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1 Introduction

The long standing interest in the hyperon-nucleon two-body interaction is motivated by
several reasons. For example, such interaction is the fundamental building block for a mi-
croscopic understanding of hypernuclei [1]. In addition, the inclusion of the strangeness
degrees of freedom calls for the extension of the models of the nucleon-nucleon potential so
as to provide a uni�ed coherent picture of the baryon-baryon interaction. Nowadays quan-
tum chromodynamics (QCD) is considered to be the fundamental theory for the strong
interactions. However, the low momentum- and energy-transfer region, which is the rele-
vant one for nuclear physics, is dominated by non-perturbative processes. Consequently, a
�rst principles evaluation of the baryon-baryon interaction in terms of quarks and gluons
has not been possible up to now. In this situation one has to resort to models. In the
phenomenological one boson exchange (OBE) model [2] the nucleon-nucleon interaction
is described through the exchange of di�erent mesons, supplemented by a short range
repulsion. In the case of the hyperon-baryon interaction, the Nijmegen [3] and J�ulich [4]
potentials are obtained by extending the OBE model to include the degrees of freedom
that carry strangeness. In this way the quite limited �N and �N scattering data can
be described within a uni�ed picture at the price of introducing a rather important num-
ber of adjustable parameters. In fact, since the experimental data are su�ciently crude
they can be reproduced using various sets of parameters, out of which two representative
examples are those which de�ne the models D and F of Ref.[3].

Here we will follow an alternative approach which is based on the Skyrme model [5, 6].
This model relies on the fact that for a large number of colours Nc, QCD becomes equiv-
alent to a local �eld theory of mesons [7] where the nucleons emerge as chiral topological
solitons [8] of the meson e�ective �eld theory. The Skyrme model is the simplest choice of
such a theory. It provides a reasonable good description of the SU(2) baryon properties
and has already been implemented for the construction of the nucleon-nucleon potential,
as reviewed in [9, 10]. To include strangeness in this scheme we will consider the bound
state approach (BSA)[11, 12] extension of the Skyrme model to avour SU(3). In this
way we complement the work of Refs.[13, 14], where the hyperon-nucleon potentials have
been studied in the collective coordinates approach (CCA) to the SU(3) Skyrme model.
Di�erently from the CCA, where strangeness appears as a collective rotational excitation,
in the BSA hyperons are described as bound states of kaons in the background �eld of
a SU(2) soliton. It is worthwhile to point out that these soliton models have both the
merit of describing the di�erent baryonic sectors (B = 1 and B = 2, B being the baryon
number) in a single comprehensive framework. Moreover, the corresponding predictions
are essentially parameter free since, in principle, all the parameters in the e�ective action
can be �xed by the meson phenomenology in the B = 0 sector.

The present work constitutes a �rst step towards a general discussion of the hyperon{
nucleon potential within the bound state model. It is similar in spirit to previous NN
potential calculations done in the SU(2) Skyrme model, although technically much more
involved. The interaction potential can be written in the general form

VHN (~r) = VC(r) OC + VS(r) OS + VT (r) OT (1)

whereOC = IH2�2I
N
2�2; OS = ~�H �~�N ; OT = 3 ~�H �r̂ ~�N �r̂�~�H �~�N and VC(r); VS(r); VT (r)
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are the central , spin-spin and tensor parts of the interaction, respectively. They can be
decomposed into an isospin independent contribution V + and an isospin dependent one
V �, so that

VC;S;T (r) = V +
C;S;T (r) + V �

C;S;T (r) ~�H � ~�N : (2)

The contributions depending on angular momentum, like the spin-orbit coupling, are not
shown because they remain unaccessible within the approximations used in our calcula-
tion. The new feature of the SU(3) case is the strangeness exchange interaction mediated
by kaons. In the language of the OBE models these interactions are of �rst order in terms
of kaon exchanges, but as well as the direct contributions include higher orders ( more
than one boson exchange) in the SU(2) sector. The general framework is illustrated by
the explicit calculation of the diagonal �N potential, which is the simplest one due to the
absence of isospin interactions.

The article is organized as follows. In Sec.2 we review briey the BSA and in Sec.3
we describe the general procedure to obtain the interaction Lagrangian. In Sec.4 we
show how to obtain the explicit form of the interaction potential in the �N case. In
Sec.5 we present our numerical results. Finally, in Sec.6 our conclusions are given. Some
useful expressions needed for the evaluation of the collective part of the matrix elements
appearing in the potential can be found in the Appendix.

