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Abstract

We obtain the general solution of the axisymmetric stationary vacuum spacetime

of Lewis. After precising the fundamental hypothesis of Lewis, we demonstrate that
the solution is related to an arbitrary harmonic function. Formally, these solutions

are the same as for the corresponding cylindrically symmetric case, and can be
classi�ed in a similar way. Furthermore, the interpretation, in the cylindrically

symmetric system, of the �eld equations as describing the motion of a classical
particle in a central force �eld is still valid.

We conjecture that one of the solutions represent a distorted black hole.
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I Introduction

Axially symmetric stationary vacuum spacetimes in Einstein's theory are important be-
cause they can describe the exterior �elds of massive rotating astrophysical objects. Here
we obtain the general solution of Lewis spacetime.

In a preceding paper [3] we have reexamined the vacuum solutions obtained by Lewis
[1], and van Stockum [2], for a stationary cylindrically symmetric spacetime. Lewis estab-
lished the existence of three classes of solutions in terms of four parameters. One of these
classes appeared by the introduction of complex parameters. Through our approach the
three classes arised without the need of complexi�cation. Furthermore, we showed that
the structure of the �eld equations can be associated to the motion of a classical particle
in a central �eld. This association allowed a physical interpretation of the parameters,
describing the Lewis spacetime, without the need of specifying a particular matter source
of the �eld.

Here we precise the fundamental hypothesis which allows to de�ne a Lewis metric.
Then we follow some similar steps of the paper [3] to obtain the metric for an axially
symmetric stationary vacuum spacetime of Lewis. We give a deduction of the metric
for the cylindrically symmetric stationary spacetime which permits to extend it to the
axisymmetric case. This extension is accomplished with the natural introduction of an
arbitrary harmonic function of the cylindrical coordinates r and z. Formally the solutions
are similar to the cylindrical Lewis metric, but now being a function of this harmonic
function. The classi�cation and mechanical interpretation in the cylindrical case can be
extended, also, to the axisymmetric case. For one of the solutions, we conjecture as
representing a distorted black hole.

The paper is organized as follows. In section II we recall the system of equations
to be solved for the axially symmetric stationary vacuum metrics. We introduce in sec-
tion III the fundamental hypothesis to produce the Lewis metric, from which the linear
dependence between the potentials is deduced. From a new presentation of the cylindri-
cally symmetric solution, we deduce in section IV the axisymmetric solution of Lewis. In
section V the solutions and classi�cation are presented. We end with a short conclusion.

II Field equations

The general line element for a stationary axisymmetric spacetime can be written like

ds2 = �fdt2 + 2kdtd�+ e�(dr2 + dz2) + ld�2; (1)

where f; l; k and � are all functions of the cylindrical coordinates r and z. De�ning for
convenience,

f = rF (r; z); l = rL(r; z); k = rK(r; z); (2)

we obtain from Einstein's vacuum �eld equations [1, 2],

4F = �F
; (3)

4L = �L
; (4)

4K = �K
; (5)
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�r = � 1

2r
[1 + r2(FrLr � FzLz +K2

r �K2

z )]; (6)

�z = �r

2
(FrLz + FzLr + 2KrKz); (7)

with
FL+K2 = 1; (8)

where the Laplacian 4 and 
 are de�ned by

4F = Frr +
1

r
Fr + Fzz ; (9)


 = FrLr +K2

r + FzLz +K2

z ; (10)

with the indexes standing for di�erentiation. The function � is usually obtained by
quadratures. Thus, we have only to determine F;L and K.

