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Abstract

In this paper we intend to present some path-integral studies in the problem of con-

finement in the presence of fermionic and scalar magnetic monopole fields through:

1 - A Wilson Loop Path-Integral Evaluation associated to an effective second-quantized

electromagnetic field generated by chiral abelian point-like monopole magnetic field cur-

rent at its large mass London asymptotic limit.

2 - A Path-Integral Bosonization analysis of Quarks fields interacting with Kalb-

Ramond fields considered as an effective Disorder Field Theory of a Q.C.D. vacuum of

heavier monopoles.

3 - Improvements on the Wilson Loops evaluations in the well-known ADHM Antonov-

Ebert model for Cooper pairs of point-like fermionic magnetic monopoles.
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1 Introduction

The question of the existence of Magnetic Monopoles has been a fruitful research path on

modern theoretical physics since the appearance of the seminal work of P.M. Dirac ([1]) on

the subject ([1]). In the modern framework of Non-Abelian Gauge theories, most of the rele-

vant dynamical questions about the physical modeling of particles interactions are transferred

to the difficult and more subtle mathematical analysis of special gauge-field configurations

(instantons, merons, strings, magnetic monopoles, etc...) which are expected to constitute

the non-perturbative vacuum structure of the underlying Bosonic Yang-Mills Gauge theory.

Among those special field configurations, the Magnetic Monopole has been considered as one

of the basic hypothetical non-perturbative excitation expected to be connected to practically

all non-trivial charge confining dynamical effects ocurring on non-abelian Gauge theories. This

fact is due to the hope that Magnetic Monopoles are the best candidates for explain naturally

the (electrical) charge confinement ([2]). However magnetic monopoles by themselves should

not be observed in the particle spectrum as a physical excitation. Note that this last constraint

on monopole confinement makes the use of the standard Quantum Field techniques to handle

magnetic monopoles dynamics a very difficult task ([3], [4]).

In this paper we address to these dynamical questions on Magnetic Monopole theory by path

integrals analysis, specially the technique of four-dimensional chiral bosonization path-integral

as earlier proposed by this author ([5]).

This paper is organized as follows

In Section 2, we show how to obtain by a direct evaluation, the area behavior for an abelian

Wilson Loop phase Factor in the presence of an effective second quantized electromagnetic field

generated by an (condensate) second quantized monopole fermion field, as much as envisaged

as an dynamical mechanism in the famous Nambu-Mandelstam propose for the existence of a

Meissner effect for magnetic manopoles vacuum condensation in Yang-Mills theory in order to

explain the quark-gluon confinement. As a new result of our study, we claim, thus, to have

produced a well-defined path integral procedure to prove the electric charge confining in the

presence of a quantum dynamics of magnetic monopoles, with a Fermi-Dirac statistics.

In Section 3, we exactly analyze by path-integrals techniques the quantum field dynamics

of (massless) fermions field interacting with Kalb-Ramond tensor fields, expected to represent

dynamically quark fields interacting with rank-two tensor field, with the later field representing
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the disorder field of a vacuum structure formed by condensation of magnetic monopoles ([3]).

We show, thus, that it is ill-defined to associated physical observables LSZ interpolating fields

for the fermion fields in the theory as consequence of the explicitly Bosonized structure formulae

obtained for the matter excitations interacting with rank-two tensor fields through a spin orbit

coupling with the Kalb Ramond field strenght, which by its turn provides another support for

electrical charge confining in the presence of magnetic monopoles.

Finaly in Section 4, we presente some improvements on the Wilson Loops evaluation in the

context of the Antonov-Ebert dual path integral associated to the dual Abelian Higgs Model

of third reference in [3].