2 The bound state soliton model

The bound state soliton model has been discussed in detail in the literature [11, 12].
Therefore, only a brief outline of its main features will be presented here. The starting
point is an e�ective SU(3) chiral action which includes an explicit symmetry breaking
term. It has the form

� =

Z
d4x
�
L2 + L4 + LSB

�
+ �WZ ; (3)

where L2 is the well-known non linear �-model lagrangian density,

L2 = �f
2
�

4
Tr [L�L

�] ; (4)

and L4 is the Skyrme stabilizing term,

L4 =
1

32�2
Tr
h
[L�; L� ][L

�; L� ]
i
; (5)

with the left current L� expressed in terms of the SU(3) valued chiral �eld U(x) as
L� = Uy@�U . Here f� is the pion decay constant and � is the so-called Skyrme parameter.

The non-local Wess-Zumino action �WZ is given by

�WZ = � iNc

240�2

Z
D5

d5x "���� Tr [L�L�L�L�L] ; (6)

where the domain of integration is a �ve dimensional disk D5 whose boundary is space{
time. The symmetry breaking term LSB takes into account the di�erence between the
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mass of the kaon mK and the mass of the pion m� as well as the di�erence between f�
and the kaon decay constant fK. It is given by

LSB =
f2�m

2
� + 2f2Km

2
K

12
Tr
�
U + Uy � 2

�
+
p
3
f2�m

2
� � f2Km

2
K

6
Tr
�
�8
�
U + Uy

��
�f

2
K � f2�
12

Tr
h
(1�

p
3�8)

�
UL�L

� + UyR�R
�
�i

; (7)

with �8 being the eighth Gell-Mann matrix and R� the right current R� = U@�U
y.

To describe the B = 1 soliton sector we introduce the ansatz [11]

U =
p
U� UK

p
U� ; (8)

where

UK = exp

"
i

p
2

f�

�
0 K
Ky 0

�#
; K =

�
K+

K0

�
; (9)

and U� is the soliton background �eld written as a direct extension to SU(3) of the SU(2)
�eld u�, i.e.,

U� =

�
u� 0
0 1

�
; (10)

with u� being the conventional hedgehog solution u� = exp[i~� � r̂F (r)].
Assuming that the chiral symmetry breaking along the strangeness direction is strong

enough, the e�ective action is expanded up to the second order in the kaon �eld. The
resulting lagrangian density can be written as the sum of a pure SU(2) term depending on
u� only and an e�ective lagrangian density describing the interaction between the soliton
and the kaon �elds. The soliton pro�le F (r) is obtained by minimizing the corresponding
classical SU(2) energy. On the other hand, the kaon �eld satis�es an eigenvalue equation
which describes its dynamics in the presence of the soliton background �eld. In this
picture, low{lying strange hyperons arise from the bound state solutions of this equation.
In particular, the octet and decuplet hyperons are obtained by populating the lowest kaon
bound state which carries the quantum numbers � = 1=2; l = 1. Here, � is the grand{
spin de�ned by the coupling of angular momentum and isospin and l is the kaon angular
momentum. The splitting among hyperons with di�erent spin and/or isospin is given
by the rotational corrections, which can be obtained after introducing time-dependent
rotations as SU(2) collective coordinates. This approach has been shown to be successful
in describing the hyperon spectrum [12] as well as other baryon properties such as the
magnetic moments [15].
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3 The hyperon-nucleon interaction Lagrangian

In order to obtain the hyperon-nucleon potential we will approximate the B = 2 con-
�guration by the product of two B = 1 solutions, one centered at ~x1 and the other one
centered at ~x2. This is known as the product ansatz and is a rather good approximation
for studying the medium and long distance behaviour of the potential. As well known, for
short distances this approximation breaks down and the exact solution has a torus-like
shape [16]. The kaon dynamics in the presence of the torus-like B = 2 soliton con�gu-
ration has been investigated in Ref.[17]. This is relevant for the study of strange exotics
such as the H{particle.

