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One starts from a planar Maxwell-Chern-Simons model endowed with a Lorentz-violating term.

The Dirac sector is introduced exhibiting a Yukawa and a minimal coupling with the scalar and

the gauge �elds, respectively. One then evaluates the electron-electron interaction as the Fourier

transform of the M�oller scattering amplitude carried out in the non-relativistic limit. In the case of

a purely time-like background, the interaction potential can be exactly solved, exhibiting a typical

massless behavior far from the origin. The scalar interaction potential is always attractive whereas

the gauge intermediation may also present attraction even when considered in the presence of the

centrifugal barrier and the A2 term. Such a result is a strong indication that electron-electron bound

states may appear in this theoretical framework.

PACS numbers: 11.10.Kk; 11.30.Cp; 11.30.Er; 12.60.-i

I. INTRODUCTION

In the beginning 90�s, the M�oller scattering was adopted as a theoretical tool to investigate the possible

formation of electron-electron bound states in the context of a Maxwell-Chern-Simons electrodynamics [1].

According to this procedure, one starts from the scattering amplitude (carried out at tree-level) to obtain the

electron-electron interaction potential (Born approximation). It was then observed that the potential may come

out negative whenever the topological mass exceeds the electron mass (s > me), condition which is particularly

discouraging in relation to the possibility of applying this kind of model to some condensed matter systems,

where one usually deals with low-energy excitations. The introduction of the Higgs sector, arising from the

spontaneous symmetry breaking [2], [3], has shown to be a theoretical factor able to provide a scalar attractive

interaction. The overall potential, consisting in the sum of the gauge and scalar contributions, may then be

negative independently of the condition s > me, a necessary premise for the formation of Cooper pairs in the

context of low-energy systems.

In the latest years, Lorentz-violating theories have been in focus of intensive investigation [4],[5]. In a recent

work, a planar Lorentz-violating electrodynamics [6] was derived from the dimensional reduction of a Maxwell

electrodynamics supplemented with the Carroll-Field-Jackiw (CFJ) term [7]. The consistency of this model

has already been analyzed, revealing a model globally stable, causal and unitary for both time- and spacelike

backgrounds [6]. The fact that the unitarity is assured makes feasible, at principle, the consistent quantization

of this model, which sets it up as a candidate to be applied to situations where the quantization of the modes

is a real condition (such as some condensed matter phenomena). In a posterior investigation [8], the equations

of motion (for the �eld strengths and potentials) corresponding to this planar model were determined and

solved in the static regime. The results obtained di�er from the solutions of a pure MCS electrodynamics by

background-depending corrections, which amount to relevant qualitative modi�cations. Indeed, the solutions

have exhibited a typical massless behavior (in the electric sector) for the case of a timelike background and

anisotropic behavior for the case of a spacelike background. It was also reported the possibility of obtaining an

attractive electron-electron interaction as a consequence of the existence of well region in the behavior of the

scalar potential (A0).

Once Lorentz symmetry is broken, the equivalence between all inertial frames is lost, and each inertial frame

starts to notice a di�erent physics. It is a well known fact that condensed matter systems (CMS) are not

endowed with Lorentz covariance, but with Galileo one, which holds as a genuine symmetry in the domain

of isotropic low-energy systems. Having in mind that a CMS may be addressed as the low-energy limit of a
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relativistic model, there follows a straightforward correspondence between the breakdown of Lorentz and Galileo

symmetries, in the sense that a CMS with violation of Galileo symmetry may have as counterpart a relativistic

system endowed with breaking of Lorentz covariance.

Theoretical planar models able to provide attractive e�e� interaction potentials are relevant in the sense they

may constitute a suitable framework to address the condensation of Cooper pairs, a fundamental characteristic

of superconducting systems. Another well de�ned feature of a planar high-Tc superconductor concerns the

symmetry of the order parameter (standing for the Cooper pair), which is described in terms of a spatially

anisotropic d-wave [9]. A theoretical framework able to provide an anisotropic e�e� interaction is the �rst step

to the achievement of anisotropy for the order parameter. This is exactly the expected result to be obtained

in the case a purely spacelike background, where the e�e� scattering potential may be identi�ed with the one

evaluated in the context of a CMS endowed with a privileged direction in space. Therefore, once an anisotropic

CMS constitutes an example where the breakdown of the Galileo symmetry takes place, such a system may be

properly approached as the low-energy limit of a Lorentz-violating electrodynamics in the presence of a pure

spacelike background.

