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Abstract

The importance of covalent metal-ligand interactions in determining
hyperfine fields and energy-level structure of MX, linear-bonded halide
compounds has been studied, using the self-consistent local density molecular
orbital approach. We present results for FeCip, FeBry and EuCe, obtained
using the Discrete Variational Method with numerical basis sets. The high
spin configuration for the iron compounds, first predicted by Berkowitz, et
al., is verified; a successful comparison with gas phase photoelectron spectra
is made. Variation of the predicted electric field gradient with bond length
R is found to be rapid; the need for an EXAFS measurement of R for the matrix
isolated species and experimental determination of the §ign of the EFG is seen
to be crucial for more accurate determinations of the 2/Fe quadrupole moment.



I. INTRODUCTION

Electric and magnetic hyperfine fields have long been used to
characterize the electronic density in the vicinity °f,§ fgééQan;;nqqleu§.
Despite the large number of experimental studies whjﬁq clgag[xggséabij?p;
empirical relations and trends, theoretical advances baggﬁ?een fg&?gr“§low.
There are several reasons for the slow deve]opmengﬁgfagq?gggtg‘thgpries for
‘interpreting hyperfine data. First, the simp]ifiedmeQelslgf qne-e]ectron
phenomena fail since shielding and other relaxation:effgcts éré found to be
important. In the muiticenter molecular or solid state environment, this
means that arduous self-consistent field calculations h;ve;to be performed, at
the least. Experience with atomic data and applications of many-body theory
have shown that in some cases complex configuration mixing effects have to be
evoked. Second, the hyperfine interactions measure multipolar moments of the
electronic charge or spin density which are not directly related to the total
energy of the system. Thus, schemes which seek to optimize the wavefunction
with respect to energy, can result in very great uncertainties in predicted
hyperfine parameters. The literature of the last twenty years of Hartree-Fock
calculations on molecules reveals the uncertainties due to limited basis sets
and computational procedures. Nevertheless, as the quality of computational
efforts has improved, it is possible to hope that the hyperfine parameters
have become better determined, at least in principle. Finally, because of
these aforementioned difficulties, theoretical efforts in recent years have
~been rather meager.

In studying the electronic structure of solid state and complex molecular
systems, the self-consistent local density theories have proved to be both

capable of implementation and capable of providing quantitative data for both

spectroscopic and density-derived properties(1'3). Quite a number of solid



state investigations have been made, using either the Kohn-Sham-Slater mode]s,(1’4)
or more ééphfﬁticated exchange-correlation schemes, particularly for metals.

The use of hyperfine fields as probes of defects and impurity structures in

metals is cuﬁréntl] one of the most valuable applications of hyperfine

techniques. However, it is possible to wonder how secure the foundations of

the hyperfine results are.

In this paper we consider some relatively simple linear bonded MX, metal
halide systems Qﬁith'ha;e been suggested as "calibration points“(s‘g). In
principle, dﬁé hdpe%jnot only to establish the limits of validity of the
theory, as applied for example to transition metal and rare earth compounds,
but also to help determine the nuclear properties such as change in radius
upon excitation <ar?> and the quadrupole moment Q. In order to complete our
calibration and to compare with data available from other first-principles
methods, we also discuss results for the simple gas phase molecules HCl and
Cl,.

In Section II we briefly sketch the underlying one-electron theory and
the variational method used to solve the self-consistent field equations. The
diatomic molecule results are discussed in Section III, and rough error bounds
for the theory are thus established. Our data for FeC2p and FeBrp are
presented in Section IV, and compared with gas-phase photoelectron data and
electric field gradient studies on matrix-isolated species. Some preliminary

results for EuCep are given in Section V.



II, THEORETICAL APPROACH

A. One-Electron Model

The self-consistent one-electron local density (LD) theory has been used
increasingly in studying the structure of molecules, as an alternative to the
more traditional ab initio methods. The LD theory, as developed by Slater,
Kohn, Sham and others{1-4) is the most successful model available for the
description of electronic structure of solids. In both molecules and solids

one iteratively solves the Schrodinger equation.
(h- e ) v, (F) =0 (1)

to determine seif-consistently energy levels, wavefunctions, and charge and

spin density Pg:

(2)

The single particle hamiltonian is itself a functional of the densities,

Mg =+ Veour (o) + Ve g (0) (3)

50
where t is the kinetic energy operator, Vcq,1 is the electrostatic Coulomb
potential of nuclei and electrons, and V,. , is a local potential
approximation to the exchange and correlation operators. In the present work,

we have used the simple form (in Hartree a.u.)

