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Abstract

We investigate the consequences of using a \Lorentz-like" transformation to con-
nect measurements between a inertial and a rotating frame of reference. We obtain
a new rotating vacuum (of a massless scalar �eld) di�erent from the Minkowski one.
After this we consider a monopole detector interacting with the �eld. The radiative
processes are discussed from a rotating and inertial frame point of view. Finally
using this formalism the polarization e�ects of electrons in circular accelerators is
discussed.
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1 Introduction

It is a well known experimental fact that electrons (positrons) experience a gradual polar-
ization when orbiting in a storage ring. This mechanism lead to the emission of spin-ip
synchroton radiation [1]. Although the amount of spin-ip radiation is extremely small
compared with the non-ip radiation one would expect asymptotically a total polariza-
tion. An open question [2]: is why the polarization is not complete after the system reach

the equilibrium ?

Bell and Leinaas [3] studied the depolarization problem in accelerators trying to use
the idea of a Unruh-Davies e�ect [4]. The electron in a accelerated ring is a magnetic
version of the monopole detector, since there is a linear coupling between the magnetic
�eld and the magnetic moment of the electron. Although the situation is similar to
the Rindler's case where the detector goes to excited state by absorption of Rindler's
particles, there is a fundamental di�erence. In the Rindler's case there is a past and
future horizont. Part of information which would have an inertial observer is inaccessible
for accelerated observers. Although the Minkowski vacuum j0;M > is a pure state, for
accelerated observers it must be described by a statistical operator. This is the origin of
the thermal distribution of particles. As was noted by Bell and Leinaas, in the case of
circular motion, the measurements of the polarization does not agree with the calculations
if we interpret the polarization by thermal e�ects.

A central question is: which mapping we have to assume to compare measurements
made in an inertial and a rotating frame of reference? If we assume a Galilean transfor-
mation it is well known that the rotating vacuum de�ned by these transformations is just
the Minkowski vacuum [5]. The introduction of an apparatus device which gives informa-
tion about the particle content of some state (the particle detector) raised a fundamental
question. If we prepare a detector in the ground state and the �eld in the Minkowski
vacuum there is a non-null probability to �nd the rotating detector in an excited state.
How is possible a rotating detector be excited in the Minkowski vacuum? Another way
to formulate the puzzle is: our physical intuition says that a rotating particle detector
prepared in its ground state interacting with the �eld in the rotating vacuum must stays
in the ground state. Nevertheless, assuming the Galilean transformation the Minkowski
vacuum is just the rotating vacuum and the rate of excitation of the rotating detector in
the rotating vacuum is di�erent from zero. One would expect the rotating detector not
be excited by the rotating vacuum [6]. Doing to these interpretational di�culties associ-
ated with the Galilean transformation we have attemptt to discuss the consequences of
assuming a Lorentz-like transformation to connect measurements between an inertial and
a rotating frame of reference. A natural consequence is that, this rotating vacuum is not
the Minkowski one. These results leads to an alternative solution for the depolarization
problem. In our approach, depolarization is related with the fact that the Minkowski vac-
uum is a many particle state of rotating particles. The polarization can not be complete
since the process of absorption of a rotating particle from the Minkowski vacuum with
spin-ip has always probability di�erent from zero. We would like to stress that we tried
to avoid many technical di�culties to emphasize only fundamental results.

The paper is organized as follows. In section 2 we canonical quantize a massless scalar
�eld in a rotating frame of reference showing that the rotating vacuum is di�erent from
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the Minkowski one. In section 3 the polarization problem is studied. Conclusions are
given in section 4. In this paper we use �h = c = 1.

2 The Lorentz-like Transformations and a New Ro-

tating Vacuum

The rotating detector puzzle raised a question: which mapping we have to assume to
compare measurements made in an inertial frame and in a rotating frame of reference [7]?
If we assume a Galilean transformation it is a well know result that the rotating vacuum
de�ned by these transformation is just the Minkowski vacuum. Doing to interpretational
di�culties associated the Galilean transformation in this paper we have attempt to discuss
the consequences of assuming a \Lorentz-like" transformations to connect measurements
in both frame of references. These transformations between the inertial coordinate system
(x

0� = ft
0

; r
0

; �
0

; z
0

g) and the rotating coordinate system (x� = ft; r; �; zg) was presented
by Trocheries and also Takeno [8] and are given by

t = t0 cosh 
r0 � r0�0 sinh
r0; (1)

r = r0; (2)

� = �0 cosh 
r0 �
t0

r0
sinh 
r0; (3)

z = z0: (4)

Assuming this mapping to connect measurements made in the rotating frame and those
made in the inertial frame, in the rotating coordinate system the line element assume a
non-stationary form.