Having as main motivation the results achieved in ref. [8], which show that a �xed background induces

sensitive e�ects at classical solutions, in this work one investigates the tree-level behavior of two interacting

fermions in the context of a Lorentz-violating electrodynamics. By determining the e�e� interaction potential,

one can verify to what extent the properties reported in the classical static analysis [8] are preserved in the

context a dynamic evaluation. One can also study the possibility of achieving an e�e� interaction endowed

with attractiveness and anisotropy, two relevant properties in superconducting systems. Hence, the purpose

is to carry out the e�e� interaction potential, exhibiting and stressing the corrections induced by the �xed

background on the pure Maxwell-Chern-Simons result. For that, one �rst introduces the Dirac sector to the

planar Lorentz-violating gauge model derived in ref. [6]. Taking into account the guidelines set up in refs.[1],

[2], one then proceeds to evaluate the M�oller scattering amplitude from which one derives the e�e� interaction

(according to the Born approximation). The potential here attained is composed by two contributions, a scalar

and a gauge one, since the e�e� interaction is mediated by the massless scalar and the massive gauge �elds.

The scalar potential, absent in the context of a pure MCS model, is always negative, and may lead to a global

attractive interaction regardless the sign of the gauge contribution. In the case of the gauge potential, it presents

background-depending terms that imply qualitative modi�cations, such as the possibility of being attractive for

some parameters range, even when considered in the presence of the centrifugal barrier and the low-energy A2�
Pauli term. Both the scalar and gauge potential possess a logarithm dependence, which is compatible with a

massless behavior far from the origin.

This paper is outlined as follows. In Sec. II, one brie
y exhibits the reduced model derived in ref. [6],

supplemented by the fermion �eld. In Sec. III, one presents the spinors which ful�ll the two-dimensional Dirac

equation and that are used to evaluate the scattering amplitude associated with the Yukawa and the minimal

couplings. In Sec. IV, the interaction potentials stemming from the scalar and gauge sectors are carried out,

and the results are discussed. In Sec.V, one presents the concluding remarks.

II. PLANAR LORENTZ-VIOLATING MODEL

The starting point is the planar Lagrangian1 obtained from the dimensional reduction of the CFJ-Maxwell

electrodynamics [6], which consists in a Maxwell-Chern-Simons electrodynamics coupled to a massless scalar

�eld (') and to a �xed background (v�) through a Lorentz-violating term. One then considers the additional

presence of a fermion �eld ( ) minimally coupled to the gauge �eld (A�) at the same time that exhibits a typical

Yukawa coupling to the scalar �eld ('):

1 We adopt a 1+2-dimensional metric for space-time: ��� = (+;�;�):
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+  (i =D �me) � y'(  ): (1)

Here, the covariant derivative, =D � (=@ + ie3 =A) ; states the minimal coupling, whereas the term '(  )

re
ects the Yukawa coupling. The fermion �eld ( ) is a two-component spinor with up spin-polarization, which

represents the positive energy solution of the Dirac equation, (
�p� �m)u+(p) = 0; here written in momentum

space. In ref. [6], the propagators of the scalar (') and gauge (A�) �elds were properly evaluated as it appears

below:

hA� (k)A� (k)i = i

�
� 1

k2 � s2 �
�� � �(k2 � s2)� (k) + s2 (v:k)

2

k2(k2 � s2)� (k)
!�� � s

k2(k2 � s2)S
��

+
s2

(k2 � s2)� (k)
��� � 1

(k2 � s2)� (k)
T�T � +

s

(k2 � s2)� (k)
[Q�� �Q��]

+
is2 (v:k)

k2(k2 � s2)� (k)
[��� +���]� is (v:k)

k2(k2 � s2)� (k)
[��� � ���]

�
; (2)

h''i =
i

�(k)

