

(*) The parameter 7 plays the role of a coupling constant between the oseillator
and the string. According to (6); for ¥« Rw (weak coupling), the poles of S(w)
are located very close to the realaxis, below the peints Tw . When 7 increases
from 0 to 2 wo, they approach the negative imaginary axis (moving_ along the half-
circle of radius W and center at the origin}, joining each other at the point

~i W for v =2 Uo (cri'bic_:al damping). For < >2 wo » the poles move in opposite di-
rections along the negative imaginary axis; one of them approaches the origin,while
the other tends to =-iw ,
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whieh the standard Laplace transformation method 1 may be applied. If

F(p)y G(p), denote the Laplace transforms of f(t), g(t), respective

lyy the Laplace transform of (11) becomes
(p+p; ) p+p,) Py v,

L 2 G(p) + =
(p~p1)(p-p,) (p-p; )(p-p5)

(14) F(p) = =

=[-1 +Z-———3—-] G(p)w‘%(pl"'paﬂlz—i—— (uo-!-z’-) ’

i=1 (p~-p.) - j=1 (P=Py) Pj
where |
(;.5) Pj = -1 wj (3 =1,y 2),
and
(16) ay = -ij(p "'pk)(pj pk) =l = j.residue [s(w)] 0= w, (i=1,2; kx#1)
The inverse Laplace transform of (14) is
(17) T(t)= -g(t) + :.i}f'_. ajexp(p E)*g(t) -'%(pl'*pa)*l
o jéi aj(u°+ %)exp(pjt) ,_'
where

£ t
(18)  £1(t)*£,(t) =]; £2(6)E,(t=t1)ate = £f1(t-t')f2(t’)dt'

is the convolution product.

It follows from (7}, (9) and (17) that

t+x

(19) y(x,yt) = FluCt+)-u(t-x)] + ¥, AR ‘Q‘Za sexplpy(t-x)] .
-X

{ [ ey fatanr 2

v
] dx‘-(pl-!- pa)_l (u0+ ‘f}?)} (0gx<t),
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Equations (10) and (19) give the general solution of the prg 

blem. The case treated by Lamb, in which the string is initially at
rest and an impulse isg given to the oscillator, corresponds to the

initial conditions
(20) u(x) = 0 (x>»0); v(x) = 0 (x>0) Ve £ O

Substituting this in the solution, we find, in exact agreement with

Lambt's result,
2
J - .
o E;i b; H(t x)exp[pj(t x)] ’
where H(t) denotes Heaviside's step function, H(t) = 0 (t<0; H(t) =

(21)  y(xyt) = <H(p, +p,) "Ny

=1 (t>0). For x<t, each term of (21) is of the form usually asso-
clated with a "complex-frequency wave function®. However, there isno
exponential'catastrbphe, because the step function introduces a sharp
cut-off at the wave front. This corresponds to the excitatibn at a
definite instant.

We may consider the situation described by (21) as the ana-
logue of an emission process, in which the kinetic energy initially
concentrated in the oscillator is gradually propagated to the string.

according to (12), the terms which contain u, and v, in (19)
may be regarded as the ordinary transients associated with the ini-
tial displacement and velocity of the oscillator, which are transmit-
ted to the stringo To interpret the remaining terms, which arise
from the forced motion of fhe oscillator, it suffices to consider the
case in which uo.= v, = 0. Under these circumstances, (10) and (19)

may be rewrltten as follows:

0 .
(22) y({x,t = 4[ [Gm(x,xﬂ,t) f(x1) + G+(x,x',t)g(x’)]dx' R
o)
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where f and g are given by (8) and (9),

(23) G_(xyxt,yt) = B(x-xt-t) ,
(24) G (x,x1,t) = B(x-x'xt) - S(x+xi-t) +
z
+ & aJH(t-x-x')exp[pj(t—Xax')] 3

and 68(x) is Diract's delta function.

By means of (8) and (9), the initial wave function is decom=
posed into an "outgoing part" £ and an "incoming part" g. The sub-
sequent behaviour of f and g 1is determined by the kernels G_ and

G, of the integral transformation (22), For this reason, we shall

call G_ the propagator of the outgoing part, and G, the propagator of

*
the incoming part

i If we take the special (purely symbolic) initial tonditions
25) wx) = S(x=x.) ; v(x) =0,

(22) becomes

(26) y(x,t) =% G_(x,xo,t) + % G+(x,xo,t) .

Thus, in this case, the initial pulse splits into two identical pulses
which move in opposite directions. According to (23), the outgoing
pulse propagates freely (as it would do in an unlimited string), as
ought to be expected. According to (24), the same applies to the 1ip
coming pulse before it strikes the oseilllator (t<:xo). For t>x'= Xq
the first term in the second member of (24) vanishes. The remaining

terms represent the reflected wave, which cénsists of two parts: (a)

an inverted "mirror image" of the incoming pulse; (b) an "exponential

* It should be understcod that the names "outgoing® and "incoming® refer only to
to the initial situation; subsequently, the "incoming part® gives rise to an out-
going (reflected) wave.
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tail", similar to (21), which is due to the excitation of the osci-

lator trapsients by the incoming pulse (+)u |
These results may also be visualized by introducing an "image
space", i.e.y a fictitious continuation of the string for x <0. The
initial situation in real space and in image space cqrrésponding_to
(26) is depicted in figure 1, which shows the break-up of the initial

pulse at X » and the mirror image of the incoming pulse at ~Xq 9 fol=

(o]
lowed by the exponential tail. If we let the different parts of this
initial configuration propagate freely (in the direction of the ar-'

rows in figure 1), the resulting wave function in real space is iden=

tical to (26).

—— i —

OOV NNy

fig. 1 = An initisl pulse at x, in vcal space splits into two equal pulzes
walch provsgate in opposite directions; the incoming pulse gives rise in ip
age creee Lo @ mirrosr imege ab ~Xq2 followea by sn ewwenential tall.

(+) It may readily be verified that, in the limiting case m-co (m—+0), which
corresponds to a fixed extremity (free extremity), we obtain from (2/) the ordi-
nary reflection with chahge of sign (without change of sign). In the case m =0
we must employ the relation: 'J).’im [vH(z)exp(~72)] = 8(z).

