Notas de Fisica Ne 18

IWVARIAHCE O FIZILD TEZORY UNDZ: TIME TuViiSIOW

Je Tiowmo
Centro Brasileiro de Pesquisas Fisicas
dlo de Janeiro, D.f,

August 22, 1954

The inveriance oir Field Theory under Lorentz transtforuations
and in particular under ti.e inversion, was extensively analyzed by
the author in his Princeton Thesis*. The present paper reproduces
the wain pert or the second chapter of the referred thesis, except
for souwe details.,

A general analysis ot the propeir Lorentz transforuations in
field Theory is wade in section A, wainly for the purpose or illus-
trating how to roruulate the probleis of invariance in Field Theory.

In bection B the antiunitaery transforuation ror ti.e inver-
sion of the type suggested by Wigner(19 2)is introduced (transforia-
tion I) and in section €y arter an analysis of the invariance of Quan-
tuu Electrodynawics under transroruation I, a new foru of tiwe inver-

* J. Tiomno, "Theories on Neutrino and the Bouble Beta Decay", Princeton Thesis,

September, 1950, The numbers of the formulae used in the present paper refer to
those of Part II of the Thesis which this paper is intended to divulgate. Some
changes 6f order in the presentation were made, and some details were suppressed.
No references “o posterior work on the same subject were added.
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one ty a charge conjugation.. In section D two other possitilities
(transrorwations III and IV) are shown to be possible for zero .ass
particles. The introduction or phase factors in the iuproper Lorentz
transioruations is considered in section T and sowe consequences aie
analyzed., Finally, a reexawmination of the covariant field quantities

fin]

on these lines is wade in section £,

A, rreliuinary concepts and results.

Following the lines of Wightiian and Wigner(B) i1t is convenient,
Tor siwplicity of language, to introduce the concepts of fodily iden-
tity and sutjective identity. A ziven physical systeii {or several
equivalent systews) can bte viewed by several observers using difievent

coordinate frawes. The systeil and its state, although in different
relations to the several observers, is then said to te bodily identi-
Lal for all of thew. On the other hand two dirrerent systews, ecach
okserved by a difrerent observer, are said to be subjectively iden-
tical if they each tear the saue relation, to the corresponding obt-
servers, In what follows we shall interpret the Lorentz transforua-
tion as a passive transforwation, i.e., a change in the coordinate

systeu given by:
~s
34 U
x o~ xF = el <Y ) (1a)
Wwith
ar, ﬂJA = Byn (1b)
The tilde will be used to indiccte the quantities (coordinates, wave
functions, operators) used by the new observer,

As a consequence oi transiorwation (7) the wave function™V,
observakls quantitizs and auxiliary field quantities (YW,A) will ke
in general also t.ansrorwed. The new quantities (with tilde) reiew,
of course, to the bodily identical systeis, We shall use here the
usual condition for relativistic invariance: the ianvariance oi the
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torw or the eguations ol wotion,

Awonyg the ceny possitle iorwulations cir the Lorentz Transior..a-
: o

tion in Quentuw. Theory these are two especially siwple, the Heiscn-
Lerg and the bchrouinger()). These derivz their neaw2 as a result of

their siwilerity with the corresponaing repressntstions or the #Field
Theory.

1), bchrodinger type or Lorentz transiocwation.

der2 the tuo okssrvewss us2 the sawe wave runction ror two

subjectively identical systews (anda thus, divrevent wave runctions
for todily identical systews). On the other hand toth obszivers will
work with the sawe szt of operators,

Thus we have the trausiorination:

Y[s]— T[] = UY[v] (2a)

where U is in general a unitercy opz.ator (we exclude heve the anti-

unitary case ox ti.e inversion, which we consider in scction B,
U will t2 chos2n in such a wvay thet w2 have

Sk )U'i 2 /\'ix}z(::d (20)

Z where the operator A (acting on the spinox
space) 1is such that: &)