III Fundamental hypothesis for Lewis solution

In the cylindrically symmetric case, where in (1) F; L and K, depend only on r, we have
demonstrated a linear dependence between the potentials [3]. In the axially symmetric
case, when F; L and K are functions of r and z, such a general demonstration is no longer
possible. Thus, we have to introduce some further hypothesis to solve the �eld equations.
We assume that there exists a second relation, di�erent from (8), between F; L and K,

�(F;L;K) = 0: (11)

Then, from (8) and (11) we can obtain two general relations that can be expressed,
for example, as

F = F (K); L = L(K): (12)

This hypothesis is equivalent to the Lewis' one ([1] p. ). From (12) we have the
identities,

rF � rL+ (rK)2 � (1 + FKLK)(rK)2; (13)

4F � FK4K + FKK(rK)2; (14)

4L � LK4K + LKK(rK)2; (15)

where r is the gradient operator. With (12)-(15), we can rewrite the two �rst �eld
equations (3) and (4) like

(1 + FKLK)(KFK � F ) = FKK; (16)

(1 + FKLK)(KLK � L) = LKK ; (17)

which is a system of two di�erential equations permitting to determine the functions (12),
as we shall see (equations (36)). Hence, the only partial derivative equation to solve is
the third �eld equation, (5), for the function K(r; z),

4K = �K(1 + FKLK)(K
2

r +K2

z ): (18)
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A kinematical interpretation can be easily obtained from (16) and (17). Indeed, con-
sidering (16) multiplied by L and (17) by F and subtracting both equations, we obtain,

(1 + FKLK)K =
(LFK � FLK)K
LFK � FLK

: (19)

Without any loss of generality, we can make a change of unknown function by putting
K = K(�), where �(r; z) is a new unknown function. We �x this change by the di�erential
equation,

K��

K�
= �(1 + FKLK)KK�: (20)

Then, we can see from (18) that � has to be a harmonic function. We shall study the
consequences of this fact in the next section. Before, let us examine what (20) implies on
the two �rst �eld equations. Substituting (19) into (20) and integrating we obtain

LF� � FL� = C1; (21)

where C1 is an integration constant. In a similar way, but starting from (4) and (5) with
L = L(F ) and K = K(F ), and considering (3) with F (�); and repeating again from (3)
and (5) with F (L) and K(L) and considering (4) with L(�), we obtain

KF� � FK� = C2; (22)

LK� �KL� = C3; (23)

respectively, where C2 and C3 are also integration constants.
The equations (21)-(23) express the conservation of an angular momentum ~C =

(C1; C2; C3) in the space (F;L;K), like in the cylindrical case [3]. But now it is �, instead
of r, which plays the role of time. Besides, from (21)-(23), we can immediately deduce a
linear relation between the potentials,

K = �L + �F; (24)

where � and � are constants. Expression (24) is the relation (11) that we looked for.
Hence, most of the interpretation in terms of a classical particle in a central �eld made
in [3] holds again. In particular, the discussion about the nature of the conic, which is
the intersection of the surfaces (8) and (24) in the (F;L;K) space, followed in [3] for the
cylindrical case, remains the same in the axisymmetric case.

Let us stress that all the results of this section can be obtained in the axisymmetric
case only under the hypothesis (11), that we call the fundamental hypothesis for Lewis,
while in the cylindrical case they were general, i.e. valid without any hypothesis. A well
known counter example of an axisymmetric solution that does not satisfy this hypothesis
is Kerr solution.

IV �(r; z) is a harmonic function

For the cylindrically symmetric case, we give now an integration method of the K(r)
equation slightly di�erent from the one presented in [3]. By doing this, we want to enlight
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the common feature of the two types of Lewis solutions, cylindric and axisymmetric,
namely the fact that they only depend on a harmonic function. However, this function is
imposed in the cylindric case, whereas it is arbitrary in the axial case.

In the cylindrical case, (18) with (24) reduces to

Krr +
1

r
Kr � �KK2

r

�
= 0; (25)

with
� � �K2 � 4��; � � 1 + 4��: (26)

Changing the unknown function K = K(�) in (25) in such a way that

K��

K�
=

�KK�

�
(27)

leads to
�rr

�r

= �1

r
: (28)

Consequently, after integration of (28), we obtain

� = k1 ln
�
r

r0

�
; (29)

where k1 and r0 are integration constants, and by integration of (27),

Z
dKp
�

= k1 ln
r

r0
+ k2; (30)

where k2 is an integration constant.
The study of the integral (30) leads to the cylindrical solutions of Lewis [3]. Let us

note that all these solutions depend only on the solution of the di�erential equation (28),
i.e.,

4� = �rr +
1

r
�r = 0; (31)

which means that � is a harmonic function. In this special case of cylindrical symmetry,
the di�erential equation (31) can be explicitly integrated, giving the only solution (29).