Vo = 3 (23 (@

with the exchange scaling constant a = 0.7. This scheme has been found to
give an accurate representation of ground state binding energies and

geometries, as well as successfully predicting photoelectron energies for a



variety of molecular systems(3). More elaborate exchange-correlation
potentials such as those of Hedin and Lundqvist(lo) produce relatively small
changes in calculated properties, as seen for example in comparative studies
on small molecules(3) and metal clusters(1l),

A further problem in applying LD theory to the study of hyperfine fields,
is the presence of correlation effects which are rather crudely treated by
configuration averaging. For example, in the dimer Fep there exist a large
number of low lying multiplets, resulting from various coupling arrangements
within the incomplete 3d shells of the atoms. The usual LD scheme appears to
fare badly here, failing to define the ground state with sufficient precision,
and yielding poor binding energies(lz). However, by applying constraints to the
orbital occupation numbers fn, one can identify the important configurations,
and correlate the derived hyperfine fields with experiment(13). A combination
of LD methods with a more or less explicit treatment of a limited set of
electron-electron correlations appears to be a promising line of development.
The results presented in the following sections are intended to contribute
toward this development, by providing a well defined measure of the
predictions of the single configuration LD model.

B. Computational Method

We have made use of the Discrete Variational Method (DV-Xa), in which the
molecular eigenfunctions are expanded in a linear combination of basis
functions(14),

oo = Dy (1G4, (5)

In the present work the basis {xj} has been chosen to be numerical solutions
of the free atom or ijon problem. The basis atoms are placed in potential .

wells to induce additional bound states to obtain further variational freedom.

b



The familiar secular matrix equation (ﬁ - E§) E is solved with matrix elements
obtained by numerical sampling on a discrete point grid in ;-space. Details of
this procedure have been given in previous publications(14‘16), and need not
be repeated here.

Since the LD theory is oriented toward determining the electronic density
of the ground state, we may expect that multipolar moments and other
properties of the densities p,; should be well determined. Thus there is
reason for some optimism about prospects for predicting contact hyperfine
fields, electric field gradients (EFG), and magnetic hyperfine tensors with LD
models. However, the approach is also energy oriented, in that the Schrodinger
Egn. (1) is solved approximately, and usually in an energy-minimization
procedure. Procedures which find a minimum in the average energy, need not
produce densities which are highly accurate in the vicinity of a particular
probe nucleus. For this reason, it is difficult to evaluate the absoulte
accuracy which is obtainable for hyperfine fields in the LD approach.

We have investigated the sensitivity of the EFG to approximations in the
molecular potential, and other computational factors, for the MX, metal
halides. The simplest approximation used, the self-consistent-charge (SCC)
scheme,(le) consists of replacing the true electronic charge density p(F) by a
model density

psce(f) = 1 fog IRny (r)1" (6)
for the purpose of calculating the potential. Here lR"zl2 are the radial
densities arising from the variational basis set and the amplitudes of f:z are
determined as Mulliken-type atomic orbital populations(17,18) gbtained from
the self-consistent molecular eigenvectors (c.f. Eqn. 5). This scheme has the

merit of simplicity and speed, allowing an interpretation of the results in



familar chemical terms. Since pggc 1S a superposition of spherical
atomic-like densities, the effects of anisotropic bonding charge tend to be
somewhat reduced and averaged out. In this respect it is not very different
from the muffin-tin spherical approximation used in multiple-scattering
mode1s(19-20)  As we shall see, this averaging process has a serious effect
on the EFG and hence properties sensitive to charge anisotropy.