- ¥
/\xﬁ/\i acf,; b

Ior spinor fields W

(2c)
and
3 ‘1 \) Y
3 ff\tj\(x} U s Cop Ay () (2d)

the generalization to other types of Iields is

(5)

ror vector rields;

¥

okvious. «2 us2 throughout Schwingz2i's notation
2)., Beisenbery type of Lorentz transrorwation,

In this case the sawe wave zunction is used by thz two

obtsesvers ior todily identical systeis, say, ior the sa.e physical

systew as viewed by both or thew, although they will use diffevent



okservables and auxiliary rield guantities. The transriorwations are

now, instead ox (2):

Vel »yo]= Wlio] (5)
P () —> C{J (%) = AW (x) | (30)
Aux) — ',E\'H&) - ofFA,b,(x) -

The justificeatiocn oi the last two transsoriations is as ifol-
lows. The cquivalence of the Heisenberg and Schrodinger forus of
Lorentz transior.ation i.poses the eqguality of the expectation values
of' corresponding quantities:

(101, F @ Yo])- (Yo, F@ Pl)s w

where the indices H and S appear only to indicate to us that we use,
respectively, the Heisenbeorg and Schrodinger transior.ued quantities,
Frow (4) ther: results

F(X) U, | (5)

which was used in obtaining (3b,c) Irou (2).

It should te otserved that in the Heisenterg rorw of the Lo-
rentz transrorwation the spinor field guantities Y’(x) transioru in
the sawe way as the wave Iunctionsﬂp («) in the one perticle Dirac
equation g&),

3). Relation btetween the transtorwation (2b) for the rield
operator q}(x) and the transioriation or the one particle Dirac wave
tunction \f (%)

In order to justify the transfornation (2k) which we assuw.ed
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&s valid in the Schr8dingzy t,pe of Lorentz transioruation we should
veriiy that it leads to the usual transiorwation for the one perticle
Dirac wave function 99(x) in coariguration space:

O(x) —> %5(;) = AN P(x) (6)

This can be donme in the followi.g way. we iirst express the
gquantw. wave runction 1?';or a systew with one particle (say, elec-

tron) as: :
-
‘glfsfodvﬁ\;/g Qx) () o

\

where W' (x) is the creation operator ror electrons and {1, is the
vacuuu wave runction, which satisries the relation

U,’i(x) Qe = Q (8)

\V}(X) tzing the anihilation operator ior electrons.
dow, if we write the new wave runction in the sawe for. as (7):

—~ » EIR. F’N - ~
U= fc(cr Wx)y P (x) ), ()
i SR N

we see, by application of (2) to (7) and couparison with (9), that

the positive energy wave runction yj(x) transior.s according to (6).
The extension of this .ethod to integer spin rields is otvious.

B, Tiwe invarsion.

In addition to the requirewents of iavariance oi our fizld
theories under the proper. restricted Lorentz group, we require also
invariance under the iuproper Lorentz Group.

The roguire..ent of inveriance under space reilexions leads to
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the well lnown, and vesy userul, conceot ot perity. The condition
or lnvariance under ti.e invacsion is equivalent to the assuuption of
the Principle of iiicroscopic Reversibility(6).

#or the transrorwmation, ty tiwe inversion, or the one particle
Dirac wave yunction in coun:iguration representetion we adopt Wignerts
anti-unitavy transrormation(lya)

~ * *
D(x)— PE) = AP Q=Y c P (x) (10)

which transror.s positive emeryy wave functions into positive energy
ones, The watrix C in (10; is defined by:

";P {2 e H {
CB C xT (10a)
ot = g7 = Uy = & (10b)

where the indice T is used to indicete the transposed watrix. o,
by the wethod descrited in the suksection {(4-3) we rind, for the

. . Vo . . _ ; .
Schrodinger type oif treasicrwaticn in fizld Theory, that assuuing

~7
. H
I‘Kriﬁlﬂ 'L!J [5] "U‘L!f [G] — (171a)
the 1ield operator‘?(x) should traiisiorii as:
4 - -1 ~ N
UL Ut s N ) | ()

with

A= ¥ C (17¢)

In (11b) \V*(x) is the operator which is represented by the couplex
conjugate (not heruitien conjugatei) of the wstrix which corresponds
to Y (x) in the saue representation.