— 0y .
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According to (24}, to each pole w, of 3(wW) corresponds a
term of the form
(27) Gj(x,xﬁ,t) = ajH(tmxmxﬂ)exp[pj(thmx”)]
in the propagator of the reflected wave. We shall eall Gj(x,xﬂgt)

the propagator of the transient mode associated with the pole wj o
Notice that, according to (16), the factor aj is completely determin-
ed by the polss of the S-matrix. The remarks which were made in con-
nection with (21) may be applied just as well to (27). In this way,
we may give a rigorous meaning to the method of complex eigenvalues ,

for an arbitrary initial execitation: the "complex~freguency wave

functions", with a suitable cut-off factor (which eliminates the expo

nential catastrophe), correspond precisely to the propagators of the

transient modes.

Owing to the "exponential tail® in (24), the form of the re-

acr—

lected wave at a given moment depends on the whole previous history,

i.20.5 on the entire portion of the incoming wave which has stricken

the oscillator up to that moment. It is only in very special cases
that terms of the form of (27) will appear in the reflected wave.
This happens in Lamb's illustrations of an “emission process" (ef.
21) ). According to (25) and (26), it also happens in the case of
excitation by a very sharp pulse. More generally, if the initial dig
turbance vanishes for X>X, the reflected wave will be of this form
for t-x:>xo y 1.0y after the whole incoming wave packet has stricken
the oscillator. However, these are special cases, and we may conclude
that, as a rule (for an arbitrary excitation), no trace of exponential

behaviour will appear in the reflected wave.
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3. = Spherical antenna.

The next problem which we shall consider is Thomson's problem
of the "free oscillations" of a perfectly conducting spherical anten-
na. We shall study the decay of an arbitrary initial field. Our pro
hlem is therefore to find a solution of Maxwell's equations in the ex

terior of a perfectly conducting sphere, which satisfies the boundary

conditions on the surface of the sphere and given initial conditions.

The electromagnetic field outside the sphere may be represen
ted in terms of two scalar functions, the well-known Debye poten=-
tials 21922, mpe general solution of Maxwell's equations in free
space 1s a superposition of "electric" (E) and 'magnetic" (M) solu -
tions, corresponding to the Debye potentials TTE(;,t) and TTM(gjt) ’
respectively. The general form of the E-solutlon is {(we take ¢c =1)

(28) E(xr,t) = rot rot(;lTE); H(p,t) = .e;éi-;- rot(_x_*nE).
The general form of the M-solution is obtained from (28) by substitut
ing:
E M, .
(29) ITo-IT" ; E—H j; H—=E .
Both Debye potentials satisfy the secalar wave.eQuation
(30) (b - 8% o2y TIEMp 4y = o,

We shall employ spherieal coordinates, r=(r, 9 ,9), with
origin at the center of the sphere. Let a be the radius of the
sphere. The boundary condition at the surface of the sphere (vanish-

ing of the tangential component of the electric field) may be expres-

2ls Po.Jo.W. Debye: Ann, Physik, 30, 57 (1909) .
22. G.J. Bouwkamp & H.B.G. Casimir: Physica, 20, 539 (1954).
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sed as follows:

(31) T(z,4) =0 for r=a ,
(32) - :?; [ rITE(g,t)] =0 for r =a .

Acéording to (30), the initisl=value problem is determined by the fol
lowing initial conditions.

E ,M
(33 TTE’M(Q,O) = UE’M(Q); aTTt (r,0) = vy (rza).
a
Let us introduce the multipole expansion of the Debye poten-
tials o0 £
(34) rTEMe,t) = eZl ZE‘FE’M(I*,t)Y{m(Q,(P) )
- m—-—

It follows from (28) and (%9) that

(35)7 rEE(r,t) =Z Z ¢4 +l)'+{ (I’at)YQm(Q CP) ’

=1 m=={
(36)  rH_(r,t) = g:l ) L DIV (e s0)7(0, 9D,

50 that the initial-value problem may be formulated Jjust as well in

terms of the radial components of E and H , which are closely rela

ted to the Debye potentials ZZo

The initial values (33) ha#e corresponding expansions

Gn M = L ) wiRir 40, 905 vEMyp) =

=€7?; mZe oM (r)zem(e ®),s

provided that we restriect ourselves to functions having Zero mean

(*)

value when averaged over all solid angles . This restriction, as

(*) We thereby exclude from our consideration the trivial case of the electrista-
tic field due to a charged sphers.
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well as the corresponding omission of the term § = O from (34) to (37)
is related to the non-existence of radiating monopoles 22.

Substituting (34) and (37) in (30) to (33), we find separate
initial-value problems for each value of { and m. We may restrict -
ourselves in what follows to one particular value of ! andm. In
order not to encumber the notation, we shall omit both of these sube
seripts. We shall also omit the superscripts E and M, except where
it is necessary to draw the attention to differences between electric
and magnetic multipoles; most of the results apply equally well to
both caseso

The initial-value problem for an electric or magnetic multi-

pole of order ¢ then becomes:s

2 2
(38) [ g 5 - L(d +1)r™2 - -ngJ [r y(rst)] =0 (r>a);
Ir at

(39) ¢ (ry0) = ulr) ; 4%#%(r,0) = v(r) (r »a);

(40) ¢ Ma,t) = 0 ;
(41) {':f; [ T yE(r,t)]}

The normalized stationary solutions of (38) which satisfy the

i
O

L

r=a

boundary conditions are
(42) P(k,r)exp(~1kt) = (2r)"F[n$2)(er) + s(ORfL) (k)] exp(-1xt),

where hgl)(z) ). hga)(z) are the spherical Hankel functions 239

The S=functions for magnetic and electric multipoles are given by

23. Po M. Morse & H. Feshbach: Methods of Theoretical Physics (New York, 1953)
p. 1573. '
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(43) sM(1)

~[0f2 k) ]/ [0V (xa)]

H

(44) sB(x) 'u{kah,%Z)(ka)]s/[kahgl)(ka)]e ;
where the primes stand for derivatives with respect to kao
The well-known relations
(45) S*(k)S(k*) = S(k)S(=k) = 1
follow from (43) and (44) and from the properties of the spheriecal

Hankel functions.