It is possible to write the transformations de�ned by eqs. (1) and (3) making a

analogy with the Lorentz transformations. Let us de�ne l = r� and  = (1� v2)�
1

2 . It is
straightforward to show that the above transformations becomes

t = (t0 � vl0); (5)

l = (l0 � vt0): (6)

The transformations de�ned by Trocheries and Takeno are \Lorentz-like". The funda-
mental di�erence is that in this case the velocity is v = tanh
r. It has been suggested
by many authors that the only way to have results consistents with the Sagnac's e�ect is
to use a Galilean transformation [9]. We would like to stress that the arguments used by
these authors does not establish conclusively that we have to use the Galilean transfor-
mations. Direct supports of Lorentz-like transformation between both frames are suplied
by the rotating detector puzzle and the depolarization e�ect of electrons in a circular
accelerator.

To prove that there is a rotating vacuum di�erent from the Minkowski one, we have to
canonical quantize a massless scalar �eld assuming the Takeno and Trocheries mapping
given by eqs.(1-4). It is an human impossible task to solve exactly the Klein-Gordon
equation in this coordinate system. Making a Taylor expansion for cosh
r and tanh
r
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and retaining terms up to �rst order in 
r, the line element becomes

ds2 = dt2 � dr2 � r2d�2 � 4r
�drdt � dz2: (7)

We point out that although we will consider only the case 
r < 1, the low-velocity limit of
Trocheries and Takeno transformation does not give the \Galilean" transformation since
we have t = t0 � 
r2�0. We would like to mention that although the Takeno-Trocheries's
transformation constitute a continuous group with a parameter 
 in the low velocity limit
this propriety is lost. In this approximation the metric is stationary by not static. This
means that although there is a timelike Killing vector �eld K, the spatial sections putting
t = constant are not orthogonal to the time lines putting r; �; z constants, i.e., the Killing
vector K is not orthogonal to the spatial section. This line element describe a physical
situation in which world lines in�nitesimally close to another one are spatially rotating
with respect this world line. In this simpli�ed case, the Kein-Gordon equation reads
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'(t; r; �; z) = 0: (8)

The solution can be found using partial separation of variables

'(t; r; �; z) = T (t)Z(z)f(r; �): (9)

Assuming
Z(z) = eikzz (10)

and
T (t) = e�i!t; (11)

and �nally, de�ning !2 = k2z + q2 we obtain the equation for f(r; �)
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f(r; �) = 0: (12)

The perturbative solution of this equation can be found Ref. [10] and is given by

f(y; �) = ei��
�
J�(y) + lei��J�+�(y)

�
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i
;(13)

where l = 4i
!=q2, y = qr and G(y; �; y0; �0) is de�ned by the follow equation:
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):

Although the spatial part of the solution of eq.(8) is extremely complicated, there is
not ambiguity in the de�nition of positive and negative rotating modes since the temporal
part is given by eq.(11) and the world line of the detector is an integral curve of the Killing
vector K = @=@t that generates a one-parameter group of isometries.

We must now turn to the question of single valuedness of f(y; �). This situation is
very similar to the (2+1) dimensional gravity [11]. In our situation we have two di�erent
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possibilities: the �rst is to assume that f(y; �) is a single value function. When � increases
from 0 to 2� for a constant y, t jumps by 
r2 given a time helical structure. It is possible
to show that this solution acquire a phase ei!
r

2

. Using Dirac's arguments and also the
Mazur ideas [12] the energy of the modes must be quantized

! = n

�
2�


r2

�
; n = integer:

Note that at principle we can choose that 
 is quantized to eliminate the phase problem.
With this choice the Bogoliubov coe�cients �k� are zero. The second one is do not assume
that f(y; �) is a single value function, and in this case the Bogoliubov coe�cients �k� are
di�erents from zero and proportional to !
2r2. It is important to realize that if we assume
that f(y; �) is single value the Minkowski and the rotating vacuum are the same only in
the small velocity approximation. If we go further retaing terms of order 
2r2 in the
Takeno's coordinates transformation the Bogoliubov coe�cients must be di�erent from
zero.