Jow, in order to tind the Heisenkerg rfora of the tiue-inver-
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sion transior.ation, eyuivalent to (7) we iupose agein conaition (4)
ror the invaviance o:r cu«pectation values and iind, instead oi (5):

S o= [ e U] : (12)

wherz the index T Leens the traasposddo:r the operator in the gracket,
(In other words, Ft is the operator which is represented by the trans
posed watrix or that which represents F).

Thus we rind, rof¢ the Heisenberg rori of Lorentz transfor.es-
tion:

o
U(e] —> o1 = WLe] (130)
~ i “. / -
\}*.)(x)‘____y. \L‘J (X)= /\dlj (x)= Pbgc L\(/ (x) (136)
The transrorwation (13k), ior the ficld operator q’(x), is

rorwally the sawe as (10) xor the uave function‘f (x), as in the casec
of unitary transror.ations. However, in.the case ox transtoruations
(13) there is an adaitional operation, cowing froii the application
of (12), in the case where /' is a product of tield operators:

i = F FZ e o e & ( lu—)

Then, in view of (12) we tind:

’:{ _ -1 W "'.’ m --’ 0 s : t ,:1' t i’:’ t,\
*= (U l.}U « U 1’-‘2 U saaal JnU) - (-t-, J-Z oooofn -}t
oxr: ~ e ~ ,
. Frl sev e 4—‘2 F-! \15)

Thus we have to aud to transiorwations (13%) the operation(7)

) 7o (x) ¥ (x) —aF (X G INNES (13c)
FV(X, ﬁZ(A, i & rn(A) n(X) ces By F (X Zc)
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For instance™: o~
Im e _ ~
Vi(x W (%) — k‘J/(:x,) Y (x)
§
From now on we shall refer to the time inversion transformation
(13) as transformation I. Other forms of transformsastion will be e

sidered in the following sections.

C. Invariance of Quantum Electrodynamics under time inversion.

It is simpler to make this analysis in the Heisenberg represcn-
fation, in which the equations of motion of the clectron field W (x)

and electromasnctic ficld A (x) arc the followingfﬂ:
A

CB’F(% AL+ m]W ()= 0 o)
i Ap )= 5,3 (17)
?

with

= E] v Ty -Y@y b

“sfg,,
9E T _ 4 (18)

<

N7 b A

ég,{i” )

These equations should be invariant under the Lorentz transformation
(we restrict oursclves from now on to the IHeisenberg form of Lorentsz

transformation). Th is the case if we add to the transformation

(13b) for Y(x):

=
0

~ o~ T
YN
V&) -— W)= AP (1) (19a)
the following transformation for Ap(x):
* One should notice that transformation (13b) tngether with (13c) is equivalent to
| Y—>¥sC P*
with the adcitionsl rule that all Satrices representing physical observables
should be transnosed.



Ao(x) —> A(x) = A(x) = Ag(x) , B (x)—> -A (x) (1.9b)

To these should e adaed equation (13c):

ujl

- _— - = oV A . P ‘ i
B (%) Fp(x) wee ¥ (x) — T (X)) oo T(H) T (H) (19¢;

%

It should ke olserved that trensior.ation (19L) difrers iro.
the usual one ior a covaviaant vector by a sign., The saue is also
true ror the transioruation oi j (x), thus uaking jp(x) A (x) & sca=-
lar density. Thereiore the quantityiséé is not invariant in a ti.e
inversion, as 1t changes sign. Howeve?, this is uni.portant as this
last gquantity has always an expectation value zero, in view oi the
auxiliary comdition (18).

Equation (19a) =culd tetter ke written:

Wy () — Pb%‘fi C{JL(?@) (20a)
; B ( “‘*&3'!“ T - / ’/i
Y (X)=C 1J+(I) ’ { I5C Y0 = PBS VJF(?“) (20t)
! A '
V@) = CUx)— PisC %_(JQ (200)
where ¢ -

is the charge conjugate iield.