We have

L n-la
(46) hEl)(Z) = z“’lexp(iz) Z L (P""n)s(zz)n -
n=0 ni(f -n)¢

=z L’lpa (z)exp(iz) ,

where p, (z) 1s a polynomial of degree L in z . Similarly
(47) [zhf(:{‘)(z)]’ = z”lm}‘qe _,;1(z)exp(iz) )

where q£+‘i(z) is a polynomial of degree £ +1 4n z.
It follows from (43) to (47) that SM(k), s®(kx) are meromer~
phic functions of the complex variable k. Their poles are roots of

the eguations

(48) hﬁl)(ka) =0 (M)

(49) [kahil.)(ka)]a =0 (E) .

According to (46) and (47), (48) has exactly L roots, and (49) has
exactly 4 + 1 roots.

It will be shown in appendix A that all the roots of (48)
and (49) are simple, and that they are located in the lower half of

the k-plane. Therefore, s™(1) has exactly ) poles and §E(k) has e:

actly 4 +1poles; all the Poles are simple and lie in the lower half-
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plane. The non-existence of poles in the upper half-plane also fol=-

lows from the causality conditions 249 According to (45), if k, is a
pole, so is —kg N while kz and <k, are zeros. Therefore, the poles
lie sjmmetrically with respect to the imaginary axis (*)o

Let k? (j =1y 2yo0es b)) and k‘? (5 =1y 29000y & + 1) be the
poles of SM(k) and SE(k) 3 respectively. Then, it follows from (43)
to (47) that

£
50)  s%m) = (-1 explezia) I e idhaedh
d =1
: ) {+ -
(51)  s%(k) = (-1) ~ ¥ bxp(-2ika) ﬁ[l(k +R Gk
These are the canonical product expansions of the § function, for a

scatterer of range a and a finite number of poles 24°

The poles of S™(k) and of §%(k) for the first few values of

f are given in table I 25.,

TABLE I :
The poles of s¥(k) ana or sB(x)

2 = 1 2 3
: "202.61
aklz‘r = -1 +EyY3 - 21
' :: l’a?s - 1087i
axf = |+EyF - H -1.601 + 0,87 - 2,171
+ 1,81 = 0.704 | +2.77 - 0.831

(#) The results which have been proved so i‘a{lgn the poles of SM(k) are particular
cases of theneral theorems on the zeros of Hy “(z) for+ : O,which are due to H. Fal
kenberg & E.Hilb (Gottinger Nachrichten, 190 (1916)) and H. Falkenberg (Math. Z. 335,
457 (1932). It also follows from their investigations that 8Y(k) has no poles on
the negative imaginary axis for even J,whereas, for odd {, it has one and only one

imaginary pole.

4. N.Go Van Kampen: Phys.Rev., 90, 1072 (1953).
5. JoA. Stratton: Electromagnetic Theory (New York, 1941), p. 559. A graphicalre
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The functions krF(k,r){0£k <@ ), where F(k,r) has been de=
fined in (42), form a complete orthonormal set in a&r<4mw . This al=-
lows us to solve the initial-value problem by means of an expansion in
stationary states. The general solution of (38) which satisfies the
boundary conditions is

(52) p(r,t) = fm[a(k)ces(kt)+b(k)sin(kt)]F(k,r)kde .
. (o] .

The initial conditions (39) will be satisfied if we take

® w©
(53) a(k) = / u(r')F*(k,r')rﬂzdr",kb(k) = / v(r')F*(k,r')r'Zdr'.
a a

Replacing these results in (52), we get

(54) y (r,t) = %[ dk /mdr“(kr')z[u(r') +ik"lv(r')] .
\ @ a

° F (k’r )F(k,r)exp(-ikt)o

This 1s equivalent to the result obtained by Hill and Gelbaum 6o

The connection with the method of complex eigenvalues may be
found by invertlng the order of integration in (54) and evaluating
the 1ntegra1 with respect to k by contour integratlon, this gives
rise to residues at the poles of S(k). It is much simpler, however,
to apply the method of section 2y which 1eads to an extension of

Lovetg treatment 5

The general solution of the multipole wave equation (38)
is 26 7 -

(55) \]J(r,t) r? e[r Pir,t)] ,

presentation of the poles of S (k) may be found in E. Jahnke & F. Emde: Tablesg of
Functiong (New York, 1945), p.243, fig. 129:

26. H. Lamb: Hydrodynamics, 6th ed. (Cambridge, 1953), p. 522
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where Dg is the differential operator

!

(56) p! = (—2-)

ror

and @(r,t) is the general solution of the one-dimensional wave equa=-
tion

(57) P(r,t) = f(r-t) +g(r+t) .

Equation (65) 1is related to the well-~-known process of generating a mul
tipole by repeated differentiation of a monopole.

The function ¢(r,t) 1s not uniquely determined by (55), for
we may add to it an arbitrary solution X (r,t) of the homogeneous equa
tion
(58) p! [r™ x(r,t)] =0 .

The general solution of this equation is

(59) X(ryt) = a ()Pt
n=

where Ao(t),a”, Af, _l(t) are arbitrary functions of t. If we re=
strict ourselves to solutions of the form (57), there is still some ar
bitrariness in the choice of the functions f and g . In fact, ac-

cording to (59), the pair f(r-t), g(r+t) 1is equivalent to the pair

2
(60) f(r-t) + Z;(-l)nﬂ‘cn(r-—t)n y g{r+t) + }iocn(r-l-t)n ’
n: n:

where Cyrovos CZE are 2{ + 1 arbitrary .constants. We may take ad-
vantage of this arbitrariness to choose the functions f and g in
such a way that the solution takes the simplest possible form. We
sh'a;ll determine these functions by the following 2€ + 1 conditions:

(61) £030a) = g03a) =0 (3 = 0y 1y0eey £-1);
- 8y - gt X e) = o,
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where f(j)(a) denotes the Jjth derivative of f, evaluated at the
point a, and similarly for g(j)(a) o

Replacing (55) to (57) in the initial conditions (39),we get

(62) b} {27 [z(r)e(r)]} = tun Gea,

(63) Df. 1 [g(r)-£(2)] = - v(r) (r>a).

