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By considering the Higgs mechanism in the framework of a parity-preserving Planar

Quantum Electrodynamics, one shows that an attractive electron-electron interaction may

dominate. The e�e� interaction potential emerges as the non-relativistic limit of the

M�ller scattering amplitude and it results attractive with a suitable choice of parameters.

Numerical values of the e�e� binding energy are obtained by solving the two-dimensional

Schr�odinger equation. The existence of bound states is a strong indicative that this model

may be adopted to address the pairing mechanism of high-Tc superconductivity.
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In the latest 10 years, Planar Quantum Electrodynamics - QED3� has shown to be an appropriate

theoretical framework for discussing the low-energy limit of some Condensed Matter systems. Recent

applications of this theory to underdoped high-Tc superconductors [1] has again caught attention for its

theoretical possibilities. The history of the relation between QED3 and superconductivity goes back to the

�nal 80s, when the anyonic model was established by the works of Laughlin [2], and others [3]. Despite

its initial success, it was afterwards demonstrated that anyonic model supports the superconducting phase

only at zero temperature [4]. An alternative approach, also based on the QED3 framework, began to be

adopted by Kogan [14] to explain the formation of electron-electron bound states. Into the domain of the

QED3; there exits the necessity of yielding a mass to the gauge �eld in order to circumvent the appearance

of a con�ning potential associated to the long-range Coulombian interaction. The Maxwell-Chern-Simons

(MCS) term [13] is then introduced as the generator of (topological) mass for the photon, implying a

screening on the Coulomb interaction. This MCS-QED3 model was used by some authors [14], [16] as

basic tool for evaluation of the M�oller scattering amplitude at tree-level, whose Fourier transform (in the

Born approximation) yields the e�e� interaction potential. In a general way, these works furnish the same

result: the e�e� interaction comes out attractive when the topological mass (#) surpasses the electronic

mass (me), that is, # > me. This condition prevents the applicability of the MCS model to superconducting

systems, since the existence of a physical excitation with so large energy in the domain of a Condensed

Matter system is entirely unlikely. It is possible to argue that the introduction of the Higgs mechanism

in the context of the MCS electrodynamics [5], [6] brings out a negative contribution to the scattering

potential that will make feasible a global attractive potential regardless the condition # > me.

In this letter, we start from a parity-preserving QED3 Lagrangian (without MCS term) [6], [7], [8] with

spontaneous symmetry breaking (SSB). A Higgs boson and a massive photon appear in the spectrum in

the broken phase. These two particles mediate the M�oller scattering, whose amplitude leads to a Bessel-Ko

interaction potential. It can be attractive (independent of the electron polarization) whenever the negative

contribution stemming from the Higgs scalar interchange dominates over the repulsive gauge interaction.

Relying on the non-relativistic approximation, the Ko� potential is inserted into the Schr�odinger equation.

Its numerical solution provides as with values of the e�e� pairing energy, which are exhibited in Table I.

We start with a parity-preserving QED3 action (with SSB) [7], [8], built up by two polarized fermionic

�elds ( +;  �) [7], [9], a gauge potential (A�) and a complex scalar �eld ('):

S =

Z
d3x

�
�1

4
F��F�� +  +(i =D �me) + +  �(i =D+me) � � y( + + �  � �)'�'+D�'�D�'� V ('�')

�
;

(1)

with the scalar self-interaction potential, V , responsible for the SSB, taken as V ('�') = �2'�'+ �
2
('�')2+

�
3
('�')3. The mass dimensions of the parameters �, �, �, y are respectively 1, 1, 0, 0, and the covariant

derivatives, =D � � (=@+ ie3 =A) �; D�' � (@�+ ie3A�)', state the minimal coupling between  �; A�; and
'. It is important to point out that the U(1)�symmetry coupling constant in (1 + 2)-dimensions, e

3
, has

dimension of (mass)
1

2 . We are interested only on a stable vacuum, for which the following conditions on the

potential parameters have to be ful�lled: � > 0 ; � < 0; �2 � 3
16
�2

�
: Denoting h'i = v; one readily gets that:

h'�'i = v2 � �=2�+

q
(�=2�)

2 � �2=�, whereas the condition for minimum reads as �2 + �v2 + �v4 = 0:

In the broken phase, the complex scalar �eld is parametrized by ' = v +H + i�, where � is the would-be

Goldstone boson and H is the Higgs scalar, both with vanishing v.e.v.'s. By replacing this parametrization

relation into the action (1), adopting the 't Hooft gauge [11] ( Sgf =
R
d3x

�
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�
),

and �nally taking only the bilinear and Yukawa interaction terms, one has:

SSSB =

Z
d3x
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where � is a dimensionless gauge parameter and the mass generated by the SSB are: M2
A = 2v2e23 (Proca
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mass), M2
H = 2v2(� +2�v2) (Higgs mass), me� = me + yv2(e�ective electron mass), and M2

� = �M2
A. The

latter corresponds to non-physical poles in the gauge and �-�eld propagator. Their e�ects are mutually

canceled as already known from the study of the unitarity in the 't Hooft gauge [12].