It is no longer the case in the more general axisymmetric situation, for which the
corresponding equation (hereafter (34)) is a partial derivative equation, even though the
line reasoning remains the same. Indeed, coming back to (18), it can be written as

4K = f(K)(rK)2; (32)

where
f(K) = �K(1 + FkLK): (33)

The standard procedure of changing the unknown function K = K(�) used in (20),
gives now with (24),

K�� +
1

�
K� �

�KK2

�

4 = 0: (34)
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With (34), (32) reduces to
4� = 0: (35)

We have that (34) is (25) with � in place of r, and �(r; z) is an arbitrary harmonic
function.

So, we can obtain the di�erent classes of the Lewis solution by an analysis similar to
the one used in the cylindric case [3].

V Axisymmetric solutions of the three classes of Lewis

The solutions K(�) of (34), expressed in terms of an arbitrary harmonic function �(r; z)
can be classi�ed following the sign of �, de�ned in (26), like in the procedure used in the
cylindrical case [3].

The corresponding functions F (�) and L(�) are deduced from the relations

F =
K �

p
�

2�
; L =

K �
p
�

2�
; (36)

obtained from (8) and (24). So, we arrive to three classes, which are the following.

V.1 Class I: � > 0

V.1.1 �� > 0

K = 2

 
��

�

!
1=2

cosh�; (37)

F =

 
�

�

!
1=2 

1p
�
cosh�� sinh�

!
; (38)

L =

 
�

�

!
1=2  

1p
�
cosh�� sinh�

!
: (39)

V.1.2 �� < 0 with ��� < 1=4

K = 2

 
���

�

!
1=2

sinh�; (40)

F =

 
��

�

!
1=2  

1p
�
sinh�� cosh�

!
; (41)

L =

 
��

�

!
1=2 

1p
�
sinh�� cosh�

!
: (42)
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V.1.3 �� = 0

Here we use (8) and (24), instead of (26) and (37).
Case � = 0 and � 6= 0

K = e�; (43)

F =
1

�
e�; (44)

L = �(e�� � e�): (45)

Case � 6= 0 and � = 0

K = e�; (46)

F = �(e�� � e�); (47)

L =
1

�
e�: (48)

Case � = � = 0
We use (3) obtaining the Weyl metric,

K = 0; (49)

F = e�; (50)

L = e��: (51)

This solution, without dragging, is an axisymmetric extension of the cylindrical Levi-
Civita solution. The uniqueness of the Schwarzschild solution, for instance Chandrasekhar
[4] and Novikov and Frolov [5] remarked, forbids the interpretaion of this static axisym-
metric solution as representing a black hole. We conjecture, with them, that it represents
a non isolated black hole distorted by an external distribution of mass.

V.2 Class II: � < 0

We remark here, as we did in [3], that there is no need of introducing complex parameters
in our approach, as it is usually done in the corresponding cylindrical case.

K = 2

 
��

�

!
1=2

sin�; (52)

F =

 
��

�

!
1=2 

1p
�
sin�� cos�

!
; (53)

L =

 
��

�

!
1=2

: (54)
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V.3 Class III: � = 0 or �� = �1=4

K = �; (55)

F =
1

2�
(�� 1); (56)

L =
1

2�
(�� 1): (57)

VI Conclusion

The general solution of the cylindrically symmetric stationary vacuum Einstein's �eld
equations is the Lewis solution. It is no longer the case for the more general equations
with axial symmetry. We precised here the fundamental hypothesis under which we can
obtain the Lewis axisymmetric solution. This hypothesis allowed us to demonstrate a
linear relation between the potentials. This fact implied that the �eld equations can be
interpreted as describing the motion of a classical particle in a central force �eld, like
in the cylindrical symmetric case [3]. The general solution for the Lewis axisymmetric
vacuum spacetime that we obtained depends upon an arbitrary harmonic function, and its
classi�cation, in three di�erent classes, is similar to the cylindrically symmetric case. This
harmonic function plays the role of time in the motion of a classical particle interpretation.
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