�
k2 � s2� ; (3)

where: �(k) =
h
k4 � �

s2 � v:v� k2 � (v:k)2
i
, and the 2-rank tensors are de�ned as follows:

��� = ��� � !�� ; !�� = @�@�=�; S�� = "���@
�; Q�� = v�T� ; (4)

T� = S��v
�; ��� = v�v� ; ��� = v�@� ; ��� = T�@� : (5)

III. THE M�OLLER SCATTERING AMPLITUDE

The two-particle interaction potential is given by the Fourier transform of the two-particle scattering am-

plitude in the low-energy limit (Born approximation). In the case of the nonrelativistic M�oller scattering, one

should consider only the t-channel (direct scattering) [13] even for indistinguishable electrons, since in this limit

they recover the classical notion of trajectory. From eq. (1), there follow the Feynman rules for the interaction

vertices: V ' = iy;V A = ie3

�, so that the e�e� scattering amplitude are written as:

�iM' = u(p
0

1)(iy)u(p1) [h''i] u(p
0

2)(iy)u(p2); (6)

�iMA = u(p
0

1)(ie3

�)u(p1) [hA�A�i]u(p

0

2)(ie3

�)u(p2); (7)

with h''i and hA�A�i being the scalar and photon propagators. Expressions (6) and (7) represent the scattering
amplitudes for electrons of equal polarization mediated by the scalar and gauge particles, respectively. The

spinors u(p) stand for the positive-energy solution of the Dirac equation (=p�m)u(p) = 0. The 
� matrices

satisfy the so(1; 2) algebra, [
�; 
� ] = 2i����
�, and correspond to the (1+2)-dimensional representation of

the Dirac matrices, that is, the Pauli ones: 
� = (�z ;�i�x; i�y): Regarding these de�nitions, one obtains the

spinors,

u(p) =
1p
N

�
E +m

�ipx � py

�
; u(p) =

1p
N

�
E +m �ipx + py

�
; (8)

which ful�ll the normalization condition u+(p)u+(p) = 1 whenever the constant N = 2m(E +m) is adopted.

The M�oller scattering should be easily analyzed in the center of mass frame, where the momenta of the incoming

and outgoing electrons are read at the form: P�1 = (E; p; 0); P�2 = (E;�p; 0); P 0�
1 = (E; p cos �; p sin �); P

0�
2 =
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(E;�p cos �;�p sin �)2: The transfer 4-momentum, carried by the gauge or scalar mediators, is: k� = P �1 �P
0�
1 =

(0; p(1� cos �);�p sin �); whereas � is the scattering angle (in the CM frame).

Considering the normalization condition satis�ed by the spinors written in eq. (8), the scattering amplitude

associated with the scalar sector can be readily evaluated,

Mscalar = y2
�
k2 � s2�h

k4 � (s2 � v:v) k2 � (v:k)
2
i : (9)

which in the case of a purely timelike background, v� = (v0,
�!
0 ); takes on the following form:

Mscalar = �y2
�
k
2 + s2

�
k2 [k2 + w2]

; (10)

where: w2 = (s2�v20); and it was used the general expression for the transfer momentum, k� = (0;k).

In connection with the gauge sector, only six terms of the gauge propagator contribute to the scattering

amplitude (��� ; S�� ;��� ; T�T � ; Q�� ; Q��); as a consequence of the current-conservation law (k�J
� = 0): The

�rst two terms provide, in the non-relativistic limit, the Maxwell-Chern-Simons (MCS) scattering amplitude,

already carried out in refs. [1]:

MMCS = e2

(�
1� s

m

� 1

k2 + s2
� 2s

m

i
�!
k ��!p

k2(k2 + s2)

)
: (11)

The total current-current amplitude mediated by the massive gauge particle corresponds to the sum of four

contributions,

Mgauge =MMCS + M� +MTT +MQQ;

where the termsM�;MTT ;MQQ lead to background-depending corrections to the MCS-amplitude. To evaluate

these three last terms, one �rst writes the following current-current amplitudes:

j�(p1)(T�T�)j
�(p2) = �2p

4

m
v20e

i�[1� cos � + sin2 �];

j�(p1) (��v)j
�(p2) = v20;

j�(p1) (Q�� �Q��)j�(p2) = 2
p2

m
v20[1� cos � � i sin �]; :