In the low-energy limit (Born approximation), the two-particle interaction potential is given by the

Fourier transform of the two-particle scattering amplitude [17]. It is important to stress that in the case of

the non-relativistic M�oller scattering, one should consider only the t-channel (direct scattering) [17] even

for distinguishable electrons, since in this limit they recover the classical notion of trajectory. From the

action (1), there follow the Feynman rules for the interaction vertices: V�H� = �2iyv;V A = ie3

�, so

that the e�e� scattering are written as bellow:

�iM�H� = u�(p
0

1)(�2ivy)u�(p1) [hHHi]u�(p
0

2)(�2ivy)u�(p2); (2)

�iM�H� = u�(p
0

1)(�2ivy)u�(p1) [hHHi]u�(p
0

2)(�2ivy)u�(p2); (3)

�iM�A� = u�(p
0

1)(ie3

�)u�(p1) [hA�A�i]u�(p

0

2)(ie3

�)u�(p2); (4)

�iM�A� = u�(p
0

1)(ie3

�)u�(p1) [hA�A�i]u�(p

0

2)(ie3

�)u�(p2); (5)

where hHHi and hA�A�i are the Higgs and massive photon propagators. Expressions (2) and (3) represent

the scattering amplitudes for electrons of equal and opposite polarizations mediated by the Higgs particle,

whereas Eqs. (4) and (5) correspond to the massive photon as mediator.

The spinors u�(p) stand for the positive-energy solution of the Dirac equation (=p�m)u�(p) = 0. We

adopt the following conventions ��� = (+;�;�); [
�; 
� ] = 2i����
�, 

� = (�z ;�i�x; i�y); whence one

obtains

u+(p) =
1p
N

�
E +m

�ipx � py

�
; u�(p) =

1p
N

�
ipx � py
E +m

�
; (6)

with N = 2m(E + m) being the normalization constant that assures u�(p)u�(p) = �1. Working in

the center-of-mass frame [5], [6], the scattering amplitudes Mhiggs = �2v2y2
��!
k
2
+M2

H

��1
; Mgauge =

+e23

��!
k
2
+M2

A

��1
reveal to be independent of the spin polarization. Evaluating now the Fourier transform

of the total amplitude scattering (Mtotal =Mhiggs +Mgauge), the following interaction potential comes

out:

V CM (r) = � 1

2�

�
2v2y2Ko(MHr) � e23Ko(MAr)

�
: (7)

Considering equal Higgs and Proca masses
�
MH =MA () e23 = � + 2�v2

�
, the potential (7) takes the

form

V CM (r) = CKo(MAr); with: C = � 1

2�

�
2v2y2 � e23

�
: (8)

It becomes attractive whenever C < 0, that is, 2v2y2 > e23.

Having determined the interaction potential, one must now look for the numerical evaluation of the

binding energy associated to the e�e� pairs. In the non-relativistic limit, the complete two-dimensional

Schr�odinger equation (supplemented by the Bessel-K0 potential)

@2'(r)

@r2
+

1

r

@'(r)

@r
� l2

r2
'(r) + 2�e� [E � CKo(MAr)]'(r) = 0 (9)

yields the energy of the two interacting particles. Here, �e� = 1
2
me� '(r) is the e�ective reduced mass

of the e�e� system and ' represents the (relative) spatial part of the complete antisymmetric 2-electron

wavefunction: 	(r1; s1;r2; s2) =  (R)'(r)� (s1; s2) ; while  (R), � (s1; s2) stand for the center-of-mass and

the spin wave functions.

For a numerical solution of the Schr�odinger equation, we employ the variational method. In this respect,

we take as starting point the choice of a wave function that stands for the generic features of the e�e�
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state: the trial function, whose de�nition must observe some conditions, such as the asymptotic behavior at

in�nity, the analysis of its free version and its behavior at the origin. With the help of the transformation

'(r) = 1p
r
g(r), Eq.(9) is transformed into

@2g(r)

@r2
� l2 � 1

4

r2
g(r) + 2�e� [E � CKo(MAr)]g(r) = 0; (10)

whose free version (V (r) = 0) for zero angular momentum (l = 0) state simpli�es to

�
@2

@r2
+

1

4r2
+ k2

�
u(r) = 0 : (11)

Its general solution is given by u(r) = B1

p
rJ0(kr) + B2

p
rY0(kr), with B1 and B2 being arbitrary

constants and k =
p
2�e�E. In the r ! 0 limit, the solution to Eq.(11) approaches u(r) �! p

r+�
p
r ln r:

Since the second term in Eq.(11) behaves like an attractive potential, �1=4r2, this implies the unphysical

possibility of obtaining a bound state (E < 0) even for V (r) = 0 [10]. Among the in�nite number of

self-adjoint extensions of the di�erential operator �d2=dr2 � 1=4r2, the only physical choice corresponds

to the Friedrichs extension (B2 = 0), which behaves like
p
r at the origin, indicating this same behavior

for u(r). The complete equation, V (r) 6= 0, will preserve the self-adjointness of free Hamiltonian, if the

potential is \weak" in the sense of the Kato condition:
R1
0
r(1 + j ln(r)j)jV (r)jdr < 1: This condition

also sets up a �nite number of bound states (discrete spectrum) and the semi-boundness of the complete

Hamiltonian. Provided that the Bessel-K0 potential, given by Eq. (8), satis�es the Kato condition, the

self-adjointness of the total Hamiltonian is assured and the existence of bound states is allowed. On the

other hand, at in�nity, the trial function must vanish asymptotically in order to ful�ll square integrability.