A natural extension of the SCC scheme, called the self-consistent-multipolar
(SCM) expansion can be made as precise as one wishes(14521) at additional

computational cost. Here the model density is represented as
> - v ~
esen(™ = L ew(ry) Ynry) (7)

where the radial densities ptM are associated with specific atomic sites v
and angular momentum (LM). The radial densities are determined by a
least-squares fit on a sampling grid to the true molecular density, and
convergence of properties with the size of the expansion is monitored.
Energy eigenvalues for the MX; molecules studied here were observed to be
rather insensitive to the addition of dipolar and quadrupolar (L=1,2)
potentials; however, significant changes in the EFG were observed for the
cova]ent-bondéd iron compounds.

The EFG tensor is defined in terms of the electrostatic potential seen by
the probe nucleus, as Eij = gE; = 1§§%¥73 = _vij(ZZ). For a linear molecule,
oriented along the z-axis, only the component V,, is nonzero, having the value

(3z§ - 52) 322 . 2
Vpr = LG T T n%o fay W l—5—1 ¥> (8)
Here the first sum refers to nuclei with charge Q, and the second sum runs

over all electron orbitals, with occupation numbers f,,. The corresponding



interaction energy gives a splitting of the nuclear gamma resonance Mossbauer

1ine of a spin = 3/2 nucleus equal to
_ 1 -1 2
AEQ = -z-eQVZZ = ze Qq (9a)

= 10.1 Q(barn)gq(ay=3) mm/sec (9b)



III. RESULTS FOR HC1 AND C1,

In order to develop a quantitative calibration of the local density

predictions for hyperfine structure (hfs) parameters relative to experiment
and other theories, we must begin with the simplest systems. From atomic beam
hfs experiments the quadrupole coupling constant eZQq/h of 35CL is known to be
109.74 MHz(23), 1In order to separate the eZQq product into the nuclear moment
Q and the electric field gradient g one resorts to theoretical calculations.
A standard procedure has been to obtain q from atomic calculations of the
restricted HF type, with either analytic or numerical procedures for solving
the Schrodinger equation. The results do however depend noticeably on the
model chosen, as measured by the matrix element <r'3>3p. Thus Desclaux finds
6.769 a,~3 in a nonrelativistic HF calculation, and 6.791 for the
corresponding relativistic Dirac Fock mode],(24) while Lindgren and Rosen
find values of 6.682 for restricted HF and 7.596 for "optimized Hartree-Fock-
Slater* models{(25), The particular HFS model which we have taken in the
present work leads to a value of <r‘3>3p = 7.824a°'3 with the corresponding
q-value of 6.26 a.u.

It is therefore important to note at the outset, that the underlying

theories, at the atomic level, differ in their predictions of q by 10-15%,

with the corresponding uncertainty in deduced values of the nuclear moment.
These differences arise from small, and fairly subtle shifts in the self-
consistent radial density, as shown for the C2 3p shell in Fig. 1. The well-
known contraction of HF valence densities compared to HFS is easily seen.
However, the core region variation dominates even the C2 3p matrix element,
causing the <r'3>3p HFS value to be substantially larger than that of the HF
model. In all these calculations the Sternheimer shielding factors due to

inner shell polarization(26) have been ignored, and correlation effects have
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been crudely averaged (and partially omitted) in the self-consistent field
procedure. While more elaborate theories can be and have been applied to
atoms, the HF and HFS atomic results form a useful and valid reference point
for comparison with molecular and solid state calculations.

For the calculation of the EFG in a diatomic molecule as well as in a
polyatomic system, some care has to be taken in evaluation of the required
<r-3> matrix elements. To obtain satisfactory precision with a reasonable
number of integration points we calculate the matrix element as the sum of
three terms:

i) the one-center part, evaluated precisely using the atomic <r=3y
integrals and eigenvector coefficients; .

(i) multicenter contributions within a sphere of radius R, about the
probe nucleus, evaluated by a systematic polynomial integration;(27) and

(ii1) multicenter contributions to the exterior region, evaluated by the
quasi-random diophantine integration method(14-16)  This procedure was found
to give quite satisfactory results with a few thousand total integration
points.

The fundamental limitation on precision of the theoretical EFG turns out
to be eigenvector "noise"; i.e. the limited number of digits of precision
obtained in eigenvectors based upon the energy-variational procedure. Thus,
while energies ¢ were determined within 0.01 eV with a few thousand sampling
points, it required up to 60,000 sampling points to stabilize the calculated
EFG within 2%. The dominant errors were found to arise from spurious core-
polarization terms, where small differences in, say, o versus = eigenvectors,
were greatly magnified by the large ¢r-3> values. These core-level accuracy
problems can be greatly reduced by adopting special integration grids, and
successful applications were reported for linear [Au(CN)ZJ‘1 systems(ze).