2 The abelian confinement in presence of magnetic mo-

nopoles, a Wilson Loop Gauge invariant path-integral

evaluation

Let us start this section by considering the Euclidean path integral average associated to a

U(1)-abelian field Aµ(x) whose dual strength field intensity has a second quantized magnetic

monopole as a (chiral) electromagnetic source

〈W [C(R,T )]〉 =

∫
DF [Aµ]DF [Ω]DF [Ω]δ(F )[∂∗µF

µν(A)) − (gΩγνγ5Ω)]

× exp

⎛
⎝−1

2

∫
d4x(Ω,Ω)

⎡
⎣ 0 i �∂ +M

(i �∂ +M)∗ 0

⎤
⎦(Ω

Ω

)⎞⎠

× exp

(
ie

∮
C(R,T )

Aµ(xα)dXµ

)
(1-a)

Here (Ω,Ω)(x) are the Euclidean Fermion (second-quartized) point-like fundamental mono-

pole fields with g denoting the magnetic charge which by its turn is supposed to be related

to the U(1)-electric charge e by the Dirac quantization relation eg = n
4

(with n ∈ Z). M

denotes the magnetic monopole mass and W [C] = exp{ie ∮
C(R,T )

AµdXµ} is the U(1)-Wilson

Loop phase factor defined by the (Euclidean) space-time trajectory of two static eletric carrier

external charges interacting with the fluctuating Aµ(x) field generated by the (fluctuating) sec-

ond quantized magnetic monopole fermionic source (see the constraint on eq.(1-a)). Note that
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C(R,T ) is the boundary of the square S(R,T ) below

C(R,T ) = ∂S(R,T ); S(R,T ) =

{
(x0, x1) ∈ R2;−T

2
≤ x0 ≤ +

T

2
; −R

2
≤ x1 ≤ +

R

2

}
⊂ R4. (1-b)

It is worth call the reader attention that the above written quantum Wilson Loop associated

to static quarks charges can be physically replaced by the complete Generating functional of

the second quantized Quark fields interacting with the Monopole Generated Electromagnetic

field, namely

Z[η, η] =

∫
DF [Aµ]DF [Ω]DF [Ω][δ(∗∂µF

µν(A) − (gΩγνγ5Ω)]

× exp

⎛
⎝−1

2

∫
d4x(Ω,Ω)

⎡
⎣ 0 i �∂ +M

(i �∂ +M)∗ 0

⎤
⎦
⎛
⎝Ω

Ω

⎞
⎠
⎞
⎠

× exp

⎛
⎝−1

2

∫
d4x(ψ, ψ)

⎡
⎣ 0 i �∂+ �A

(i �∂+ �A)∗ 0

⎤
⎦
⎛
⎝ψ
ψ

⎞
⎠
⎞
⎠

× exp

⎛
⎝i ∫ dhx(ψ, ψ)

⎛
⎝η
η

⎞
⎠
⎞
⎠ (1-c)

For static charges eq.(1-c) reduces to eq.(1-a) as it is showed in first ref. [6].

In order to evaluate the path-integral eq.(1-a) from the physical point of view of an effective

field theory ([5]), we should consider firstly the magnetic monopole field as a London large mass

excitation in the fermonic path-integral weight of the Wilson Loop path integral average eq.(1-

a). The reason why we should evaluate our Wilson Loop average in this context can be related

to the fact that very heavy monopoles (but with small quantum fluctuations) are expected

to populating the non-perturbative vacuum phase of any non-abelian Gauge Theory (at least

in its confining phase) ([2], [3]). Let us, thus, re-write the magnetic monopole axial current

constraint in eq.(1) by means of an axial-vectorial Lagrange multiplier field λµ(x), namely:

〈W [C(R,T )]〉 =
{∫

DF [Aµ]DF [Ω]DF [Ω]DF [λµ]

× exp

(
i

∫
d4x[λν(∂

∗
µF

µν(A) − gΩγνγ5Ω)](x)

]

× exp

⎡
⎣−1

2

∫
d4x(Ω,Ω)

⎡
⎣ 0 i �∂ +M

(i �∂ +M)∗ 0

⎤
⎦(Ω

Ω

)⎞⎠× exp

(
ie

∫
C(R,T )

AµdXµ

)}

(2)



CBPF-NF-016/08 4

At this point we follow well known studies in the literature in order to give a correct meaning

for the effective field theory associated to very heavier magnetic monopoles London large mass

limit in the monopoles Fermionic determinants ([5]). It is a standard result in the subject that

the (mathematical) leading limit of (renormalized) magnetic monopole large mass should be

given by the auxiliary Gauge field mass term, (see refs. [5] for the calculational details an this