In transior.ations (ZO)\¥+(X) and\y; (x) are, respectively,
- operators of absorption oi electrons and positrons., e see vrowu
these transioruations that:

1) Positive energy operators go into positive energy ones.

2) Zlectrons (or positrons) go into electrons (or positrons).
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3) Absorption cperators go into ewission operators and vice-
VEI'Sa.,.

Now, we sz2e that tesides the trensioruation (20) for ti.e inversion,

which is the ocne that we have called transiorwation I in sec. A,
another type oi tiue inversicn exists, such ass '

Y@ — o5 € 9o (21a)
@ — s Ly (0 (27)

or, instecad or (19a)

7 Py

Y (s b (0) = Pb/g, G k{J‘ (3c)

(22a)

-

Now the equations or wotion (16, 18) will Le invariant ii we add to
(22a), instead of (19b):

— e
Ag(x) — -A (x) ;3 A (%) —>» A(x) (22v)
and keep €as is necassary %)) equatioca (19):
g e ~J
gy - pry \ s : w b'e
i".,()() .&2 X, —-—;‘2 JZ(-X;) av-?(J\-) (EZC)

We should observe that now the transioraation (22b) is the
usual one for covariant vectors. e shall refer to the transioria-
tion (22), for tiue inversion as transforwation IT. In this case
we see Irow (21} or (22a) that positive energy opevators go into

.

positive enesrgy operators and absorption operators into ewission
ones, as in the case oi transrorwation I. However, now, electron
operators go into positron operators and vice-versa,

If we notice thait (22a) can be written as:
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/
- [
b (o0) — [335 \/(20) 50

w2 see that this type oi tiwe iaversion is rorually the sce as the
ohe given by Pau1i4)9 in the c-nuuker theory, except ior the addi-
tional operation (22¢), This opevation is, hOWeVuL, iundawental in
the Ad-nuilker theory as the antlcOHHutatlon of the operators Y ()
and‘V\A) would produce otherwise & Change ot sign in the secound eLi-
bter ox (17) which destroys the inveriance to ti.e inversion,

The classical analogy of these two possitle types of transcor
wation, (19) and (22), cor tiue invewsion is well known:

The classica:l equations ror the electro-uagnetic rield and

Lor the charged pd ticle gre:
, +OOC‘
w (X ) - .
ééi%«z e( e S(X.”dj (2l)
doc Joo 'S
A 2 ;
A% P dx? (25)
N e = e F (:)C') T )

where

1" y = -
‘A= ko e (26)
Ix ox®
— ; il
5[5 %\j«c:fx c-'.x,_k ’ (27

dow we require (as in the quantu.l case) that after the transforia-
tion for tiue inversion

% Fas _ - % b - ?
Ko=F&, & =X, 3 X =->x = Xx (28a)
ax”
theﬂgny;gv which was given ty mag— in the old systewu and is now
l--—o

Ll &“°9 still rew.ain positive. /e lust then assuwe that the proper
L3
ds :

+
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tie s transrorus according to:

AS ) Cig = -ds (2"3)

(or change s into -s).
Then the equations (24) and {25) will rew.ain invariant in
either or the following tuwo ccses:

~S

& Z;(%) = Agla) 1) = -Ax).

In this case the charge, e, does not change sign.

~J
9 A,(%) = -Ay(x) ; A P

(x),

(x) =

and also change ¢ into -g, i.ec,, interchange positrons and electrons,

D. Other possibilities ior ti.ec inversion oi zero wass spinor iields.

I a given wassive particle oi spin /2 is charged, or has a
wagnetic wowent, then the possible transroriations under tie invere
sion arzs the ones given ty (19) and (22) which we shall refes to,
frow now on, as I and II, respectively (ior the .ouent we consider
only interaction with the electrouagnetic iield). This arbitrari-
ness of choice tetween I and II, which exists when we have only one
type of charged spinor ilelds disappears when there are seveial oiff
the.i (charged or with an anowalous ueagnetic wowent) for the follow-
ing reason. The choice of I or II foe one oi these rields (say, the
electron field) deteriines the trans:ioruation ot the electro-uagnetic
tield (as either {(22b) or(19b) ) and thus all the other (charged or
with anoualous weacgnetic wowent) fields should treinsioru in tke saie
way as the first one (at least up to a phase factor ¥ 71 or i as
will be analyzed in section E.

