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Abstract

We solve the famous Brillouin's paradox, Phys. Rev. 78, 627, (1950)).
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One of the most challenging paradox on physics out of thermal equilibrium is that

related to the transient regime of the charge on a p � n junction subject to a thermal

random noise which obeys the following equation ([1] { pag. 251)
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Here A is a positive constant; c the capacitance of the condensator, T the system

temperature (Alkemades diode) and �(t) denotes the white noise 
uctuation stochastic

process produced by the recti�er with correlation function of the form

h�(t)�(t0)i� = (kT )�(t� t0) (2)

The Brillovin's paradox comes from the fact of considering directly the noise averaged

motion equation at the steady value
dQ1

dt
� 0 (see my paper ref. [2] on Ohm's law!)
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which leads to the equilibrium dominant equation (note that the noise average factoriza-

tion at the steady t!1 limit!)

hQi1 = �
e

2kcT
hQ2i1 = �

e

2kcT
hQi21 (4)

with the unphysical non-vanishing solution ([1] { pag. 251)
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This diode in thermal equilibrium has a non-zero charge and, thus, a voltage on the

condenser!.

Let us in this short note solve the above paradox by following my previously exposed

path-integral method to solve eq. (1) ([3]).

The generating functional of the stochastic process eq. (1)-eq. (2) may be represented

by the following Wiener functional integral de�ned on the full range interval [0;1] =

U1
n=0[0; n] (a �-compact functional integral{ref. [4]).
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where the (rigorously de�ned) Wiener measure over the continuous (but non di�eren-

tiable!) paths Q(t) is formally de�ned in terms of the Feynman measure
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At this point, we exploit the \translational-invariance" of the functional measure ([4]),

to arrive at the following identity (the correct averaged motions equation or the Schwinger-

Dyson equations)
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which at the equilibrium regime leads to simple algebraic equation
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or in a equivalent way
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which leads by its turn to the physical expected zero solution at the equilibrium

hQi1 � 0
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