London limit for Fermion determinants)

lim
Mren→∞

| det(i �∂ +Mren + gγ5 �λµ)|2

∼= exp

{
−1

2
(ΛQCD · g2)

∫
d4x(λµ(x))2

}
+O(1/Mren) (3)

Note that the appearance [through the phenomenological QCD vacuum scale ΛQCD =

(Mren)
+2] of a mass term for the auxiliary vector field λµ(x) which by its turn, should signals

the expected dynamical breaking of the U(1)-axial gauge invariance (with opposite parity ([4],

[5]) of this (non-physical) vectorial field by the phenomenon of dimensional transmutation on the

adimensional g-coupling constant. This result indicates strongly the dynamical breaking of the

U(1)-axial symmetry of the fermionic magnetic monopole second quantized field {Ω(x),Ω(x)}.
After inserting eq.(3) into eq.(2) and by realizing the Gaussian λµ-field path integral, we

are led to consider the effective fourth-order Wilson Loop path integral average for eq.(1) as

the leading London limit on the magnetic monopole mass M , namely:

〈W [C(R,T )]〉 =
{∫

DF [Aµ(x)]δ(F )(∂µAµ)

× exp

(
− 1

2(g2ΛQCD)

∫
d4x(Aµ[(−∂2)2]Aµ)(x)

)

× exp

(
ie

∫
C(R,T )

AµdXµ

)}
+O(M−1) (4)

The static inter-quark linear risen potential can be obtained from eq.(4) by using the di-

mensional regularization scheme of Bollini-Giambiagi for evaluating the Feynman-diagrams

integrals as it is exposed in details on refs. ([6]). It yields the expected linear raising confining

potential

V (R) = (e2 · g2)(ΛQCD)R

= A
n2

16
(ΛQCD) · R = A

(
n2

2πα′

)
R = αeff(N

2)R (5)
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Here A is a model-calculational positive adimensional constant, which details will not be needed

for our study, and α′ denotes the Regge Slope parameter associated to the non-perturbative

vacuum scale ΛQCD ∼ ( 1
2πα′ ). It is worth call the reader attention that we have obtained

somewhat the infinite quantized number of parallel Regge trajectories from the Dirac topological

quantization rule for electric and magnetic charges as it is suggested in the effective Regge slope

parameter αeff(n
2) = n2/2πα′.

Thus we see that the effective path integral eq.(1) for the Wilson Loop in the presence of an

electromagnetic field generated by a heavy quantum monopole leads naturally to a dynamics

of Wilson Loop area behavior for the electrical charges in the theory, a result obtained by us

explicitly through an exactly gauge invariant path-integral evaluation.

3 Monopoles interacting with Kalb-Ramond fields through

spin-orbit coupling

In the last years, Kalb-Ramond field theory has been widely studied as an alternative dynamical

quantum field scheme to the Higgs mechanism, as well as in relation to the dynamics of strings

in the problem of string representation for Q.C.D. at large number of colors as a dynamical

disorder field representing the effects of existence of magnetic monopoles ([2], [3]). The basic

formalism used to analyze such Kalb-Ramond non-perturbative quantum dynamics has been the

path-integral formalism, which has shown itself to be a very powerful procedure to understand

correctly the differente phases of the associated Kalb-Ramond Quantum Field Theory [7].

One important problem in those Path-integral studies, still missing in the literature, is that

one related to the presence of interacting dynamical fermions (simulating second quantized

matter fields) in the Kalb-Ramond Gauge theory. In this Section 3 we shall describe the

extension of previous path-integral dualization-bosonization studies [8] to the case of Fermionic

matter coupling through a spin-orbit field quantum interaction as it is expected to be relevant

to describe the interacting physics of quarks and magnetic monopoles.

Let us start by considering the Abelian Kalb-Ramond first order action but now in the

presence of massless dynamical fermions in the four-dimensional Euclidean world.

S[H,B, ψ, ψ] =

∫
R4

d4x

{
1

12
HλµνH

λµν − 1

6
Hλµν∂[λBµν] + ψ(i �∂ + igγαγβγµHαβµ)ψ

}
. (6)
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Here the dynamical fields are the independent three-form H , the KR gauge field B and the

Dirac fermion fields (ψ, ψ).