The �rst term does not contribute to the interaction potential as long as one works in the nonrelativistic

approximation (p2 � m2). The other two terms lead to relevant contributions to the total amplitude scattering,

namely:

M� = � e2s2v20
k2[k2 + s2][k2 + w2]

;MQQ =
e2sv20
m

1

[k2 + s2][k2 + w2]

(
1� 2i

�!
k ��!p
k2

)
; (12)

where �!p = 1
2 (
�!p 1 ��!p 2) is de�ned in terms of the momenta �!p 1;

�!p 2 of the incoming electrons.

2 Using this prescription and the 3-current de�nition, j�(p) = u(p
0
)
�u(p); the current components can be then explicitly written

as: j(0)(p1) = j(0)(p2) =
1

2m(E+m)
[(E+m)2+ p2e�i�]; j(1)(p1) = �j(1)(p2) =

p
2m

(1+ ei�); j(2)(p1) = �j(2)(p2) =
ip
2m

(1� ei�):
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IV. THE ELECTRON-ELECTRON INTERACTION POTENTIAL

A. The scalar potential

According to the Born approximation, the scalar interaction potential is given by the Fourier transform of the

scattering amplitude (10), that is: Vscalar(r) =
1

(2�)2

R Mscalare
i
�!

k :�!r d2
�!
k . This integral can be exactly solved,

resulting in the following expression:

Vscalar(r) = � y2

(2�)

��
1 +

s2

w2

�
K0(sr) � s2

w2
ln r

�
: (13)

This potential reveals to be attractive near the origin and repulsive whenever the logarithmic term overcomes

the Bessel-like one. Near the origin, the potential exhibits a genuine logarithmic behavior, once K0(x)! � lnx

(for x ! 0). Far from the origin, the bessel function decays exponentially whereas the second term increases

logarithmically. In (1+2)-dimensions, the logarithmic behavior is an outcome consistent with an unscreened

interaction. Hence, the potential here obtained, at the level of a dynamic con�guration, con�rms the annihilation

of the screening derived in ref. [8], at the level of a static evaluation. The result exhibited in eq.(13) re
ects

the pole structure of the scalar amplitude, which possesses a massless (1=k2) and a massive pole
�
1=[k2 + w2]

�
.

The existence of the massless pole is ascribed to the fact the Chern-Simons pole k2 = s2 to be deprived from

dynamics [6].

B. The gauge potential

Carrying out the Fourier transform on the MMCS-amplitude, the corresponding Maxwell-Chern-Simons

potential appears:

VMCS(r) =
e2

(2�)

��
1� s

m

�
K0(sr) � 2

ms
[1� srK1(sr)]

l

r2

�
; (14)

where l = �!r ��!p is the angular momentum (a scalar in a two-dimensional space).

The interaction potential associated with the amplitudesM�;MQQ; can be also obtained from exact Fourier

transform, resulting in the following expressions:

V�(r) =
e2

(2�)

�
v20
w2

ln r +
s2

w2
K0(wr) �K0(sr)

�
; (15)

VQQ(r) =
e2

(2�)

�
s

m
[K0(wr) �K0(sr)] � 2s

m

l

r2

�
v20
s2w2

� 1

w
rK1(sr) +

1

s
rK1(wr)

��
: (16)

The total gauge interaction potential, Vgauge(r) = VMCS + V� + VQQ; takes on the �nal form:

Vgauge(r) =
e2

(2�)

�
�2(s=m)K0(sr) + [s=m+ s2=w2]K0(wr) +

�
v20=w

2
�
ln r

� 2

ms

l

r2
�
(1 + v20=w

2)� (s2=w)rK1(sr)
��
: (17)

It is instructive to notice that one has V�; VQQ ! 0 in the limit of a vanishing background (v0 ! 0); recovering

the pure MCS result, given by eq. (14). Obviously, this is an expected outcome, since both V�; VQQ are potential

contributions induced merely by the presence of the background. Taking the limit r ! 0 on the expression (17),

one then determines the potential behavior near the origin, that is
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Vgauge(r) ' e2

(2�)

�
C � (1� s=m� ls=m) ln r

�
(18)

where C is a constant: Far from the origin, just the logarithmic term remains as dominant, so that:

Vgauge(r) ' e2

(2�)

�
v20
w2

�
ln r: (19)

Eqs. (18), (19) show that the gauge potential behaves logarithmically near and away from the origin, which

puts again in evidence the annihilation of the screening [8], now manifest at the level of a dynamical evaluation.