The choice of the homogeneous conditons (61l) greatly simplifies the
solution of these equations. If we define the operator D;a applied to

a function w(r) by

- T ri re.-l '
(64) D, [wir)] = [a r,dry /a ryArsec. fa wiry Jry dry (4 inte~
grations ),
it follows from (61) to (63) that
(65) f(r) = % rD;Q[r'Pu(r)] -3 D;Q -1 [r'av(r)] (r » a),
(66) g(r) = # w2 rlue)] + 0 )] (rma ).

Equation (66) determines the function g(r+t) for all t =0,
whereas f(r-t) is determined by (65) only for r-t=a. To find the
"reflected wave" f(r-t) (r-t<a), we must apply the boundary condi-
tion.

It follows ﬁ‘rom (55) to (57) that

(67) Y (r,t) = ZO (1%, v 2 [eR-)pgy o+ g Emrey)
n=

where ;

(68) oy = [2Pn1f-n)1] 7T L +n)s .

In the case of magnetic multipoles, we must apply (40), which gives

(69) Z_O epga ™ Ay = (ptn Zb( -1 an-lztm)yy
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where

(70) f(t) = fla=t); g(t) = gla+t) .

According to (61), T(t) and g(t) , as well as their derivatives up to
the order Q-l, vanish for t = 0. To solve (69) under these conditions
we shall apply the Laplace transformation. Let F(p), G(p), be the La-
place transforms of T(t) , g(t) . Then, according to (43) and (46),
the Laplace transform of (69) may be written as follows: T

(71) F(p) = -exp(»Zap)SM(iap)G(p) .
Taking into account (50), we get

(72) exp( -2ap) 1ap) = (-1 TT (p+p'D(p-pth) 1=

j=1
= (--1)E ;]Z‘. M(P PJ ’

where

Mo oM
(73) pj = 1k:§ ) .

M o_ €+, M o N
(74) & = (1) 2p] T#TJ (py +A(oY- gD = 1

. residue[exp(Zika)SM(k)]k=kJ.

Replacing (72) in (71), and applying the inverse Laplace
transformation, we finally obtaih

(75) Moy = (-1 M) + jZ;L afexp(ie)gh 1) (>0,

where we have employed the notation for the convolution product, de-
fined in (18). Equations (66), (70) and (75) determine the reflected
wave.

An entirely simllar calculation gives, for electric multi~ -

poles,
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(76) FB(t) = (-1)

where p?

}Z E(t) + Z ajexp(p t ) *g 22(8) (t>0),

and a? may be obtained from (73) and (74) by replacing M by
E and & by L+1 (ef. (51) )

Bquations (55) to (57); (65), (66), (75) and (76) give the
general solution of our initial-value problem. As was done in the preg

vious section, we may rewrite the solution in terms of propagators:

(77) O(rst) =fm[(}m(rua)grﬂ=agt)f(r8)+G;(rma9rﬂ=agt)g(rﬂ)]drﬂ o
where the "outgoing ;art" f and the "incoming part" g are defined by
(65) and (66)s: and the corresponding propagators G and G, are givenby
(78) G_(r,rit) = 8(rerit), B

(79)  @Mraeogh) = B(repiet. + (-)l* Strwi-s) +
+ Z G. (rarﬂqt:)c\
j=1
. § €+:L
(80) Glreri,t) = §(r=ri+t) + (=1) &(r+ri-t) + zii Gj(rqrﬁ?t),
with
(81) Gj(rgrﬂgt} = ajH(t=r=rﬁ)exp[pj{t=r=rU)] o

These results may again be visualized by means of an "‘mage
space" (r<a), in which the role of the mirror is played by the sux faze
of the sphere. An incoming pulse gives rise to a "mirror image™ ( the
sign of which depends on the type and ofder of the multipole), followed
by an "exponential tail" of transient modes. The expression (81) for
the propagator of a transient mode is similar to that found in the pre
vious section; according to (73) and (74), it is entirely determined
by the poles of the S-matrix. Thus, it is possible to give a rigorous

meaning to Thomson'’s "natural modes of osecillation" (ef. section 1) by
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introducing a cut-off factor (which eliminates the exponential cata-
strophe) and identifying them with the propagators of the transient
modes.

The apparent lack of symmetry in the propagators is due to
the fact that (78) to (81) apply only for t>0. For t< 0, the unknown
in (69) 1s g(a+t), whereas f(a-t) is given by (65). The complete ex-
pression for the propagators, valid both for t >0 and for t< 0, is
easily found. The result is that (79) and (80) remain unchanged, while
(82) G_(Tyr1yt) = G, (ryrt,y=t) ,
so that the symmetry of the propagators is restored. The solution for
t<0 1s related to the solution for t>0 by time inversion, so that
the "emission modes" are replaced by "absorption modes".

The results obtained in the present problem show a close fog
mal analogy with those obtained in section 2. It must be emphasized,
however, that, from the physical point of view,; the transient phenome-
na found in these two problems have essentially different origins. In
the case of section 24 we have to deal wifh an interaction between a
field (string) and a discrete mechanical system (oseillator). As a cop
sequence of the energy exchange between string and esclllator, part of
the energy localized in the field may become temporarily stored in the
mechanical system. This process is easy to visualize and does not re=
quire any further explanation.

In the case of the perfectly conducting sphere, however, the
field forms a closed system, which ¢an be described by a completaérthg
gonal set of stationary wave functions. Thus, the transient modes
which have been found in this case cannot be attributed to an interacw
tion with another system (such as the oscillator in the former examplel



236
As will be shown below, we have to deal with an interaction betweendif
ferent regions of the field.

It might appea£9 at first sight, that the surface currents
and charges on the sphére should be considered as an independent part
of the system, which may absorb field energy and store it for some
time. However, since the sphere is a perfect conductor, the normal com
ponent of Poynting's vector on its surface must vanish,; and no energy
can be accumulated on the surface. The energy accumulation which gives
rise to the transient modes must therefore be localized in the field
itself, Thus,; we are led to look for the physical process by means of
which energy can temporarily be stored outside ¢f the sphere, apparent
ly in free space. We shall refer to this phenomenon as "antenna ef-
fect",

In order to understand the antenna effects it should first be
observed that energy can be accumulated in those regions of a wave
field where "repulsive forces' act upon ity i.e.s where the "refractive
index" decreases or becomes imaginary. This occurs; for instance, in
the interior of a potential barrier * or in the interior of a supercon
ductor.