We shall apply the bosonization procedure in the path-integral framework through the

following theory’s generating functional (normalized to unity)

Z[J, η, η] =

∫
DF [H ]DF [B]DF [ψ]DF [ψ]

× exp{−S[H,B, ψ, ψ]}

× exp

{
−i
∫

R4

d4x(ηψ + ψη + JµνB
µν)(x)

}
. (7)

It is worth call the reader attention that the Path-integral eq.(7) is invariant under the KR

gauge symmetry, provide the external source corrent Jµν is chosen to be divergence free and

our proposed action term related to the direct interaction of the quantum fermionic matter

with the Kalb-Ramond gauge field through its strenght three-form H – the spin orbit fermion

interaction. (see eq.(6)).

The Path-Integral Bosonization analysis proceeds as usually by integrating exactly out the

Kalb-Ramond gauge potential field which produces as a result the delta functional [8].

Z[J, η, η] =

∫
DF [H ]DF ]ψ]DF [ψ]δ(F )(∂λH

λµν − Jµν)

× exp

{
−
∫

R4

d4x

[
1

12
HλµνH

λµν + ψ(i �∂ + igγαγβγµHαβµ)ψ

]
(x)

}
. (8)

Let us note that the delta functional integrand inside of the path integral eq.(8) imposes

the classical equations of motion on the three-form Kalb-Ramond strenght H which by its turn

can be exactly solved by the Rham-Hodge theorem in terms of the effective dual scalar axion

(zero-form) dynamical degree of freedom in the KR theory defined in a space-time topologically

trivial as considered in our path integral eq.(8)

Hλµν = gελµνρ∂ρϑ+ ∂[λ 1

∂2
Jµν]. (9)

At this point we re-write the effective action eq.(8) in a four-dimensional bosonized chiral
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action [9]

Z[J, η, η] =

∫
DF [ϑ]

× exp

{
−1

2

∫
R4

d4x

[
g2∂µϑ∂

µϑ+
1

2
Jµν

(
− 1

∂2

)
Jµν

]
(x)

}

×
∫
DF [ψ]DF [ψ] exp

{
−1

2

∫
R4

d4x(ψeigγ5ϑ �∂eigγ5ϑψ)(x)

}

× exp

{
−1

2

∫
R4

d4x

(
igψ

[
γαγβγρ∂[α 1

∂2
Jβρ]

])
ψ

}
(x)

× exp

{
−i
∫

R4

d4x(ψη + ψη)(x)

}
. (10)

After considering the chiral-fermion field variable change on the fermionic path-integral term

of eq.(10)

ψ = χe−igγ5ϑ (11-a)

ψ = e−igγ5ϑχ (11-b)

D[ψ]D[ψ] = D[χ]D[χ]
det[eigγ5ϑ �∂eigγ5ϑ]

det[�∂]
= D[χ]D[χ]J [ϑ], (11-c)

we obtain the exactly bosonized path-integral representation for the KR first order theory as

given by eq.(7), namely:

Z[J, η, η] =

∫
DF [ϑ]D[χ]D[χ]J [ϑ]

× exp

{
−
∫

R4

d4x

[
g2

2
∂µϑ∂

µϑ− 1

2
Jµν(∂2)−1Jµν

]
(x)

}

× exp

{
−1

2

∫
R4

d4x(χ �∂χ)(x)

}

× exp

{
−1

2
ig

∫
R4

d4x

(
χ

(
γαγµγν∂[α 1

∂2
Jµν]

]
χ

)
(x)

}

× exp

{
−i
∫

R4

d4x
(
χe−igγ5ϑη + ηe−igγ5ϑχ

)
(x)

}
, (12)

here the functional Fermion Jacobian eq.(11-c) has been exactly evaluated in refs. [9]:

Jε[ϑ] = exp

{
g2

4π2ε

∫
R4

d4x(∂µϑ)2(x)

}

× exp

{
− g2

4π2

∫
R4

d4x(∂2ϑ)(∂2ϑ)(x)

}

× exp

{
g4

12π2

∫
R4

d4x[ϑ(∂µϑ)2(−∂2ϑ)](x)

}
. (13)
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As a first remark to be made on the above written result we note that its first term has the

effect of formally inducing a renormalisation of the g-charge after the cutt-off removing ε → 0

on the complete result eq.(7), namely

g2
bare(ε)

(
1 +

1

4π2ε

)
= g2

ren. (9)

By secondly, we point out the appearance of the fourth-order kinetic term for the scalar

effective KR field ϑ(x), a very important result for the model ultra-violet finiteness.