Now ii another spinor fielda has a zero wuass we Iind, tesides
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transtoruations I and IT, two wore possitilities For the transior.a-
tion under tiie inversion ror this field. These are listed in Table
I and will ke referred to respectively as trensioriations ITI and IV,

TABLE I
POSSIBLE TYri5 0. TRANG/ORGATIONS UNDER TT.iT TJAVIRSION

Jaue or the Transfor.a- Restriction on Resulting rowv. of
tion oi the the i.ass oi the| the transxormaticn
transroruation ‘|spinor field spin /2 field of the electrois

netic potentisl A (x
and oi g QS°UdO—
SCalar charged wield
B(x),if fx) is a
charged field,

e ginarn b e I ot 1115 1 R b b

) T N TS
I W—*V’b/sc LT) | o restriction B}(lx) -B'(lx){'

e A (x)
B(x) ()T

11 '#’"""Pblj (‘D’ o restriction

I1I1 , 7‘ 4@r0o .ass Saie as ior trapnsg-
W"’ PC SJ foruation II

’ ‘ L Nl LAY t‘1 - e e
|} C H} 7ero Las vaue as ior trans-
£y L# ‘ (3 4ero uass Tovwation I

In all these cases the additional reordering operation (22c) should
be perzoried,

The gquantity y (x) used in the rourth coluun of Table I is
defined by: A

o(X) = ~A,{x) ; A(-&) A(A) (29)
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The results given in the fourth coluun or Tatle I wer? round
as rollows:
1) The transioruation of AP(A) should te the saue as that of's

. F AT — ’ ST —
R SRS USRIV ARUIES) ()

ii‘%/(x) is a charged field, in ordei that the wave equations (16)
(17) (eventually with .. = 0) o0i the fiecld ¢ in ianteraction with
the electromagnetic tields would be in«ariant-g).

2) The transior.ation of a Charged pseudoscalar field (B(x)
which also interacts with the electromagnetic field was obtained by
the following coindition. The current density vector %

: t D R(X) 0B (x)
Jp(x) = %(B(I %-«-(-—F) - 5(13)“5;‘7) (30)
‘)C o

should transioru in the saue way as A (z). How the transtoriiation
of A (x) was conditioned by that of W(x), Thus ir tothW(x) and
B(x) interact with the electrouagnetic rield A (x) then the transror-
wation of B(x) under ti.e invertioan is conditioned by that-of‘((x)
in the way given in Tatle I.

It should be observed that Bf(x) used in Tatle I is the charge
conjugate field to RB(x):

B'(«) = B(x)T (31)

Also, in closc analogy with the corresponding transior.ation
1or\y(x) positive ene.gy absorption op2rators ox the wield Blu) &u
into poesitive energy ewmission operators. This is toth true if either
B+(x)-+ -B+(x)7 (t.anszoraations I, IV) in which case positive par-
ticles go into positive particles, or

B+(x)-§- BL(X)T (transforuations 1T, III)S

when positive perticles go inte negative perticles,
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T. ~rPhase ractors in the iuproper Lorentz trensior.ations or spinoxr

rields.
The possitility or introaucing & phase ractor ¥ or ¥ 1 in the

sawe transioruaticns, uander the iuproper Lorentz group, of a spinor
rield Y .

kp -— X\ ksj - {d7e)

e Q) - o ) L . . )

was Iirst shcown by Racah . He argued that rauli's condition H
aetA=1 (uTE)

would still ke satisiied i: we substitute /\ by £ N in (4728), it the
phase iactor i is equal to £ 7 or £ i, OSuch a phase sector could not
be introduced ror the contiiuous restricted trensrorwuations as the
liniting value oi f\ for no change oi coordinates should be the unit
watrix., However, facsh introduced a sy...etry principle vo)’ whose
physical ieaning is not clear to us, by which th2 antiparticle wi-ld
(\Vl = C§) should transior. in the saue way as the particle fizld
(¥).