In the present cagse; the repulsive forces (which act in the
neighborhood of the sphere) are centrifugal forces, which correspond to
the "centrifugal potential® f?(g'*l)rma in the multipole wave equation
[ £

dr

(83)

5 A d+1r2 + kz] [r (k)] =0 .

It can easily be verified that the antenna modes occur only in fregquepn

*# A characteristic example of energy accumulation inside a potential barrier has re
cently been studied by M. MALOGOLOWKIN (to be published).
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¢y regions which satisfy the condition
(84) K° & 2L+ 1782,

which means that the centrifugal forces must be taken into account.
In particular, as will be seen in the next section, no antenna modes
appear in the case of g-waves 27,

Centrifugal forces give rise to 'mon-asymptotic" terms in
the solutions of the field equaticns. In the case of aﬁ glectric di-
pole wave, for instance, the sclutien of Maxwell's equations corre-

spoﬁding to an inconing spherical wéve packet has the form

(85) | E, = 2r~2 [gt(r+t) - r"lg(r-+t) 1 cos & ,

o . .
(86) EQ = -p~t [g"(r+1t) = r'lf;'(r+t) + r"ag(r+t)]s':!.n e,
(87) Hy = p~t lg"(r+1t) - r'lg'_(i'+t)]sin9 .

As long as the_wave packet 1s at large distances from the sphere, on-
ly asymptotic terms (in r"l;“have to be considered, and bath the
energy density and the Poyﬁting vector are proportional to sinae, Cle}
that they vanish at the poles (8 = 0, wv). As the wave packet ap-
proaches the sphere, however, non-asymptotic terms become increasing=-
ly more important, and the energy current is deviated towards the po~
lar regions, where an energy storage takes place.

In general terms, the deviation of Poynting's vector under
the action of inertial forces can be considered as a consequence of
Einstein's conservaticn laws for the eclectromagnetic field in curvi -

linear coordinates

27, Cf, also H.M, Nussenzvelg: Nuclear Physics, 11, 499 (1959), sect. 4.2(b).
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IVESE 1 Jeny S M
3 =3 “ =g S
2x dx

where Exv and Sz are the components of the metric tensor and of
the electromagnetic energy-momentum tensor, respectively. It follows
from this that the way in which inertial forces act on the electromag
netic field is very similar to the way in which they act on a mechani
cal system. We conclude, therefore, that the antenna effect is a di=-
rect consequence of the inertia of the electromagnetic field, and that
it results from the action of the inertial field.

The antemna effect is a very general phenomenon; which comes
into play whenever a propagating field meets obstacles with curved
surfaces. It also plays a role in diffraction phenomena, giving rise
to optical border effects in the neighbourhood of sharp edges. Amore
detailed discussion of the general character of the antenna effect
and its connection with inertial forces will be given in another
paper.

It must be strongly emphasized, in connection with the physi
cal interpretation of the transient modes, that no special signifi-
cance can be attached, in general, to the "amplitude of excitaticn® of
each separate mode. In fact, the transient modes are not orthogonal,
so that the total energy is not a sum of terms assoclated with theﬂ
separate modes, and it is not possible to excite one particular mode
independently of the others. A similar situation exists in the case
of transients in discrete systems.

The remarks which were made at the end of section 2 concern

ing the dependence of the decay on the e xcitation may be extended to

‘the present case.
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The perfect conductor, which we have considered in this seg
tion, is an ideal limiting case, which may be approximately realized
by a super-conductor or by a very good normal conductor, In the lat-
ter case, however, the presence of the ohmic losses renders the prob-
lem considerably more complicated, and additional effects, which are
not apparent ih the 1limit of infinite conductivity, may have to be

taken into account.
4. - Hard sphere.

The counterpart 'in non-relativistic quantum mechanics of the

problem treated in section 3 is the following problem: given an arbi

tra. normalizable) initial wave packet in the exterior of a "hard

gphere" of a radius a , it is reguired to determinelggs subsequent

bebavioﬁrg The solution of this problem for s-waves has been given
by MOSHINSKY 28; however, as will be seen below, the S~function has no
poies in this case, so that we shall bé interested in higher angular
momenta. |

The initial-value problem may be formulated as follows: to

find a solution of Schrdédinger®s equation (we take h =m = 1)
(88) -1 -0:,‘2; lp‘(g,t) = ‘%A\p(g;,t)

which satisfies the boundary condition

(89) IP (ryt) =0 for r =a

and the initial condition

(90) W(z,0) = U(r) (r =z a).

If we expand the wave function and its initial value in par

28. M. Moshinsky: Rev. Mex. Fis,, 1, 28 (1952).
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tial waves,

(91) W (gt = Eo mZ_::e o728y (8 §),

(92) u(g) = ZO L gy (D005 €,
we find the following initiasl=value problem for the Lth partial wave:

g2 -2 .
(93) [-3;-2-{(2"-1):' + 21 }%]{rq/(r,t)] = 0,
(94)  WY(a,t) = 0,
(95) Y(r,0) =u(r) (r »a),

where the subscripts f. and m have been dropped for convenlence.

The statlonary scattering states are given by

(96) F(k 7 )exp(-1Et) = (m)"ﬁ[héa)(kr) + S(k)h%l)(kr)]exp(-mt),
where

(97) E = % k°

and

(98) S(k) = -[h&a)(ka)]/[h&“(ka)] ;

which 1s identical %0 the S-function for magnetlc multipols waves of
order { (ef. (43)). The only difference is that £ = 0 is allowed
here. The corresponding S-function is

(99) S(k) = exp(=2ika) (for £ = 0),

which has no poles.