Returning to HCL, we also investigated the role of basis set completeness
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inddetermining the EFG, since previous HF studies had revealed a considerable
sensitivity(29‘32). It appears that in this case, a numerical minimal free
atom basis H° 1ls; Cl1° 1ls, 2s, 2p, 3s, 3p is rather good, since augmenting this
basis by chlorine 3d, 4s, 4p states produces only 2% changes in the EFG.

Accurate experimental data are available for HCe (33) and a careful
theoretical analysis has been given by Grabenstetter and whitehead(zg), among
others (30-31), They find the importance of the C¢ 1s shell to be small, but
that the second shell (2s, 2p) is responsible for ~15% of the total electronic
contribution. Accurate calculations reported for this simple molecule permit
a determination of HF (or near HF limit) predictions, which can be related to
the atomic models. The experimental value for eZQq/h is 67.619 MHz, and using
the standard value of Qg = 7.984 x 1026 cm2, one obtains a field gradient
(unsigned) of 3.604 a.u. Subtracting the proton contribution of 0.143 a.u.
leads to an experimental electronic value of qg = 3.46 a.u.. Our results give
Qe = 3.20 £ 0.03 a.u. which is about 8% too low. If we in addition use the
atomic C2 calculation and experiment to determine a value for Qcy, the
discrepancy is increased to ~17%. The most extensive HF calculations are in
very good agreement with experiment.

In solid Cep, the experimental value of eZQq/h is 108.5 MHz(34), leading
to an experimental q of 5.68 a.u. Subtracting the nuclear contribution of
0.64 a.u. gives the electronic contribution qo = 5.04 a.u. Calculations made
at the equilibrium distance for C¢p with varying numbers of sampling points
and minimal, as well as extended bases yields our theoretical estimate of gg =
5.24 £ 0.02 a.u. This value is about 3% too large. If we again use the |
atomic calculations to redetermine Qcy (7.328 x 1026 cm2 versus the
literature value of 7.984.x 1026 ¢m2), then our result for Cap is about 6%

too low. These values may be compared with the HF results of Straub and
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McLean(31) of qo = 5.94 a.u, and values of 4.68 - 4.81 a.u. inferred from
semiempircal CNDO and INDO calculations of Weber et al.(35) Thus we see that
local density HFS calculations of the EFG appear to have an absolute accuracy

of perhaps t 15%, comparing favorably to alternative theoretical approaches.
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IV. RESULTS FOR FeCly AND FeBrj

A. Energy Levels

The gas phase photoelectron spectra of FeClp and FeBry have been measured
by Berkowitz et a1.(36) in a study of MXy high temperature vapors. They
also presented theoretical binding energies calculated in the X,
multiple-scattering cellular mode (37), By comparison of spin-restricted and
spin-unrestricted level schemes with experiment, the authors conclude that the
high-spin, Mg=2 configuration is the ground state. Their results and our
spin-unrestricted DV-Xx binding energy estimates are given in TabTe 1. First
we note that relaxation effects are quite important in the rather localized
levels containing significant Fe 3d character. The overall average difference
between ground state and transition state eigenvalues, which include
relaxation effects, is 3.5-3.9 eV; however, in the 8 gy singly occupied
minority spin state the shift is 4.6 eV.

The two spin-unrestricted models agree as to level ordering and the
general numerical agreement as to energy and spin-splittings is reasonable,
considering the differences in the two approaches. The comparison to the
experimental peak positions is also fairly good, although both calculations
under-estimate the first ionization potential by ~1leV. Although basis set
truncation and other numerical limitations may have an effect on the
calculated values, we believe this discrepancy is an indication of the
importance of ++ correlation effects not included in the X, or X,g models.
Indeed, level shifts of ~leV produced by the exchange and correlation
potential model of von Barth and Hedin(38) have been found necessary to obtain

quantitative agreement with photoelectron spectra of RX3 rare-earth halide

vapors(39),
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B. Electric Field Gradients