Recently this question or phase ractors in the iiproper trans-
roruations was reanalyzed by Yeng and the present author e , eGable
principle discarded, <na inrereuces were drawn for the interaction
of seveval riclds, ‘

This analysis will be repeated, in wore detail, in the present
section, '

1) Phase ractors and ccaservation of particles,

Besides Racsh's justiiication of the introduction or the phasc
faectors in the iwproper transior.ations of spinor fields there is
another arguiient which is uore appropriate as a justification oi this
possitility for the case oi antiunitary ti.e invessions., It is known
that the proper transforuations for spinor ficlds are double valued
as a consequence of the ract that for a space rotation of 360 degrees,
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which is physically equivelent to no rotation at ell, we have the
transforuation:

D—s-0 (482)
| | '
in contrast to the case ox no rotation when we have

\%) e Ki) . (49t)

(e use, as berore, Zeisenbecg tJre 0oi transior.ation).

In other words, two cousecutive rotations ox 1800, which ave
physically equivaelent to no rotation at all, tring atout a change
of sign in the rield opv;atorsﬁ+”x). Thus there is no resson why
we should cxclude the siuilar possibility oi a change of sign of
q/(x) airter two ioproper transior.ations '3) which are physically
eguivalent to no trainsior.ation at all.

Thus we sce ‘that, il we take ror the i.proper transforuations’ s

U ,._5.4{3(]') (space reflexion) (49)

QJ-aych{3§;C qj (tiue inversion I) (50a)
, ]“/
\,U--)’ (](IPXSCL'/ (tiie inversion YII) (50L)
(where 1, f; end f17 «@ not necessarily the saue for difierent
tields). e tind that, axter two identical tiensforuations of one

or these rorwus the rield oparator¥(x) will change as:

3 i
L\‘J(:):)--af W(x) or HU(DC)‘--‘,“(I[KP (X) (51a)

in the cases or (49) and (50t) respectively, and:

W (z)— - ]( { W () (51t)
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in the case of (50a).
Thus we:see that sor (49) end (50L) Y (&) will ke unchanged
if;
v o= T 9 or 1= *t1 (52a)
i - 111 o 3 52a

respectivaly, and will change sign if:

£ =24 or =11, (52L)

respectively, In the case oi (50a) q/(x) will change sign, regard-
less of the value of f;, which should, however, ke uniuodular for the
conservation of norwalization:

£ £ = 1 (53)

we did not cousider the cases o. trausiorwmations III and IV
because in view ol the arguuent given in the preceding section, thay
are of no interest ior our ruture aualysis.

¥row now on we shall arbitrarily assu.e, transiorwation II,
i.e., (50L) for the charged particles (and neutrons), in view ox the
fact that in this case the electro.agnetic potential A (x) transioris
under tiae inversion, as an ordinary covaciant vector (see Table I).
This is not, however, a restriction oi geuerality as, it is easy to
see, the assuuption ol transiorwation I, i.e,, (50a) ror these parti-
cles would not change the qualitative results of the following analy-
gi8.

Transroruation I will be etained, as a possitility, for the
neutrino case. As a cuusequence ox the cundition for invariance of
the interaction haailtonian:yé(a) we will be then restricted to the
values &7, % i, ror ry.