An another important physical result coming from the set eq.(12)–eq.(14) is the explicitly

fermionic matter asymptotic freedom as can be see directly from the factorized – decoupled

form of the full interacting matter fermionic propagator, namely

1

(i)3

δZ[η, η, J ]

δηα(x)δηβ(y)

∣∣∣
J=0

η=η=0

= Sαβ(x− y) × F (x, y) (15)

with Sαβ(x− y) denoting the free fermion propagator and the (decoupled) Kalb-Ramond form

factor being given exactly by the (perturbative finite) fourth-order ϑ-path integral as remarked

above.

F (x, y) =

∫
DF [ϑ]e−

1
2
g2
ren

R
R4 (∂µϑ)2(x)d4x

× e−
g2
ren

4π2

R
R4 (∂2

µϑ)2(x)d4x

× e+
g2
ren

4π2

R
R4 [ϑ(∂µϑ)2(−∂2

µϑ)](x)d4x

× {(exp−igrenγ5ϑ(x))(exp−ierenγ5ϑ(y)} (16)

which goes to 1 in the high energy limit of |x − y| → 0 as a result of the path-integral super

renormalizability associated to the effective axion scalar dual Kalb-Ramond theory eq.(6)) [the

well-known phenomenon of asymptotic freedom in confining gauge theories]. A low energy

study of the form-factor eq.(16) has been carried out in refs. [9] (Appendix). There, we have

suggested that these bosonized fermionic fields do not possesses LSZ interpolating fields, since

the associated two-point Euclidean correlation function eq.(15) defines Wightman functions

which are ultra-distributions in Jaffe Distributional Spaces and not in the usual Schwartz

Tempered Distributional Spaces naturally associated to the existence of LSZ interpolating fields

(a well defined Scattering Matrix) in the quantum field theory eq.(7).

A calculational remark to be made at this point of our paper is related to the straightforward

exactly solubility for the Macroscopic radiative corrections evaluations of the Kalb-Ramond
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gauge potential propagator

1

i2
δ2[J, η, η]

δJµν(x)δJαβ(y)

∣∣∣
η−η=0
J=0

= 〈Bµν(x)Bαβ(y)〉

= (−∂2)−1(x, y) + e2ren

∫
d4zd4z′(−∂2)−1(z − x)(−∂2)−1(z − y)

× ∂[λ
z ∂

λ′
z′ 〈(χ(z)(γλγ[µγν])χ(z))(χ(z′)(γλ′

γ[αγβ])χ(z′))〉(0), (17)

here 〈 〉(0) denotes the free fermion average path integral

〈 〉(0) =

∫
D(χ]D[χ]e−

1
2

R
R4 d4x(χ �∂x)(x). (18)

The exactly evaluation of the quantum correction eq.(17) is standard and can be easily

obtained by just using the well-known Dirac matrixes relationship

γλγµγν = (Sλµνσ + ελµνσγ5)γ
σ (19)

Sλµνσ = (δλµδνσ + δµνδλσ − δλνδµσ). (20)

The above exposed results concludes our Section 3 these path-integral method studies on

the four-dimensional exactly path-integral Bosonization of our abelian interacting KR field.

4 Some comments on the path-integral Wilson Loop eva-

luation in the Dual Abelian Higgs Model of Antonov-

Ebert

In this last section of our study, we intend to present some calculational improvements on the

Wilson Loop path integral evaluation in the context of the usual Abelian Higgs Model through

the framework of path integral duality transformation as exposed in details on the Antonov &

Ebert paper in ref. [3].

Let us briefly describe the path integral duality of the extended Dual Abelian Higgs Model

of Antonov-Ebert.