Our results for the iron-site EFG in FeCep are plotted in Fig. 2 for
various bond lengths. The experimental sign of AEq is not known. If we take
the value of |Aqu = 0.63 mm/sec determined by Litterst et al.(6) and the
value Q = 0.156b found from atomic many-body calcu]ations,(4o) we can find an
"experimental® value of qgyp = * 0.41 a.u.. Duff et al. calculated a value for
q of + 0.75 a.u. and on this basis suggested a reduction in the accepted value
of Q(°7Fe) to 0.082b.(7), The present LD calculations predict that q(R ) is
positive, = + 1 in value at large distances and decreases steadily with
RFe-c1- The simple SCC potential leads to a rather small g-value for R ~ 4.1,
the gas phase equilibrium distance(41), While some bond-length relaxation may
take place in the rare gas host matrix used in the Mossbauer experiments,
large changes would be required to bring the SCC 9-value in agreement with
Qexp-

Curves B and C were calculated with the more accurate SCM potential
having L < 2 on the iron site and L < 1 on the C¢ sites. While the SCC and
SCM results are qualitatively similar, the SCM curve is shifted toward
negative gq-values and displays a steeper slope. Curves B and C differ in the
treatment of core polarization: in curve B the core contribution (which is
almost entirely due to the Fe 3s, p orbitals) is treated in the SCC model,
using an accurate cylindrical-coordinate variational 26,200 integration point
scheme(za). The SCC spherical averaging does, however, lead to an incorrect
(spherical atom) limit as R»=, In curve C the core contribution is treated in
the SCM model with 7200 diophantine integration points (21), While numerical
noise is certainly greater, the SCM scheme does have the correct dissociation
limit; i.e. the Sternheimer shielding factor will be recovered, in principle,
at large R. The deviation between curves B and C is thus a relatively good

measure of computational "error-bars", and displays the importance of the Fe3p
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polarization effect, as pointed out by Duff et a1.(7),

In any case, the LD theory results suggest:

(i) q<0;

(ii1) SCC approximation, and by implication, all other spherical averaging
or muffin-tin procedures is seen to be inadequate for predicting EFG in
anisotropic covalent systems;

(i1i) Curve B is in accidentally perfect agreement with experiment, for
an assumed R = 4.1 a.u. and gexp < 0. This is our best estimate from the
point of view of numerical stability. Curve C suggests that somewhat reduced
values of |Qfa| be considered;

(iv) our results are inconsistent with the HF calculations of Duff et ail.
with respect to sign of q.

There are several further possibilities to consider:

(i) The Fe-Cs bond length may change in the crystal. A contraction would
be expected due to packing forces exerted by the closed shell atoms of the
lattice. However, the rare-gas matrix could also induce chemical changes in
the Fe-C2 bond. The existence of stable species like XeFg and Krfy shows that
there is indeed a bonding interaction between rare-gas and halogen atoms.
Theoretical investigation of this possibility would require treatment of
clusters like FeC2Ar, and FeC2pAry, which are beyond the scope of the present
work.

(ii) The “monomer" peak is the Mossbauer spectra may be misidentified.
For example, in argon-isolated FeC%» there are also peaks at 1.79 and 2.80
mm/sec attributed to dimers and bridge-bonded dimers, respectively(5,6)
and rather close to that found (1.30 mm/sec) for crystalline FeClj.

We tend to suspect item (i) is relevant, and have some hopes of carrying

out the larger cluster studies in the future. At the present, it would be
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extremely helpful to obtain new experimental data, namely, a direct

measurement of R(Fe-C¢) by EXAFS techniques, and a determination of the sign
of the EFG, requiring the use of a magnetic field in Mossbauer measurements.
We may see such data in the near future(42),

In order to gain an understanding of the rapid variation of the EFG with
bond length, we have performed a detailed orbital analysis at each R. The
majority spin + and minority spin + valence orbitals have quite different V,,
values, due to the four unbalanced spins and the resulting distortion of the
occupied state wavefunctions. The total spin + valence contribution is
negative and grows steadily in magnitude as R decreases, due largely to
bonding effects in the unpaired ng, 3“g levels. The spin + valence
contribution is however positive for R > 4.0 a.u., becoming steadily smaller
as R decreases. This reduction (also present in spin +) can be largely
traced to a contraction of the doubly occupied 6uy, gy, States at smaller
distance -essentially an overlap repulsion effect. The result is that V,,
decreases steadily with R. Two-and three center contributions of either spin
are negative, and essentially cancel against nuclear terms for large R values.
The multicenter contribution grows rapidly as R decreases, reaching ~130% of
the bare nucleus value for R=4.1 a.u. and is thus a significant contributor to
the EFG.