Finally, iu order not to iutroduce scalar-like quantities
which would be invariant under space rezlexion (tile inversion) and
change sign under tiwe inversion (space reflexion) we take ifrou novon
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It should be obscrved here that the usual assuwpticn theat a
: / ( c . :
phase ractor in the rield operators %“f')(x) is irrelevent aprlics

oinly to the cases when there is conservation oi particles, 1%, when
in a ygiven process a certain perticle disappears either ancthar par-
ticle coula te anihileated instead, or an antiparticle (not a perticle)
coula te gcreated, This b:rcause the wathswaticel expression of such

a couscrvation priuaciple is Jjust thatéf (£) should te iunvariant un-
der e troustor.ation ty a phase ractor () the sawe for all parcticles
andﬂ7* ior the antiparticles. .ow ai inter.ction or tha type:

JE %9 =3 Yp ) Yy (9 Y (x)[%(x)+ C%"‘)]* h-e ()

which is inveriant under, say, (49) and (50L) with i = G | (fII=f)
xor all perticles, tut not with i = + 7, 1is suwely not invariant ua-
der a 1hase “Wransroruwation of the type atove reicrred to (say, tor
instance with’h = 1), The physical wcening oi this fect is that in-
teraction (55) leads to nou cousarvatioun ol pa.ticles as either a ancu-
trino or antineutrino cci be ewditted, in this case, in & siven pro-
cess. LHowever, iuterection (55) still satisiies the coenditions of
conservation of charge and ccnssrvaticn of nucleons, watheuatically
exprrssed by its iavariance under an arkitrary phase transtoruation
ror the charged particles or ror the nucleons, respectively, This
exawuple should be 2ncugh to show the iwportance oi the phase factors

£ in the i.proper transiocractions,

2) rhase itactors in the i.proper trausiorwations ifor nucleons
and the sy.uetry properties oix the 7 ..eson,

As 1t was shown by Yang and Tiowno 2) the iact that we do not
know the relative sizns ox the i.proper transioraation for the pro-
ton and neutron sield would lzave unasterwined the rerilexion proper-



ties oi the 7 weson ivield even 1i the rori ox the interaction ov these
particles would ke experiwentally found. As an exauiple, il we asswu.e
an interaction oir the type:

A Pp ¥ Y. + h.c. (56)

thus the T wesoir would ke pseudoscalar, ir qip and QJN transior in
the sawe way under the iuproper Lorentz group, or scalar, if they
trans.oru with opposite signs. This tecause @@ XSkVN which is a
pseudoscalar quantity in the zirst case, is a écalar in the secound
case,

3) bigns oy the i.proper Lorentz transiorwatiocns and the ro-
pr:osentaticns or the Dirac equations ror a systew of two or iore in-
teracting iields:

It is interesting to relate the rassults or the previous secc-
tion tc the ract that when there ace wo iuteracting spincr wrields
there are two dirterent representations ior the Dirac oquations ox
these fields (we cousider the interaction rezpresentation): that in
which the wass terws in the equatious ror the two iields:

(b’ﬂg—? iM(m) U‘)m(l) =0 (f’ =1,2) (57)
e o

nave the sawe sign and that in which they have opposite signs,

dow we sec¢ that-ix we start fro. the case when q/(v) and\P(a)
do satisfy Dirac equations with the sa.e sign ol the .aass teri, but
transforii under the i.proper zroup (say by I) with opposite sigas
and iiwake a transior.ation:

(7 I 2 b4 .
the new rields will trensiori now in the sawe way tut will satisfy

Dirac equations with oyposite signs ov the .ass teri, Also the quan-
tity C? (')E'S\V(Z) , which wvas a scalar in the iirst representa-



. . . (T ) (2 . .
tion will go iato \y( )VK‘ ), & =Calar in the new representstion.,
Another interesting exauple is the cowparison of the Fer.d
theories characteriged ©ty the intewvactions:

i/ﬂi ()= UL P, () Lp'e O\, (X) +h-C (53)
|, 1 /5 ‘
g&(x): g%(x)%m L{)é?(x)h W, ) +h-C o)

when the sace sign o:r the .ass terw is taken Jor all particles.}{gj(x)
is a scalar deusity iv, say, all particles transrowvw by II with the
sa..e phasec iactor.g%ga(ﬂ) is an inveriant ix in the iuproper trans-
Loriation ror the neutrino the opposite sign is used in relation to
those ror the other fields, Low it we wake the transioriation:

%“""*53 %Uu (60)

then% ?(X) will go into g@](x) tut the .ass tera of the Dirac equa=-
tion ior the neutrino will change sign. Thus we see that the theories

characterized byé}gT(A) and;¢ﬁ;9(a) will be equivalent if the .ass
of the nsutrinoc is zero.

e Covariant tield guantities.