As a firts step in such analysis, one starts from the following phenomenological expression

for the partition functional of the model

Z(λ) =

∫
|Φ|DF |Φ|DFBµD

Fθ exp
{
−
∫

R4

[1
4
(Fµν − FE

µν)
2 +

1

2
|DµΦ|2

+ λ(|Φ|2 − η)2
]}

(21-a)
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where Φ(x) = |Φ(x)| exp |θ(x)| is an disorder scalar Higgs field of the Magnetic Monopoles

“Cooper pairs” (ΩΩ)(x) (see eq.(1-a)) and FE
µν(x) is the dual electromagnetic field generated

by the external static “quarks” source (the loop Xµ(σ) on eq.(1-a)).

It is thus argued in details on the above cited paper of Antonov & Ebert that the partition

functional eq.(21) has the following stringy representation in the London phenomenological

λ→ +∞ limit (the equivalent of our London large mass M limit - eq.(2)-eq.(3). Namely

Zeff(∞) ∼
∫

∂Xµ(ξ)=Cµ

DFXµ(ξ) exp
{
− π2

∫
Σ

dσλν(x)

∫
Σ

dσµρ(y)D
λν,µρ(|x− y|)

}
(21-b)

Here Xµ(ξ) parametrizes the string world-sheet Σ possesing as boundary the quark source

loop Cµ ≡ Xµ(σ) and the Antonov-Ebert propagator of the Kalb-Ramond field duality in this

London limit is exactly given in momentum space by

Dλν,µρ(|x− y|) = Dλν,µρ
(1) (|x− y|) +Dλν,µρ

(2) (|x− y|) (21-c)

where

Dλν,µρ
(1) (|x|) = (δλµδνρ − δµνδλρ)

C1

|x| (21-d)

Dλν,µρ
(2) (|x|) =

C2

|x|2
{[K1(m|x|)

|x| +
m

2
(K0 +K1)(m|x|)

]
× (δλµδνρ − δµνδλρ)

+
1

2|x|
[
3
(m2

4
+

1

|x|2
)
K1(m|x|) +

3m

2|x|(K0 +K2)(m|x|) +
m2

4
K3(m|x|)

]
× (δλρxµxν + δµνxλxρ − δµλxνxρ − δνρxµxλ)

}
(21-e)

with Ki denoting the relevant usual Modified Bessel functions, m is the mass of the dual gauge

bosons generated by the Higgs mechanism and C1 e C2 are model calculational constants.

At this point, we argue that all the above pointed out duality derivation holds true only

for small string world-sheet deviations from the minimal surface Cµ = ∂Xµ(ξ) since we have

Frozen the radial part of the monopole disorder field to its fixed v.e.v η. A very important and

direct consequence of this remark of ours is that one can safely substitute the somewhat formal

Feynman path measure on the string vector position effective partition functional eq.(21-b) by

the so-called extrinsic space-times vorticity tensor current defined as

Σµν(x) ≡
∫

Σ

dσµν(x)δ(x− x(ξ))

≡
∫

Σ

d2ξJµν(ξ)δ(x−X(ξ))
√
g(X(ξ)), where Jµν(ξ) = εab(∂aX

µ∂bX
ν)(ξ) (21-f)
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is the (non-normalized to unity) string world-sheet extrinsic orientation area tensor.

The argument for the validity of such path-integral dynamical degree replacement is the

following.

For small deviations from the minimal area string world-sheet Xµ
c�(ξ), we have the usual

functional metric decomposition

(Xµ(ξ) = Xµ
c�(ξ) + εY µ(ξ) +O(ε))∫

Σ

d2ξ
√
g(xµ

c�)(δJ
µν(δJµν)(ξ) ∼

∫
Σ

d2ξ
√
g(Xµ

c�)
{[
εab(∂aX

µ
c�)(∂bδY

ν) + εab(∂aδY
µ)(∂bX

µ
c�)
]

[
εab(∂aX

µ
c�)(∂bδY

ν) + εab(∂aδY
µ)(∂bX

µ
c�)
]}

+O(ε4) (22)

which straightforwardly leads to the following volume element functional change

DF [Jµν(ξ)] ≡
∏
(ξ)

(δJµν(ξ)) = (
∏
(ξ)

δxµ(ξ)) · det
1
2

(ξ,µ,ν)[Lµν(xµ
c�)] (23)

where Lµν(Xµ
c�) is a second-order eliptic operator depending only on the classical minimal-area

string configuration Xµ
c�(ξ), so cancealling itself when one is realising path-integral averages

with the partition functional eq.(21-b).