The Fe 1s, 2s,2p shells are found to contribute only negligibly to the
EFG; apparently they are well shielded by the rather polarizable 3s, 3p
shells. The 3s, 3p "semicore" terms are positive and also grow rapidly as R
decreases, reaching 23% of the off-site nuclear dipolar terms at R=4.1 a.u.

Written as a Sternheimer shielding factor,

Voz.tor = (1-RG)V Y (10)

ZzZ,valence zz,0ff-site
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We find Rg = 0.48 at this distance.
Since the effective Rg is determined by the self-consistent interaction of all
electrons and nuclei, and is rapidly varying with R (it becomes negative at
small R values), estimates based upon simplified free ion models may not be
reliable.

Now let us briefly summarize our EFG results for FeBry, which lead to
very similar conclusions to those reached for the chloride. Assuming again the
nuclear moment Q(Fe) = 0.156b, the “"monomer peak" of Litterst et al.(6) for
FeBrp in an argon matrix leads to a value Iqexpl = 0.56 a.u., which is ~40%
greater than in FeClz.. The HF value of Duff et al.(7), calculated at the gas
phase bond length R(FeBr) = 4.36 a.u. is 9y = +1.09 a.u. again leading them
to suggest a reduction of the accepted value of Q(Fe) by nearly a factor of
two. Our calculations of q(R) using the SCC approximation to the potential
give an asymptotic value of ~ + 1 a.u. at large R. For any reasonable range
of R-values, 4.2 < R < 4,5 a.u., the absolute value |q| is too small, compared
to experiment. The more accurate SCM potential shifts the gq(R) curve down
toward more negative values as in FeCip. We definitely predict q < 0, and in
our best estimate, a bond contraction of ~0.15 a.u. would match experiment and
theory (assuming Q = 0.156b).

C. Magentic Hyperfine Fields and Isomer Shifts

The magnetic hyperfine field at the iron nucleus due to the unpaired

electronic spin density is:

Bs = 524.295(0) kG (11)

A i . 3 .
with pg given in e/ay units. Since only £ = 0 densities have nonzero value
at the origin, the observable contact field is the result of polarization of
the Fe 1s, 2s, 3s, 4s shells by the unpaired 3d-electrons, in the case of the

free ion, and for the coresponding molecular orbitals in the case of FeXp
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molecules,

The net field is found to be negative in both FeCep, and FeBrp,

consistent with observations on many other systems.

B

hf -432kG at R = 4.1 a, for Fesz, and

B

#

-468kG at R = 4.36 a, for FeBr

hf 2°

The required core-polarization terms were calculated using a relativistic
moment -polarized free ion model (45) with the configuration found from the
self-consistent molecular results. The 2sy,p contribution dominates the core
contribution, which is -1617kG in total. Contributions of 3s and 4s levels
are found to be positive in the free ion as well as in the FeXp molecule.
However, due to differential mixing with +,+ ligand orbitals the MO valence
contributions are nearly three times as large as in the free ion.

The isomer shifts (IS) of the Mossbauer nuclear gamma resonance is given
by

AE g = aApc(U) mm/sec (12)

where apc (0) is the difference in electronic charge density at the iron
nucleus between some reference system and the measured system. A current
estimate of the IS calibration constant is(46) a ~ -0.27 (mm/sec)/(e/ao)?
Litterst et al. report IS values of +0.88 and +0.81 £+ 0.02 mm/s for
FeCzp and FeBr, in argon matrices, respectively(6), The IS values are given
relative to metallic iron at 300K. The absolute values of p.(0) calculated in
our variational molecular procedure are not very accurate; however,
differences apc(0) can be determined reliably. We find an increase,

3 L.
dpc = +0.18 e/ag, in passing from FeCe, to FeBr, at the supposed equilibrium
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distances. This value is consistent in sign and approximate magnitude with
the observed IS difference. This result can be taken as an argument that bond
lengths are not much changed in the host lattice, since we find a rate of