The solution of the initial-valﬁe problem by means of the
stationary-state expansion is similar to that given by the previous
section. The main differences are the dispersion formula (97) and the
absence of a condition on the initial time derivative. The results

may be obtained by means of an appropriate modification of (54):
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+m

(100) Y(r,t) = % f

[8 )
dk [dr'(kr')z'u(r')F*(k,r')'
-0 a )

- exp(~¥1x%t) .
The connection with the method of complex eigenvalues may he
found by an extension of the treatment given in section 3;

The general solution of the radial equation (93) is
(101) y(r,t) =¥l [z o(z )],

where D% is the differential operator (56), and ¢(r,t) 1s the gene-
ral solution of the one-dimensional free-particle Schrodinger equation

which is given by 29

+00 +00
(102)  9(r;8) = [ Ur-rtyederiart = [ Ulr,t)eCe rriar
=0 Q0
where £(r') is an arbitrary function, and
(103) (U(ryt) = exp( wiw/4)(21rt)"%exp( irt/2t)

is the fré?-particle Schrodinger propagator ("heat pole" solution).
‘We havg

(104)  1im W(r,t) = §(r),
t -0

so that the initial condition (95) becomes
(105) Di[r'lf(r) ] = r“lu(r) (r>a).

The function f(r) is not uniquely determined by (101) and
(102); we may add to it any solution of the equation

(106) Dg {r“l[f(r~+r') +f(r-r')]} = 0.

The general solution of this equation is

(107) £f(r) = 2 c et
n'—"

29+ W. Peuli: Handbuch der Physik, XXIV/1, 2.Aufl,(Berlin, 1933), p.103.
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where Co’ Cl,oeu, C{-l are arbitrary constants. We may profit from
this to choose f in such a way that the solution takes the simplest
possible form. This is achieved by imposing the supplementary condi-

*
tions

(108)  £897(a) =0 (5 =0, 1, eoes Le1).

The solution of (105) subject to these conditions is

(109) f(r) = rD;E[r_{h(r)] (r >a),
{

where D; is defined by (64). The problem is now reduced to the deter
mination of the "reflected wave" f(r) (r<«a) in (102). Substituting
(101) and (102) in the boundary condition (94), we obtain the differen

tial equation
4

(110) ngc:)( _1)ncﬁna-n~l[f({—n)(a_r)+f(€ c=n)(a+r)] =0 (I’ > 0)

where f(a=r) 1s the unknown,:and Cp, 1s defined by (68).

Equation (110) is identical to (69), with t replaced by r
and f = g (but not ¥ = g 1), The supplementary conditions (108) are
related in the same way to (61). Therefore, according to (75), the so
lution of (110) is

4
eflf(a+r) + z: a”exp(pjr)*f(aﬁr) (r >0) ,

j=1 Y
where P; and ay are given by (73) and (74), respectively.

(111) fla=r) = (=1)

P ————

Equations (101), (102), (109) and (111) give the general solu
tion of the initial-value problem. The solutiocn may be rewritten in
the following form

* These conditions do not exclude the possibility that terms of the form of (107},
which would give rise to singular integrals in (102), may appear in the solution. How
ever, according to (106), such terms may be dropped.
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(112) P(r,t) =_40%(r-a,r'-a,t)f(r')dr' y

where f(r')} is given by (109), and G(r,r',t) , which may be called

the propagator of the P ~wave, 1s given by

) {
(113)  G(rsriyt) = Ulr-rt,t) + (-l)e+lU(r+r',t) + jﬂ_laj(r,r-,w )

where
(114) Gj(r,r',t) = aJM(r-"r',kj,t),
and

+00
(115) M(x,k,t) = J( H(x'-x)exp[ik(x-x')]U(x',t)dx' .
o0

If we introduce an "image space", so that (113) is defined for
=00 <{r < + o, it follows from (104) and {112) to (114) that G(r,rt,t)
1s that solution of the one-dimensional free-particle Schrédinger equa

tion which, for t = 0, reduces to

s(r-rt) + (=1)1* §(pirr) +

(116) G(r,rt,0)
!
* g;i ajH(-r-r')exp[ikJ(r+r')] .
According to (79) and (81), this is identical to GE(r,r',O). Thus,
we may say again that a pulse in "real space" at t = 0 gives rise in
"image space" to a mirror image, followed by an exponential tail of
transient modes. If we let this initial configuration propagate freely
(according to Schrddinger's equation), the resulﬁ is described by
G(r,rt,t).
There is a far-reaching formal analogy between the present pro
blem and that of the previous section (for magnetic multipoles). The
maln difference lies in the nature of free propagation, which is de-

scribed in one case by the wave equation, and in the other by Schrodin
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ger's equation. Notice that, since there is no limiting velocity for
Schrbdinger particles, the "reflected pulse" in this case appears at
once in real space, whereas in the electromagnetic case it appears only
after ﬁhe inéident.pulse has stricken the surface of the sphere.
The'propagator associated with a pole of the S-matrix,
(117).  k = ki=iK = (K>0),
is given by (114) and (115). The function M(x,k,t) was introduced by
MOSHINSKY'lso It‘may be expressed in terms of the error function of a

compléxVargument,?by means of the formula

(118) M(x sk st) =;%v(x,k,t)erfc(c“ix/4w)
with
(119)  w = '(at)"%(xukt),

‘(120)_- erfc(z) j‘exp( FASTIR AN
and : | ,

a2 vkt éexp[i(kx;ﬂw]

where E is the "complex energy", given by

(122) 'E E -3 il =% %% = 3 2k?) - 1xK .

According;to (115), M(x,k,t) is that solution of the freeopar
ticle Schrddinger equation which, for t = 0, reduces to
(123)  M(x,k,0) = H(-x)exp(ikx) ,
which is a'w,;ve packet _with a sharp front. For t > 0, the front be-
comes diffuse, and is replaced bj a2 transitional region, in which
lwl £ » According to (119), the width of this region is given by
tx=kti (Zt)% (or, i ordlnary units, (th/m)%)o This Y"blurring" of
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the initially sharp edge is a purely quantal "diffractiqn" effect.* We
shall be interested in the behaviour of M(x,k,t) outside of the transi
tional region, i.e. elther beyond or behind the wave front, but not
very close to it. Thus, we want to find the behaviour of (118) for
|wl »1 . For this purpose, we shall employ the asymptotic expansion
of the error function, which is given in appendix B.