Going back to the line element given by eq.(7) we see that the line element is stationary
and there is no ambiguity to de�ne the rotating vacuum j0; R > in such a way that:

bq�kz j0; R >= 0 8 q; �; kz; (14)

where

'(t; r; �; z) =
X
�

Z
qdqdkz

h
bq�kzvq�kz (t; r; �; z) + b

y
q�kz

v�q�kz(t; r; �; z)
i
: (15)

By sake of simplicity let use the following notation:

'(t; r; �; z) =
X
�

b�v�(t; r; �; z) + by�v
�

�(t; r; �; z): (16)

It is straighforward to show that the Minkowski vacuum can be expressed as a many
rotating-particles state. By comparing the expansion of the �eld operator using the iner-
tial modes and the rotating modes it is possible to obtain the expression comparing both
vacua, i.e j0;M > and j0; R >:

j0;M >= e
i
2

P
�;�

by(�)V (�;�)by(�)j0; R > (17)

where
V (�; �) = i

X
k

���k�
�1
k� ; (18)

and the Bogoliubov coe�cients are given by ��k = �(v�;  �k) and ��k = (v� ;  k). It is
clear that the number of rotating particles in a speci�c mode in the Minkowski vacuum
is given by

< 0;M jNR(�)j0;M >=
X
k

j�k� j
2: (19)
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Let us choose the hypersurface t0 = constant to �nd the Bogoliubov coe�cients i.e.,

��k = i

Z 2�

0

d�0
Z
1

�1

dz

Z
1

0

rdr [v�(x
0)(@t0 k(x

0))� (@t0v�(x
0)) k(x

0)] : (20)

The Bogoliubov coe�cients ��k must be non-zero since the positive and negative frequency
rotating modes are mixture between positive and negative inertial modes. The important
conclusion from the above arguments is that the Minkovski j0;M > and this rotating
vacuum j0; R > are not the same.

To analyse the rotating particle content of the Minkowski vacuum and to make a par-
allel with electrons and positrons in magnetic �eld it is possible to introduce a monopole
detector with a linear coupling with the scalar �eld [13]. This system is endowed with
internal degrees of freedom de�ning two energy levels with energy !1 and !2, (!1 < !2)
and respective eigenstates j1i and j2i (!2�!1 = E). The important result is that asymp-
totically the rate of excitation (decay) of the detector is given by the Fourier transform
of the positive frequency Wightman function. This is exactly the quantum version of
the Wiener-Khintchine theorem which asserts that the spectral density of a stationary
random variable is the Fourier transform of the two point-correlation function. We would
like to stress that also it is possible to �nd non-asymptotic results [14].

Let us analyse the process of transition of the detector from the rotating frame of
reference point of view. We will have three di�erent processes: R1!2(E;�T ) is the rate
of absorption of rotating particles from the Minkowski vacuum, R2!1(E;�T ) is the rate
of induced emission of a rotating particle and A2!1(E;�T ) is the rate of spontaneous
emission of a rotating particle (stimulated emission induced by the j0; R > vacuum uc-
tuations. A straighforward calculation shows that the rate of excitation have two di�erent
terms: the �rst is not related with any measurement of the particle content of any state
(vacuum uctuation) and a second one which will be proportional to the number of ro-
tating particles in the Minkowski vacuum.

The above described situation raises a central question. Where does the energy of
excitation come from if we analyse the process from the point of view of the inertial
observer? The non-inertial observer does not meet any di�cult. At some initial time we
prepare the detector in the ground state and the �eld in the Minkowski vacuum. Since the
Minkowski vacuum is a many rotating-particles state, the detector goes to excited state
absorbing a positive energy particle. For large time intervals energy conservation holds.
For the point of view of the inertial observer the �eld is in the empty state. How is possible
the excitation? A natural answer is to say that it is necessary an external accelerating
agency to suplly energy to keep the detector in the rotating world-line. It is possible to
show that the detector goes to excited state with the emission of a Minkowski particle.
In the next section we will perform the second quantization of the detector Hamiltonian
to analyse the absorption and emission processes from the inertial point of view.
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3 Second Quantization of the Total Hamiltonian and

Polarization E�ects on Electrons and Positrons in

Storage Rings

In this section we will prove that the process: absorption (emission) of positive energy
rotating particle with excitation (decay) of the detector (from the non-inertial point of
view) is interpreted as a emission of a Minkowski particle with excitation (decay) of the
detector from the inertial point of view. We will try to answer this question applying the
ideas developed by us in the preceding sections. Before start the second quantization of
the detector and interaction Hamiltonian let us remember the main results of the section
2 and 3.