4
change 3p./3R = - 1.6 e/a, around the assumed equilibrium position.
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D. Halogen Quadrupole Coupling Constants

The quadrupole coupling constant for the halogen site in FeXp is
measurable, in principle, by NMR techniques. The By e2Qq/h value in solid
FeCz2 has been found to be 4.74 MHz(43), but will be expected to be quite
different in the layered compound, compared to the matrix-isolated molecule,
We have calculated the EFG at the chlorine site in FeCip and at the bromine
site in FeBrp for several values of R(Fe-X) around the equilibrium distance.
The value of q is positive in both cases, increasing in magnitude with R,
Inner-shell polarization is found to give a shielding effect of ~5%, which is

appreciably smaller than that of the Fe-site. The theoretical values found

are q(Cz)

q(Br)

For chlorine, this result leads to a predicted eZQq/h value of ~22.1 MHz,

+1.88 + 0.1 3,3 at R = 4.1 a,, and

+3.25 + 0.1 ao~3 at R = 4.36a,.

about 20% of eXperimenta] value of CL3.
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V. RESULTS FOR EuCLy

The rare-earth halides form an interesting contrast to their transition
metal counterparts, since the partially occupied 4f shell is more localized
and presumably not directly involved in the M-X bond. Mossbauer absorption
spectra have been obtained for matrix isolated EuCip, and interpreted on the
basis of a 6s-6p hybridization model (8:9), The effective jonicity obtained
in this work is 0.47, corresponding to a configuration Eu 4f7 65053 gp0.53
quite different from the nominal Eu2+, Ce- states corresponding to purely
jonic bonding.

We have calculated the self-consistent energy levels and charge and spin
densities for EuC2y, as a function of internuclear separation. The results
show that the (4f+)7 fully polarized state of europium is favored in this
linear molecule, in analogy with the (3d+)5 (3d+)! high spin state found in
FeCep and FeBrp. Ground state eigenvalues corresponding to a bond length
R(Eu-Ce) = 5.5 a.u., near the estimated equilibrium value, are given in Table
2. The exchange splitting of the Eu-f levels is seen to be ~5eV, and these
states are very little mixed with ligand character. The identification of the
high spin state as the ground configuration implies a magnetic hyperfine field
Bns of the order of 300kG, as measured in EuS and many other compounds (22}, 1n
cubic systems, Bns leads to a set of resolved Mossbauer lines corresponding to
an overlay of many transitions from the I=7/2 excited state to the [=5/2 151gy
nuclear ground state. The typical width of the spectrum is ~40 mm/sec.

The data of Baggio-Saitovitch et al. shows a rather broad unresolved

spectrum, which was interpreted in terms of an isomer shift of -13.4 mm/s

151

(relative to "~ Smp03) and a quadrupole interaction e2Qq/h = -235 MHz(8.9),

Magnetic hyperfine interactions were assumed to be absent.

Theoretical q-values of the Eu-site in EuCep are plotted versus R in Fig.3.
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Because of the simple bonding scheme in this molecule, we find the theoretical
results to be very insensitive to computational details such as choice of
basis, multipolar components of potential, number of integration points, etc.
We see from Fig. 3 that the predicted EFG is much larger, though of the same
sign, as that inferred from experiment. Here (in contrast to FeC2p) the
experimental sign of the EFG is known, and we have used the value Q = 1.14
b(44). The variation of q with R is seen to be more rapid than R-3; this
shows that while the bonding is ionic¢ the effective charge carried predominantly
by the Eu 5d, 6s, 6p shells is itself a rapidly changing function of R.

At a distance R = 5.5 a.u., using a small but partially optimized numerical
basis set, we find the effective configuration Eu*l-31 4f” 590.43 gg0.11
6p0-15, Numerical integration of the spatial volume nearest to the Eu-site
yields a net charge of +1.40 which is quite consistent with the Mulliken
atomic charge of +1.31.