Let A and B denote the regions of the complex plane above and
below the second bisector, respectively, so that -r/4 Larg w<3n/4 if
WEA », and 31/4 < arg w<7r/4 if we€B . Then, it follows from (118)

and from the results given in appendix B that

(124)  M(xykyt) = My(x,k,t) = 1t(x-kt) " 0(x,t) [1-dtw 2+, . .+

+ (AN~ 1™ (0] 4r wed

(125) M(x ko t) = Mp(xskyt) = vixyk,t) + MA(x,k,t) if wes, 7
where U(x,t) and v{x,k,t) are defined by (103) and (121), respective
ly, and
(126)  |R (W) € n¥ 2™ Nana)is [w]™L (n =0, 15000)

For |w| »1 , M,(x,k,t) differs from the free-particle pro-

pagator exxentially by a factor of squared modulus

(127)  t%[(x-xrt)2+(E)E] T,
which has a peak of width Et arocund the point x = k't . Mﬁ differs

from MA by the additional term v(x,k,t) . This term corresponds to the

¥ For real Xk, (123) may be thought of as representing a beam of particles of Byelo
city" k confined to the half-space x40 by a perfectly absorbing shutter, which is
suddenly removed at t = 0. According to classical mechanics, the behaviour of the
current at a point x > 0 as a function of time would be given by a step function,

with a sharp rise at t = x/k (time of flight). For Schrédinger particles, the current
begins to rise immediately after =0, and approaches the classical value for tox/k.
In the neighbourhood of t = x/k, there appear oscillations in the current, which re-
semble the Fresnel diffraction pattern of a straight edge in opties. Moshinsky has
called this effect "diffraction in time" (M. Moshinsky: Phys. Rev., 88, 625 (1952) ).
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"complex-energy wave function' which is usually associated with adecayw

ing state” in the method of complex eigenvalues. However, it appears in

the propagator only for a special class of poles, and only for a limit-
ed range of values of x and t .

To show this, let us consider the behaviour of M(x.,k,t) in
"real space" (x > 0), as a function of x, for fixed t (t > 0). It may
be seen in figure 2 that, if k€ B, then we A for all x>0 . On the
other hand, if k€ A, then w €B if
(128) 0< x< (k'=K)t ,

and we€A if (k*'-K)t<x . Thus, it is only in the case of poles loca=~

ted above the second bisector, and only within the range of values _ of
xand t defined by (128), that the term usually assoclated with a"de~

~k,t )

2t lies in A. For a pole kl

belonging to A, xmklt lies in B within the range indicated by the thick

Fig. 2. - For a pole k2 belonging to B, x~k

line; and it lies in A outside of this range.
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caying state" appears in the propagator.

It is readily verified that the real part of the exponent in

(121) is always negative within the range (128), so that there is no
exponential catastrophe. This also follows from the conservation of
probability, since (123) is a normalizable wave packet. The essential
point is the presence of the‘cutmoff factor in (123).

The distinction between poles located above or below the se=
cond bisector is implicitly contained in HEITLER and HU's criterionBo,
according to which only those poles for which the real part Et?! of the
"complex energy" (122) is positive give rise to "decaying states". It

1 that Heitler and Hu's justification

has been pointed out elesewhere 3
of this criterion is not satisfactory.

) In fact, according to (128), there is a continuous transition
between poles belonging to A and poles belonging to B, the range (128)
becgming smaller and smaller as the second bisector is approached.
Morebver, if we compare the order of magnitude of the two terms of
(128) ‘as a function of time, within the range (128), we find that
MA(xék,t) always predominates over v(x,k,t) after a sufficient lapse of
time. Since
(129) [v(xskyt)] = exp[K(x=kit)] ,
we may say that the term v(x;k;t) 1s associated with the propagation
of the initial wave packet, without change of shape (with veloeity k')
However, as is well kypown, a free-particle Schrodinger wave packet al-

ways undergoes a broadening in the course of time. This "spreading ef

fect" is contained in the term MA(x,k,t) of (125). It follows from

30, W.Heitler & N. Hu: Nature , 159, 776 (1947).
3l. HoM. Nugsenzveig: Nuclear Physics, 11, 499 (1959).
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(123) that the width of the initial wave packet i1s of the order of K7L,
According to the uncertainty relation, this corresponds to a momentum
spread of the order of K, so that the wave packet will have spread byan
amount of the order of Kt after a time ¢t (ef. (127) ). The effect of
spreading becomes important when this quantity is comparable with the
initial width, i1.e., for tzts = Kzn On the cother hand, according
(129), the lifetime is given by & = [ =1 = %(k!K)mlo It follows that,
as we approach the second bisector, ts and € become of the same order
so that the spreading effect predominates over the exponential decay
within a single half=1ife. There is no time, so to speak, for the expo
nential law to manifest itself. This explains the special role whichis
played by the second bisector.

It also follows from the above discussion that, no matter what

may be the position of the pole, the exponentisl law cannot remain valid

for arbitrarily large timege: it must ultimately be superseded by the
decéy law for a free-particle wave packet. In this case, as is well
known 32, the probability distribution at a fixed point behaves like
t™2 for t—bmw . This may be verified in the present example; similar re
sults have been obtained by other authors 19, 33,

In the case of a pole which is close to the real axis ("long =
‘lived" transient mode), a careful discussion is required to determine
the range of validity of the exponential decay law and the dependence
of the decay on~the excitation. However, in the hard-sphere problem,

there are no poles satisfying this condition. Although there are poles

32, W.Brenig & R. Haag: Fortgchr, Phys., 7, 183 (1959) .
33. J. Petzold: 2. Physik, 153, 422 (1959).
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ibove the second bisector for { » 4, theyae still far from the real ax
is (see JAHNKE-EMDE 25)0 This may be understood by considering the orie
gin of the transient modes in this case. They are clearly related to
the presence of the "centrifugal barrier": for sufficlently large angu
lar momentum, it is possible for a wave packet to remain "trapped" near
tne surface of the sphere for a short time (cf. the discussion on the
role of the centrifugal forces at the end of section 3). However, the
centrifugal barrier alone is too transparent to allow the formation of
long=-lived modes.