Let us consider a general situation in which there ave weveral
spin 7/2 particles which interact with the electrouagnstic field (via
its charge or ancwalous .agnetic .owent), a charged weson field (pscu-
doscalar) and a spinor iield oif zei0 .aSS.

The first group or spinor iields (proton, neutron, electron
and P~meson fields), transorii necessarily by I or II, Also it should
be re.ewbered that il one ol thew transiorus, under tiwe inversion, by
I (or II) then all the others transyor. in the saile way., The Boson
(pseudoscalar) iield, whose transfor.ation is conditicned by that oi
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the charged iields in the way indicated in Table I, will be identi-
fied to the wm-.eson in sowe exawples. The Z2TO LASS rield of spin
1/2 (neutrino) way traasiori by any ong ox I, IT, III or IV, under
tiue inversiocn,.

The interscticn represcutation oi Field Theory will pe used
here, The condition o. relativistic inveriance is now, besides that
of invariance oi the Ifree xield eguatiocnns, the invariance ox the ine-
teracticn hamiltoniaﬂfgﬁ7(x) under the ccnsidered transiorwation.

we consider now the possible cascs oi cowbination of these
trans.orwations, the resulting covariant quantities and the restric-
tions which way result on the worw oi the intercctions irow the as-
suuapticon ox a syeciel cowkination oi transior.aticns. We quote hers
ocnly the following .rcsults frcii the thesis

1) If the uzutrince iield Q«J transiorus Ly IV and the rields
qj(x) by IT, then no vorw ol Merwd interaction is possikle which is
invariant under the cowplete Lorzatz group.

2) It we use transsorwation ITTI icor the neutrino and I for
the other ficlds then we are restricted to iferwi intezractions oi the
type (in the scalar case):

Hoo=90, UG (W rdsch)+he oo

%) If all fields (including nzutrino) transriorid in the sawe
way, we find ior the usual covearisnt quantities, 'according to the
type I or IT of the transror.ation the onc-ficld quantitiés given
in Takle II.



TABLZ II

Transyorwation I Transxor“aﬁion II
1o DU O 2L
Scalar \.‘U\’) k‘UL}J—,L— L'Uk/)
L oy e - -
Vector '\’)B}LL‘U LIUB;%L’D_(,Ub}‘L%’J

e

A

Tensor (-/Jé;u) &,D L,Ub/ﬁktr//-@—l )//u 7”
- — OS5 M

Pseudovector g/ 33— B/X (,U , k,U_iY; b//“(-// + Lngbb/ﬁk;U

Pseuduscalar HU Xﬁ &{U N | LP gsg(/ + KP'}{SWI

de see that Case's couclusion 7) that conaition oif invariance
or field theory under ti.e inversion i.poses the rowvi given in the
last coluwn sor the covariant quantities is only correct ior the
type II oif transrorimation under ti.e inversion.
for the two ricld quantities the results are of the type herc
indicated tor the scalar quantity:
{(a) IF btoth tields transior. by I, the scalar is
B R e
Do W,
kPLr)»‘ g
(k) Ir we adopt transiorwation II we iind
Yy, — - PP =gy,
the last step kelig true only ¥ the two airicrent iields antico...ut: .
B )- I \fﬂgtran310rgs by I ana %J by II, the scalar is ncuw

e

PP, +ed,)
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13)

It is of immediste verificetion that if LHL(X) changes sign after two such
transformations, the wave functions m(x)’(‘Pal,N;(xlx2)’ etes, in configura-
tion representation chenge sign for the sub-spaces of odd number of perti~
cles and is unaltered for thos of even number of such particles.

14) It should be kept in mind thet for time inversion the additionsl operastion
F1(x) Fy(x) = F(X) F1(X) should be performed together with (50).