Therefore, a good and suitable trial function (for l = 0) could be taken by

g(r) =
p
r exp(��r) ; (12)

where � is a free spanning parameter to be numerically �xed in order to minimize the binding energy.

Once the trial function is already known, it still lacks a discussion on the physical parameters (�2; e23; y
2)

that compose the proportionality constant, C, of the Bessel potential, in such a way that numerical values

may be attributed to them. The vacuum expectation value, v2; indicates the energy scale of the spontaneous

breakdown of the U(1)�local symmetry. This is a free parameter, being usually determined by some

experimental data associated to the phenomenology of the model under investigation, as occurs in the

electroweak Weinberg-Salam model, for example. On the other hand, the y parameter measures the

coupling between the fermions and the Higgs scalar, working in fact as an e�ective constant that embodies

contributions of all possible mechanisms of electronic interaction via Higgs-type (scalar) excitations, as

the spinless bosonic interaction mechanisms: phonons, plasmons, and other collective excitations. This

theoretical similarity suggests an identi�cation of the �eld theory parameter with an e�ective electron-

scalar coupling (instead of an electron-phonon one): y ! �es. Speci�cally, in QED3, the electromagnetic

coupling constant squared, e23, has dimension of mass, rather than the dimensionless character of the

usual four-dimensional QED4 coupling constant. This fact might be understood as a memory of the third

dimension that appears (into the coupling constant) when one tries to work with a theory intrinsically

de�ned in three space-time dimensions. This dimensional peculiarity could be better implemented through

the de�nition of a new coupling constant in three space-time dimensions [14], [15]: e! e3 = e=
p
l?, where

l? represents a length orthogonal to the planar dimension. The smaller is l?, smaller is the remnant of the

frozen dimension, larger is the planar character of the model and the coupling constant e3, what reveals

its e�ective nature. In this sense, it is instructive to notice that the e�ective value of e23 is always larger

than e2 = 1=137 whenever l? < 1973:26 �A, since 1 (�A)�1 = 1973:26 eV . This particularity broadens the

repulsive interaction for small l? and requires an even stronger Higgs contribution to account for a total

attractive interaction.

The following Table, constructed for zero angular momentum state (l = 0), has as input data the three

parameters (�2; l?; y); while the output parameters are: �� the minimization parameter, Ee�e�� the e�e�

binding energy, and hri� the average-length of the wavefunction:
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v2(meV ) l?(�A) y Cs (meV ) MH (meV ) � Ee�e� (meV ) hri
�
�A
�

120.0 15.0 2.1 -15.7 480.0 63.1 -74.7 15.6

120.0 14.0 2.1 -4.8 496.8 35.8 -19.7 27.6

120.0 13.0 2.2 -8.6 515.6 47.2 -37.8 20.9

100.0 12.0 2.6 -24.2 489.9 81.1 -120.2 12.2

100.0 12.0 2.5 -8.0 489.9 45.9 -35.2 21.5

100.0 10.0 2.7 -2.9 536.6 27.8 -11.0 35.5

100.0 10.0 2.8 -20.4 536.6 72.1 -97.6 13.7

100.0 6.0 3.5 -8.0 692.8 45.9 -32.5 21.5

80.0 6.0 3.9 -5.4 619.6 37.6 -21.4 26.2

70.0 4.0 5.1 -6.6 709.9 41.7 -26.2 23.6

60.0 8.0 3.9 -4.0 464.7 33.1 -16.7 29.8

TABLE I. Input data (v2; l?; y) and output data (Ee�e; hri) for the Schr�odinger Equation

The numerical data of Table I show that the attractive Bessel potential, derived for a non-relativistic

regime, may e�ectively promote the formation of e�e� bound states. The procedure here carried out puts

in evidence that, by properly �tting the free parameters of the model, one can obtain bound states of the

order of 10�100meV and wavefunction average-length in the range 10�30 �A, which reveals the suitability

of the framework employed to address the physical mechanism that underlies the constitution of Cooper

pairs in the high-Tc superconductors. Finally, we can assert that the photon Proca mass, generated by

the SSB, plays the same role of the topological mass (#) in that it determines the Coulomb interaction

screening and the Meissner e�ect, without breaking parity-symmetry. The data exhibited in Table I concern

an s-wave state: l = 0 and spin singlet ("#; S = 0). According to the results of this letter, we conclude by

stressing the fundamental role played by the Higgs mechanism in QED3 as essential for the appearance of

an attractive e�e� potential.
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