So far, we have considered only the behaviour of the propaga -
tor for t >0. However, (112) to (115) may be applied just as well for
t < 0. According to (103), we may take |
(130)  Ulry=t) = U (ryt)s
It follows from (115) and (130 that
(131)  M(xsky=t) = M (xyk 5t),
so that poles which are symmetrically placed with respect to the imagi-
nary axis exchange thelr roles under time inversion. In partieular,for
t <0, the term (121) may appear in the propagator only in the case of
poles located above the first bisector *o It corresponds to the reverse
of an "emission mode", so that it may be called an "absorption mode“30o
Thus, the absorption modes appear in connection with "final-value pro=-
blems", i.e., when we want to describe how a given situation was built
upo

Taking into account the symmetry of the pole distributionabout
the imaginary axis, it follows from (113) to (115), (130) and (131) that
(122) G(r,r!',t) = G*(r,rﬂ,t)o

* We are indebted for this remark to Professor L. Van Hove.
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If we denote the solution of the initial=value problem, which is a fung

tional of the initial value u(r), by ¥(r,t,{u]), it follows from
(101}, (112) and (1%2) that

(133) Y(r,=-t,[u]) = Hf(r,t,[u*]) .

The second member of (133) describes the "time-reversed motion" corre-
sponding to the solution for + >0 340 This result could of course
have been anticipated.

- By going over from the stationary-state expansion (100) to
the "expansion in transient modes® (113), we have effectively replaced
a function given on the real axis, the S~function, by a set of complex
parameters, the poles of the S~-function. This transformation may be
very useful: it gives us greater insight into the behaviour of the sg
luticn, and it clearly displays the role of the exeitation conditions.
However, it.must be stressed that, on account of the non-orthogonality

h
of the transient modes, it is not possible, in genmeral, to ascribe an

independent physical meaning to_each term of the expansion. Thus, the

price that has to be paid for what is accomplished by this transforma=
tion is the loss of some definiteness in the physical interpretation.
The transient modes occupy an intermediate position between

stationary states and free~particle wave packets, sharing some of the
properties of both. In the case of poles which are far from the real
axis, the free-particle features predominate. On the other hand, in
the case of poles which are c¢lose to the real axis, it may be possible
to give an approximate description of the system, during a long time
interval, by means of concepts taken over from the theory of statiormary

states. A more complete discussion of this case will be given in the

34. E.P. Wigner; Gottinger Nachrichten, 31, 546 (1932) .
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second part.
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Appendix
A. = The roots of equations (48) and (49)

In this appendix, we shall prove the following results:

(a) The roots of the equations

(M) n{t(xa) = 0,

(E) [kah,gl)(ka)]- =0,

are located in the lower half of the k-plane; b) all the roots are
simple,

To prove (a), we start from the following identity, which re-
sults from the differential equation of the spherical Hankel functions:

(A1) (k2" By | (k)| 2 = a@;{rzhfl)(kr) '&q;[k}t(l)(kr)]**

e2r(1) * dr (1)
r[h{ (kr)] dr[h (kr)]} )

and we integrate both members over the interval froma to r. If k

is a root of (M) or (E), the contribution to the second member from the
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lower limit a vanlshes) and we are left with

(a2) m?--u"'?-)[|n§1’<kw|2r-2aw = 2| y{V0er) Sl PDeer)” -
- [nf P )] " [nf k) ]}

For sufficiently large r, we have |kr|» { , so that the spheriocal Han-
kel functions in the second member of (A2) may be replaced by their
asymptotic expansions, leading to

(A3) (xBk'@) £r|h{(1)(kr')lar'adrf n =1 k) "Bk Yoxp[1 (k=K )r) .

Let us assume first that k = k'=iK , with k! A 0 . Then, it
follows from (A3) that

(44) K = tlk) Bexpt2ke) [ [ B2 kr1)|2ri12art]L 5 0
k| "exp r[ﬁl% r1)|2ri2ar1) ,

so that (a) is proved, except in the case of purely imaginary roots. To
complete the proof, we must show that there cannot be any roots on the
positive imaginary axls. This follows from the fact that, for v >0,
14k(1v) in (46) and -1q£+1(iv) in (47) are polynomials in v withreal
positive coefficients.

To prove statement (b), it suffices to show that [hfl)(ka)] 'E
A0 or [kahél}(ka)]" #0 ,1f k 4is a root of (M) or (E), respec=-
tively. This follows from the non-vanishing of the Wronskian determi-
nants
() w$Bamy M) - n{Pm Pe) = 21272,

(26) (2052 2)] ' [2n{ 1(2)]" = [abf1)(2)] '[a0{P(2)]" =

= 21[1 - 1(2+1)z79]
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B, = Asymptotic expansion of the error function *o
The function erfe(z), where -z is a complex variable, is de=
fined by
(B1)  erfe(z) = 2rt [Cexp(-22)a g .
2

The patﬁ'of‘integration in (Bl) may be deformed in an arbitrary way,
provided that it remains within the quadrant -m/4 § arg L < nw/4 for
14 ] —e
We have
(B2) erfe(z) + erfe(=-z) = erfe(=o) = 2,
so that 1t suffices to consider the half-plane Re z > 0 .

To find the asymptotic expansion of erfe(z) in this half-
plane, we choose as path of integration a straight line parallel to
the real axisp A straightforward application of the method of inte-

gration by parts yields

L
(B3) erfe(z) = v”zzﬂlexp(wzz)[l=%z"2+ l--'-%zm‘l-n.,ﬁ
2

+(=H)™(2n-1)112""MR (2)]
where

(B4) (2n=1)1f = 1,3.50..(2n=1),

. wo+ilmz
(B5)  B(2) = (-)ent1)itz exp(z®) [ exp(-22)5 225 .
2
It follows from (B5) that
(B6)  |R (2)] <n? 20" on+1) 1] 2] "2R-1 (Re 22 0 ) .

The asymptotic expansion of erfc(z) in the left half=-plane
follows from (B2) and (B3).

* The results of this appendix have been given in a less complute form by Moshin

sky