In the limit r ! 0; this potential may be attractive (for s > m=(1 + l)) or repulsive (for s < m=(1 + l)). In

this paper one assumes s2 > v20, so that in the limit r ! 1 the potential behaves repulsively. In the case

s > m=(1 + l), there exists a region in which the potential is negative, a necessary premise for the formation of

electron-electron bound states. For the case s < m=(1 + l); in which the potential is repulsive near and far the

origin, just a graphical analysis can eÆciently reveal the existence of a well (negative) intermediary region.

The real interaction corresponding to the total interaction potential comprises the gauge and the scalar

contributions: V (r) = Vscalar + Vgauge: This total potential turns out attractive at the regions in which the

negative scalar potential overcomes the repulsive gauge contribution, and at the regions for which the gauge

potential is also negative. One then veri�es that the total potential can always be negative at some region,

which is a relevant result concerning the possibility of obtaining e�e� bound states in the framework of this

particular model.

An important comparison to be made is allusive to the attractiveness of the gauge potential. In the case of

the pure MCS potential, given by eq. (14), one must be careful in order to avoid a misleading interpretation of

its low-energy behavior [1]. In such a regime, one must consider not only the centrifugal barrier term
�
l2=mr2

�
,

but also the gauge invariant A2�term coming from the Pauli equation,"
(�!p � e�!A )2

me

+ e�(r) �
�!� :�!B
me

#
	(r; �) = E	(r; �);

which rules the nonrelativistic behavior of a system in the presence of an electromagnetic �eld. The Laplacian op-

erator,
h
@2

@r2
+ 1

r
@
@r

+ 1
r2

@2

@�2

i
; corresponding to the p2 term, acts on the total wavefunction 	(r; �) = Rnl(r)e

i�l;

generating the repulsive centrifugal barrier term, l2=
�
mr2

�
: On the other hand, the A2-term is essential to

ensure the gauge invariance of a gauge mode in the nonrelativistic domain. This term does not appear in the

context of a nonperturbative low-energy evaluation, for the same is associated with two-photon exchange pro-

cesses (see Hagen and Dobroliubov [1]). However, such a term must be suitably added up in order to assure the

gauge invariance as well as to circumvent spurious behaviour concerning the low-energy potential.

In the presence of these two terms, the MCS potential reveals to be really repulsive instead of attractive.

Hence, to correctly analyze the low-energy behavior of the gauge potential, it is necessary to add up the

centrifugal barrier and the A2 terms3 to the gauge potential previously obtained, leading to the following

low-energy e�ective potential:

Veff (r) = Vgauge(r) +
l2

mr2
+
� e

2�

�2 � s2

w2

�2

[1� wrK1(wr)]
2: (20)

3 The vector potential, A(r); was not determined in ref. [8], but it can be evaluated starting from the following coupled equations:

r2(r2 � s2)
�!
A�v0r2r�' = sr��; v0r� A �r2' = 0; derived in the static limit. The solution of these equations provides

the required solution for the vector potential (in the case of pure a time-like background):
�!
A(r) = e

2�
s2

w2
[1 � wrK1(wr)]

^

r�: In

(1 + 2) dimensions, the dual of a 2-vector is de�ned as
�
Ei

�
�
= �ijE

j
�!

�!
E � = (Ey;�Ex); where one adopts the following

convection: �012 = �012 = �12 = �12 = 1:
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The possibility for formation of electron-electron bound states is associated with the existence of a region in

which the e�ective potential is negative. The �gure below shows that this requirement is perfectly ful�lled for

some parameters values:

–1

0

1

2

3

4

0.1 0.2 0.3 0.4 0.5r

Fig.1: E�ective potential for the following parameter values:

s = 10;m = 2000;v0 = 8; l = 1:

Such graphical behavior shows that the numerical solution of the Schr�odinger equation, supplemented by the

e�ective potential (20), should yield to the attainment of e�e� binding energies.