The calculations reported here are carried out in a nonrelativistic
framework. While relativistic corrections may turn out to be sizable, it is
very unlikely that they are large enough to change our main conclusions, which
are:

i. The high-spin state is the ground state of EuCLp, and hence a sizable
magnetic hyperfine field is present.

ii. In addition to the 6s, 6p hybridization previously proposed to account
for the bonding, we find a sizable Eu 5d bonding component, which makes
significant contributions to the Eu-site EFG.

iii. A large discrepancy between qexpt and Qipegry is noted, which could
readily be attributed to the neglect of 5d-bonding effects and the presence of
a magnetic hyperfine field in analysis of the experimental data. It would be
interesting to attempt a reinterpretation of the Mossbauer data in light of
these results, especially if the equililbrium R-value can be determined by

EXAFS or other techniques.
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Table 1. Comparison of theoretical and experimental one electron binding
energies (in eV) for FeCi, and FeBr,. Arrows t+,+ indicate majority,

minority spin state in spin-unrestricted calculations.

a b c
expt + Xoa ¥ + DV-X, +
FeCeo
10.45 8q 13.1 9.3(d)  11.8(11.7) 8.4(9.4)d
11.26 aq 10.8 - 10.9(11.9) 8.1
11.91 g 10.8 - 10.0(10.0) 8.1
12.12 - =y 11.5 11.4 10.6 10.3(10.3)
(12.53) g 13.5 11.8 12.7 10.7
13.67 oy 12.5 12.2 11.4(11.3) 11.0
og 15.0 13.8 13.6 12.2
oy 22.4 22.1
og 22.6 22.3
FeBro
9.95 8g 12.6 9.1d 11.3 8.2d
10.65 og 10.5 - 10.7 8.0
11.14 g 10.2 - 9.6 7.9
11.40 Ty 10.7 10.5 10.2 9.9
12.01 g 13.0 10.7 12.4 10.4
13.23 ou 11.6 11.3 10.9 10.5
(14+?) “ag 14.3 12.6 13.3 11.8
du 22.5 22.2 21.8 21.5 .
og 22.8 22.5 22.0 21.7
(a) Ref. 36

(b) Spin-unrestricted X,z multiple scattering method, Ref. 36,37 with R=4.09
a.u. for FeCLo and R=4.39 a.u. for FeBrjp

(c) Present work, R=4.2 a.u. for FeCep and R=4.36 for FeBrp. Levels in
parentheses are separately optimized transitibn state values; remainder
are ground state levels shifted by 3.6 eV.

(d) Highest occupied level.
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Table 2. Self-consistent spin-polarized ground state energy levels (in eV)

for EuCep, at bond length R=5.5 a.u..

character are indicated.

Level

spin +
4,28
6.6
4.4
6.5
4.5
5.3
6.4
6.5

15.6

15.7

22.7

23.1

(a) Last occupied level,

(b) Empty level.

4.3
0.9
4.4
0.6P
4.5
5.2
0.6°
0.7b

15.6

15.8

20.1

20.5

Levels predominantiy of Eu 4f
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Figure Captions

1.

3.

Difference in electron density of the atomic C¢ 3p orbital between HF and
HFS theories. The maximum in the density itself is about 0.25 a.u. and is
reached at R = 1.5 a.u.

Calculated values of electric field gradient parameter q at the Fe site in
FeCep plotted against Fe-C4 distance. Curve (a) represents values from a
SCC calculation using 26200 integration points in a cylindrical coordinate
mesh. Curve (b) represents a SCM calculation (L < 2) with 7200 points in
a diophantine integration scheme. Fe 1s5,25,2p,3s,3p core

contributions to q were obtained in the same manner as curve (a). Curve
(c) represents an SCM calculation with all electrons treated by the
diophantine integration scheme. Point (d) is a single calculation done in
the same manner as (c), with 14400 points to test integration convergence.
Points (e) represent the value inferred from experiment (Ref. 6) for which
the sign is undetermined. (|V;,| = 0.41 a.u.). Point (f) is the
theoretical value calculated by Duff et al. (Ref. 7).

Calculated values of electric field gradient parameter q at Eu site in
EuCt plotted against Eu-Ce distance. Curve (a) is -(6/R)3, representing a
simple point-ion model. Curve (b) represents an SCM calculation (L < 2).
The "experimental" value of q = - 0.86 a.u. inferred from Refs. (8,9) is

indicated by brackets.
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