In Minkowski space time it is possible to quantize a massless scalar �eld using the
cylindrical coordinate adapted to inertial observers. Thus the scalar �eld can be expanded
using an orthonormal set of modes

'(x) =
X
i

aiui(x) + a
y
i u

�

i (x) (21)

where
aij0;M >= 0 8i: (22)

There is an inequivalent quantization using coordinates adapted to a rotating observer.
The scalar �eld can be expanded using a second set of orthonormal modes

'(x) =
X
j

bjvj(x) + b
y
j v
�

j (x) (23)

where
bjj0; R >= 0 8j: (24)

As both sets are complete, the non-inertial modes can be expanded in terms of the inertial
ones, i.e.,

vj(x) =
X
i

�jiui(x) + �jiu
�

i (x): (25)

Using the fact that both sets are complete and orthonormal, it is possible to write
the annihilation and creation operators of non-inertial particles in the mode j as a linear
combination of inertial creation and annihilation operators [15], i.e.,

bj =
X
i

��jiai � ��jia
y
i : (26)

To second quantize the detector Hamiltonian, let us use the notation introduced in chapter
3, i.e. jg >= j1 > and je >= j2 > and introduce the Dicke operators [16]

S+ = j2 >< 1j; (27)

S� = j1 >< 2j; (28)
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and �nally

Sz =
1

2
(j2 >< 2j � j1 >< 1j): (29)

Using the orthonormality of the energy eigenstates of the detector Hamiltonian and
the Dicke operators, we can write the detector Hamiltonian as

HD = ESz +
1

2
(!1 + !2): (30)

The operators S+, S� and Sz satisfy the angular momentum commutation relations cor-
responding to spin 1=2 value. It is clear that S+ and S� are respectively creation and
annihilation operators of the detector states (S+j1 >= j2 >;S+j2 >= 0; S�j2 >= j1 >
;S�j1 >= 0). The interaction Hamiltonian between the detector and the scalar �eld can
be written as

Hint = �[m21S
+ +m12S

� + Sz(m22 �m11)]'(x); (31)

where the matrix elements of the monopole operator of the detector m(� ) are given by:

< ijm(0)jj >= mij: (32)

We should simplify the discussion choosing m11 = m22. As we will see the part if the
interaction hamiltonian with the Sz operator is responsible for the non-ip synchroton
radiation. Substituting eq.(23) in eq.(31) we see that there are di�erent processes with
absorption or emission of rotating particles with excitation or decay of the detector. It
is possible to show that some of these processes are virtual, and only processes with
energy conservation survive in the asymptotic limit, i.e., excitation of the detector with
absorption of a rotating particle (processes involving bjS+) and decay of the detector with

emission of a rotating particle (processes involving b
y
j S

�).
The �rst process is generated by the following operators:

m12

X
j

vj(x)bjS
+: (33)

Substituting eq.(25) and eq.(26) in eq.(33) it is clear that the above process of absorption
of a rotating particle in the mode j is the following:

X
ijk

�
��ji�jkuk(x) + ��ji�jku

�

k(x)
�
a
y
i S

+: (34)

Therefore this process for the inertial observer is an excitation of the detector with creation
of Minkowski particles.

The second process is generated by the following operators:

m21

X
j

v�j (x)b
y
jS

�: (35)

Substituting eq.(25) and eq.(26) in eq.(35) we see that the above process of emission of a
rotating particle in the mode j is the following:

X
ijk

�
�ij�

�

jku
�

k(x) + �ij�
�

jkuk(x)
�
a
y
i S

�: (36)
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Therefore this process for the inertial observer is a decay of the detector with creation of
Minkowski particles.

Now we are able to understand the problem of the synchroton radiation. In the
emission of synchroton radiation by electrons moving along a circular orbit, there are two
kinds of processes: the �rst is the emission of photons without spin ip of the electron
and the second is emission with spin ip. We will restrict our discussion to the second
case. To make a parallel with the detector's problem we have to assume that the electron
trajectory is \classical" (there is no uctuation of the electron path) or even after the
photon emission there is no recoil (as was stressed by Bell and Leinaas, the results does
not depend on position uctuations of the electron trajectory). There are two di�erents
results in the literature depending on the value of the Land�e g factor of the electron.
Jackson showed that the rate of transition from an initial state with the spin of the
electron directed along the magnetic �eld (high energy state) to a state with the electron
spin in opposite to the magnetic �eld (lower energy state) is lower than the opposite
situation if the Land�e g factor of the electron obeys 0 < g < 1:2. It is important to
stress that the situation is opposite of the naive description where polarization arises
from spontaneous emission as the spin move from its \upper" (high energy state) to its
\lower" (low energy state) in the magnetic �eld. For the case where 1:2 < g < 2 Jackson
and also other authors obtained that after the photon emission the electron spin will tends
to orient themselves in opposite to the magnetic �eld (going to the lower energy state).
Of course, positrons spins will have an oposite behavior. These both results are consistent
with our interpretation that absorption (emission) of a rotating particle with excitation
(decay) of the detector in the non-inertial frame is interpreted as emission of a Minkowski
particle with excitation (decay) of the detector in the inertial frame.