Now it is straightforward to see that one can replace on basis of the above expected small

string world-sheet deviations the average over the string vector position by the string vorticity

degree of freedom, namely∫
R4

(δΣµν(x) · δΣµν(x))d
4x ∼ C

∫
Σ

(δJµν(ξ) · δJµν(ξ))d
2ξ (24)

with C denoting an over-all (cut-off dependent) constant which canceals with itself when eval-

uating path-integral averages ([6]).

The important consequence of the above analyzed variable change of the string vector

position variable by the string extrinsic vorticity field is affording the exactly path-integral

solubility of the generating functional of the strenght of the usual gauge field Aµ in the Abelian

Higgs Model with the following result

Z[Sαβ] = exp

(
−
∫
d4xS2

µν

)

×
∫
DF [Σγζ(x)] × exp

(
−4πie

∫
d4x(SµνΣ

µν)(x)

)

× exp
{
−
∫
d4xd4y

(
πΣλν(x) − i

e
Sλν(x)

)
Dλν,µρ(|x− y|)

×
(
πΣµρ(y) − i

e
Sµρ(y)

)}
(25)
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For instance: 〈(
1

2
ελναβFαβ

)
(x)

(
1

2
εµρα′β′

Fα′β′

)
(x)

〉

≡ 1

Z(0)

δ2Z[Sγλ]

δSλν(x)δSµρ(y)

∣∣∣
Sγλ≡0

= (δλµδνρ − δλρδµν)δ
(4)|x− y| + 2

e2
Dλν,µρ(|x− y|)

− 4π2
〈[

2eΣλν(x) −
(

1

e

∫
d4zΣαβ(x)Dαβ,λν(z − x)

)]
×
[
2eΣµρ(y) − 1

e

∫
d4uΣγζ(u)D

γζ,µρ(|u− y|)
]〉

Σ
(26)

where the normalized Gaussian path-integral average 〈 〉Σ is defined explicitly by

〈 〉Σ =
1

2

∫
DF [Σαβ(x)](. . . ) exp

[
− π2

∫
R4

dx dyΣαβ(x)

×Dαβ,γζ(|x− y|)Σγζ(y)
]

(27-a)

with

Z =

∫
DF [Σαβ(x)] exp

[
−π2

∫
R4

dx dyΣαβ(x)Dαβ,γζ(|x− y|)Σγζ(y)

]
. (27-b)

After our remarks as expressed by eq.(26)–eq.(27) on the Antonov-Ebert paper ([3]), we

now pass on to the Wilson Loop evaluation of eq.(1-a) on the dual “stringy effective” path

integral eq.(26)–eqs.(27).

The main point for evaluation of eq.(1-a) in terms of an effective string theory is to re-write

it in terms of the strenght field by means of the Stokes Theorem followed obviously by the

string path integral average eqs.(27).

We have thus the following string functional integral representation for the Wilson Loop

〈W [C(R,T )]〉 =

〈
exp

{
ie

∫
d4x(Fαβ(A) · Jαβ(CR,T )

}〉
Σ

(28)

Here the boundary’s rectangle Loop current Jαβ(CR,T )(xµ) =
∫

C(R,T )
δ(xµ −Xµ(s))(XαdXβ)(s),

with Xµ(s) for 0 ≤ s ≤ 1 denoting a parametrization of the rectangle’s boundary C(R,T ). At

this point of our study, we propose to use a cumulant expansion for evaluating eq.(28) in the

“stringy” DAHM model, which in generic form reads

〈W [CR,T ]〉

= 〈exp{ie
∫
F · J}〉

= exp
{
〈ie
∫
F · J〉Σ +

1

2

[
〈(ie
∫
F · J)2〉Σ −

〈(
ie

∫
F · J
)2〉

Σ

]
+ . . .
}
. (29)



CBPF-NF-016/08 13

Extensive calculations of eq.(29), including spin degrees of freedom (see second reference on

ref. [6] and refs. [10]) will be reported elsewhere.
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