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In this comment, I point out that the study previously presented in CBPF-NF-001/00

is not correct. The correct approach is presented in my previous paper already published

Luiz C.L. Botelho and Edson P. Silva, \Quantum Geometry for the Brownian Particle",

Modern Physics Letters B, vol. 12, n. 28 (1998) 1191-1134 (see Appendix A). Also, I

should point out that Dr. E.P. Silva is not a co-author of the CBPF-NF-001/00.
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Appendix A

Quantum Geometry for the Brownian Particle

Luiz C.L. Botelho and Edson P. Silva

One of the most interesting problems in non-relativistic quantum mechanics of one

particle system is how apply the Feynman path integral theory directly to the classical

dissipative action system in order to de�ne quantum (non-unitary) transition amplitudes.

In this letter, we intend to propose a (formal) solution for this problem by considering

the quantization of a classical particle subject to damping and an external stochastic

potential,1 by means of a Feynman path integral as formulated in Ref. 2.

Let us start our analysis by proposing the following classical Langevin equation in

a form appropriate to apply the Feynman path integral formalism of Ref. 2, i.e., a

generalized Hamilton-Jacobi equation with damping term and a stochastic potential.3

@S(r; t)

@t
+

1

2m
jrS(r; t)2 = ��S(r; t) + V (r; t) + �(r; t) ; (A.1)

here S(r; t) is the proposed classical equation for the Brownian particle, V (r; t) is the

deterministic potential ��S(r; t) with � > 0 and denoting the term which is related

to the damping e�ects on the motion of the particle. Finally, �(r; t) is the (intrinsic)

stochastic Gaussian noise potential responsible for the classical stochastic behavior of the

Brownian particle.

In the Feynman formalism, one should de�ne as a quantum transition amplitude for

the quantum version of the classical dissipative system, Eq. (1), the following sum over

quantum trajectories:

G((r; t); (r0; t0)) =
X
f`g

�
exp

�
i

~
S[(r; t); (r0; t0)]

��
�
: (A.2)

Here ` is some trajectory of the classical system, Eq. (1), S(r; t);(r0; t0) is the classi-

cal generalized action of the system and h� � � i� denotes the stochastic average over all

realizations of the random potential �(r; t):3

The above formula, Eq. (2), is symbolic, but while in the case of non-damping � = 0

and no stochasticity, i.e., �(r; t) � 0, we know how to decipher and compute it, in the
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general dissipative case, Eq. (1), such knowledge is not available presently.2 It is our

purpose to overcome, at least partly, this drawback.

As a �rst step, we solve the generalized Hamilton-Jacobi equation, Eq. (1), by means

of the ansatz

S(r; t) = e��tS(0)(r; t) (A.3)

with S(0)(r; t) satisfying the usual Hamilton-Jacobi equation with time dependent param-

eters, including the mass term, i.e.,

@

@t
S(0)(r; t) +

1

2me�t
jrS(r; t)j2 = e�t(�(r; t) + V (r; t)) : (A.4)

An exact solution of Eq. (4), in terms of the usual action, is easily given in terms of

the Caldirola-Kanai action2

S(0)(r; t) =
Z t

t0
d�e��

8<
:m2

 
dr

d�

!2

� (�(r(�)) + V (r(�); �))

9=
; : (A.5)

which, by its turn, leads to the following expression for our complete phase factor, Eq.

(3):

S(r; t) =
Z t

t0
d�e�(��t)

8<
:1

2
m

 
dr

d�

!2

� [�(r(�); �) + V (r(�); �))]

9=
; : (A.6)

It is worth point out that such modi�ed Caldirola-Kanai Lagrangian was �rstly con-

sidered in similar (but di�erent) quantization situation in Ref. 4.

Following now the procedure exposed in Ref. 2, we consider the discretized version of

Eq. (6), i.e.,

Ŝ((xk+1; tk+1); (xk; tk))

= e�(tk�tk+1)
"
1

2
m
(xk+1 � xk)2

"2
� "V (xk; tk)� "�(xk; tk)

#
: (A.7)

At this point our study, we remark that the short-time transition amplitude, in the

Feynman path integral and propagator formalism, is given explicitly by the asymptotic

result, i.e.

G((xk+1; tk+1); (xk; tk)) �= A(tk+1; tk)exp
�
i

~
Ŝ((xk+1; tk+1); (xk; tk))

�
; (A.8)
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where tk+1 � tk ! 0.

The pre-factor in Eq. (7) is easily obtained from the t! 0+ condition, i.e.,

lim
(tk+1�tk)!0

G((xk+1; tk+1); (xk; tk)) = �(D)(xk+1 � xk) ; (A.9)

and leading, thus, to the exact result:

A(tk+1; tk) = eD�(tk�tk+1)=2

"
m

2�~(tk+1 � tk)

#D=2

: (A.10)

As a consequence of the above displayed formulae, we obtain the �nite time propagator,

i.e.

G((r; t); (r0; t0))

lim
N!1

Z  
N�1Y
k=0

drk

!
exp

(
D�

2

"
NX
k=0

 
t0 +

t� t0

N
k

!
�

 
t0 +

t� t0

N
(k + 1)

!#)

�
N�1Y
k=0

"
m

2�~(tk+1 � tk)

#D=2

exp

(
i

~

NY
k=0

"e�(tk�tk+1)=2
"
(rk+1 � rk)2

"2
+ V (rk; tk) + �(rk; t)

#)
: (A.11)

Now it is easy to evaluate the sum in Eq. (1), where D is the space-time dimension:

eD�[
PN�1

k=0
(t0+"k)�(t0+"(k+1))]=2 = e�D�(t�t0)=2 ; (A.12)

and thus arrive at the following computable Feynman path integral (without making the

evaluation of the classical stochastic average over the random potentials yet), i.e.,

G�((r; t); (r; t
0)) = e�D�(t�t0)=2

Z
r(t0)=r;r(t)=r

�DF [r(�)]e(i=h)
R t
t0
d�e�(��t)[(1=2)m(dr=d�)2�V (r(�);�)��(r(�);�)] : (A.13)

Note that, in contrast to previous studies (Refs. 2 and 4), the dissipative anomaly

in Eq. (13) decays to zero at the equilibrium limit t ! 1, without any regularization

assumption.

At this point we take the average of Eq. (13) in the ensemble of the classical stochastic

potentials f�(r; t)g with the result

�
e(i=h)

Z t

t0
d�e�(��t)�(r(�);�)

�
�
= e�(
2=~2)

R t
t0
d�d�0e�(�+�

0)e�2�tf(���0)V (r(�)�(r(�0)) :(A.14)
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The complete propagator takes, thus, the �nal form

G((r; t); (r; t0)) = e�D�(t�t0)=2

�
Z
r(t0)=r0;r(t)=r

DF [r(�)]e(i=h)
R t
t0
d�e�(��t)[(1=2)m(dr=d�)2�V (r(�);�)]

�e�(

2=~2)

R t
t0
d�d�0 e�(�+�

0)e�2�tf(���0)V (r(�)�r(�0))

: (A.15)

Note that this is very similar, in its mathematical structure, to the Feynman path integral

for the polaron problem.5
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