To �nd the degree of polarization before the equilibrium situation is achieved let us
de�ne the occupation number of electrons with spins directed in oposition to the magnetic
�eld (lower energy state) by N1, and N2 the number of electrons with spins directed to
the magnetic �eld. Of course we have N1(t) +N2(t) = N , where N=constant is the total
numbers of electrons in the ring. We will do all the calculations in the rotating frame of
reference. The degree of polarization of an ensemble of electrons in the beam is de�ned
as

P (t) =
N1(t)�N2(t)

N1(t) +N2(t)
: (37)

The equation of the evolution of N1 and N2 are given by

dN1

dt
= N2 [�(E)R2!1(E;�T ) +A2!1(E;�T )]�N1 [�(E)R1!2(E;�T )] (38)

and

dN2

dt
= N1 [�(E)R1!2(E;�T )]�N2 [�(E)R2!1(E;�T ) +A2!1(E;�T )] : (39)

Let us avoid the di�cult to �nd R1!2(E;�T )) and R2!1(E;�T ) and using the following
approximation i.e,

�(E)R2!1(E;�T ) +A2!1(E;�T ) = �21 = constant (40)
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and
�(E)R1!2(E;�T ) = �12 = constant: (41)

Then starting from a situation where there is no polarization i.e., P (t = 0) = 0 it is
possible to �nd the polarization until the equilibrium situation is achieved. It is necessary
only to integrate the above equations. A straightforward calculation gives

N1(t) =
N

2

�
�12 � �21
�12 + �21

�
e�(�12+�21)t +N

�
�21

�12 + �21

�
(42)

and

N2(t) = �
N

2

�
�12 � �21
�12 + �21

�
e�(�12+�21)t +N

�
�12

�12 + �21

�
: (43)

The degree of polarization of the beam is

P (t) =

�
�21 � �12
�12 + �21

��
1 � e�(�12+�21)t

�
: (44)

We obtained that if R1!2(E;�T ), R2!1(E;�T ) and A2!1(E;�T ) are independent
of time the asymptotic degree of polarization is constant i.e.,

lim
t!1

P (t) =

�
�21 � �12
�12 + �21

�
: (45)

Experimental results show us a not complete polarization. Why there is residual depo-
larization? This is the puzzle stressed by Jackson [2] and also Bell and Leinaas [3]. From
the former equation it is easy to see that the polarization can not be complete, since
the process absorption of a rotating particle with excitation of the detector has always
probability di�erent from zero. In the asymptotic limit we have that if

R21 +A21 > 3R12; (46)

the lower energy state is prefered (1:2 < g < 2, for the Land�e g factor), and if

R21 +A21 < 3R12; (47)

the higher energy state is prefered (0 < g < 1:2 for the giromagnetic factor).
We remark that the results that the polarization can not be complete was obtained in a

very crude approximation where the rates R1!2(E;�T ), R2!1(E;�T ) and A2!1(E;�T )
does not depend on time. A more realistic result can be obtained assuming that this rates
does depend on time. De�ning n1 = N1=N , n2 = N2=N and also

�(E)R2!1(E;�T ) +A2!1(E;�T ) = �21(t) (48)

and
�(E)R1!2(E;�T ) = �12(t); (49)

we obtain the following equations:

n1(t) + n2(t) = 1 (50)
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and
dn1(t)

dt
+ n1(t) [�12(t) + �21(t)] = �21(t): (51)

The general solution that we are looking for, involves two quadratures and it is given by

n1(t) = Ce�
R t

[�12(t
0)+�21(t

0)]dt0 + e�
R t

[�12(t
0)+�21(t

0)]dt0
Z t

dt0�21(t
0)e
R t0

[�12(t
00)+�21(t

00)]dt00: (52)

With the values of R2!1(E;�T ), R1!2(E;�T ) and A2!1(E;�T ), it is possible to �nd
the exact degree of polarization.

4 Conclusions

In this paper we discuss two di�erent puzzles: the depolarization problem in circular
rings and the rotating detector puzzle (actually they are the two sides of the same coin).
For electrons in storage rings, a residual depolarization has been found experimentally.
Bell and Leinaas investigate this e�ect using the idea of circular Unruh-Davies e�ect.
We propose a alternative solution to both problems using a coordinate transformation
between the inertial and the rotating frame derived by Trocheries and Takeno. With our
assumption a new rotating vacuum is presented.
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