V. CONCLUDING REMARKS

In this work, one has considered the M�oller scattering in the context of a planar Lorentz-violating Maxwell-

Chern-Simons electrodynamics de�ned in a pure timelike background. The interaction potential was calculated

as the Fourier transform of the scattering amplitude (Born approximation) carried out in the non-relativistic

limit. It exhibits two distinct contributions: the attractive scalar potential (stemming form the Yukawa ex-

change) and the gauge one (mediated by the MCS-Proca gauge �eld). The scalar Yukawa interaction, as

expected, turns out to be always negative. This makes feasible a global attractive potential, regardless the

character (repulsive or attractive) of the gauge potential. In practice, such an interaction may be identi�ed

with phonon exchange processes, which represent physical excitations in several systems of interest. As for the

gauge interaction, it is composed by a pure MCS potential corrected by background-depending contributions,

which impose relevant physical modi�cations. The absence of screening, �rst observed in ref. [8], becomes now

manifest in the context of a dynamic computation (by means of an ubiquitous logarithmic term), con�rming

the conclusion that k2 = s2 is not a dynamic pole [6]. The background-depending corrections are such that

they lead to an attractive gauge potential for some values of the parameters, which constitutes a promising

result in connection with the possibility of obtaining the formation of Cooper pairs. This possibility can be

appropriately checked up by means of a quantum-mechanical numerical analysis of the interaction potential

here derived, which should be performed by means of the numerical solution of the Schr�odinger equation. Such

analysis must provide the corresponding e�e� binding energy once one takes suitable values for the parameters

(in accordance with the scale of low-energy excitations typical in condensed matter systems).

In a planar system described by a QED3 model, two families of fermions should be properly considered,

corresponding to the two allowed spin-polarization states (up and down). This is so done in ref. [3]. The

two-component spinor with down polarization is given as the positive energy solution of the Dirac equation,
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(
�p� +m)u�(p) = 0; with opposite mass parameter, a consequence of the spinor polarization to be �xed up by

the mass sign in two dimensions (see ref. [10]). In this work, one has considered only one fermion polarization

whereas the general case must include two fermion families ( +;  �). In the general case, hence, the planar

Lagrangian (L1+2) must exhibit both fermion polarizations terms, namely:  +(i =D�me) ++ 
�
(i =D+me) �:

The consideration of these terms (in a forthcoming work) will lead to e�e� interaction potentials depending

on the spin-polarization
�
V
""
; V

"#
; V

##

�
; as it was observed in ref. [3]. Such procedure may reveal the spinor-

polarization con�guration that better favors the formation of Cooper pairs.

A natural extension of this work consists in studying the e�e� interaction potential for the case of a purely

spacelike background [11]. Such an evaluation should be done following the same procedure here adopted (low-

energy M�oller scattering). It will certainly reveal an anisotropic potential in relation to the privileged direction

�xed by the background, which may lead to an attractive interaction as well as an anisotropic e�e� order

parameter. This investigation may be relevant in connection with the description of the Cooper pairs formation

in planar systems.

In (1+2) dimensions, the purely Coulombian interaction is associated with a logarithmic dependence (ubiq-

uitous in the results of this paper), which implies a con�ning rather than a binding behavior. However, such

behavior can be eliminated if the gauge �eld exhibits an additional mass component, as the Proca term. Indeed,

in a recent work [12] it was accomplished the dimensional reduction of an Abelian-Higgs Lorentz-violating model

endowed with the CFJ term, resulting in a planar Maxwell-Chern-Simons-Proca electrodynamics coupled to

a massive Klein-Gordon �eld ('). A particular feature of this kind of Higgs model is the presence of totally

screened modes: all its physical excitations are massive, yielding screened interactions. The consideration of the

M�oller scattering in this framework will lead to an entirely shielded interaction potential, once the logarithmic

term should be suitably replaced by a K0 function.
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