Within the product ansatz approximation the B = 2 �eld is written as

UB=2(~x;~x1; ~x2) = UB=1(~x� ~x1)UB=1(~x� ~x2) � U1U2 ; (11)

where the indices 1; 2 indicate the dependence on the coordinates of each individual soli-
ton.

Substituting the ansatz (11) and subtracting one{particle contributions, the resulting
interaction lagrangian density coming from the quadratic term L2 is

L(int)
2 =

f2�
4
Tr
�
L1
�R

�
2 + L2

�R
�
1

�
: (12)

Here and in what follows we have performed an explicit symmetrization in the indices 1; 2
to ensure the invariance of the interaction under the exchange of the two particles.

The quartic term leads to

L(int)
4 =

1

32�2
Tr
h
� 4L1

�L
1
�L

�
1R

�
2 + 2L1

�L
�
1L

1
�R

�
2 + 2L1

�L
1
�L

�
1R

�
2

� 4L1
�R

2
�R

�
2R

�
2 + 2L1

�R
�
2R

2
�R

�
2 + 2L1

�R
2
�R

�
2R

�
2

+ 4L1
�L

1
�R

�
2R

�
2 � 2L1

�L
�
1R

2
�R

�
2 � 2L1

�L
2
�R

�
2R

�
2

+ 2L1
�R

2
�L

�
1R

�
2 � L1

�R
�
2L

1
�R

�
2 � L1

�R
2
�L

�
1R

�
2

+ (1$ 2)
i

; (13)

while from the symmetry breaking term we obtain

L(int)
SB =

f2�m
2
� + 2f2Km

2
K

24
Tr [(U1 � 1)(U2 � 1) � 2 + h:c:]

+
p
3
f2�m

2
� � f2Km

2
K

12
Tr [�8 ((U1 � 1)(U2 � 1) � 1) + (1$ 2) + h:c:]

�f
2
K � f2�
24

Tr
h
U2(1�

p
3�8)U1

�
L1
� �R2

�

�
(L�

1 �R�
2 ) + (1$ 2) + h:c:

i
;(14)

where h:c: stands for hermitean conjugate and (1 $ 2) for the exchange of the indices 1
and 2. The contribution from the Wess-Zumino term is

L(int)
WZ = � iNc

96�2
Tr

�
L3
1R2 �R3

2L1 � 1

2
L1R2L1R2 + (1$ 2)

�
(15)
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where the absence of Lorentz indices indicates that we have used the one form notation,
i.e., L3

1R2 = "����L
�
1L

�
1L

�
1R

�
2 .

The use of the ansatz (8) for the individual chiral �elds and the subsequent expansion
up to second order in the kaon components lead us to an interaction Lagrangian that can
be written as the sum of three di�erent types of contributions. Namely,

L(int) = L�d + Lkd + Lke : (16)

A schematic representation of these interactions is shown in Fig.1. Fig.1.a represents
the N1

c direct{term L�d which is a pure SU(2) contribution, the bound kaon acting as a
spectator, and Figs.1.b-c the two N0

c termsLkd and Lke whereK �elds are present in direct
and exchange interactions respectively. The L�d and Lkd are both direct interactions in
the sense that the �nal particles are not exchanged with respect to the initial state. The
Lkd interaction corresponds to processes where the kaon degrees of freedom are excited
(and thus subleading in 1=Nc ), while the Lke interaction involves the exchange of a kaon
between the particles and is called exchange contribution for short.

In general, each term in the e�ective action, Eq.(3), contributes to the three di�erent
pieces L�d, Lkd and Lke in which we have split the interaction Lagrangian. For the
quadratic term of the action we get

L�d2 =
f2�
4
Tr
�
l1�r

�
2 + l2�r

�
1

�
; (17)

Lkd2 =
1

4

�
D�Ky

2n
y
2l
1
�n2K2 �Ky

2n
y
2l
1
�n2D

�K2

�
+
1

4

�
D�Ky

1n1r
2
�n

y
1K1 �Ky

1n1r
2
�n

y
1D

�K1

�
�1

8

�
Ky

2n
y
2r

2�l1�n2K2 +Ky
2n

y
2l
1
�r

2�n2K2

+ Ky
1n1l

1
�r

2�ny1K1 +Ky
1n1r

2�l1�n
y
1K1

�
+ (1$ 2) ; (18)

Lke2 =
1

2

�
D�K

y
1n1n2D

�K2 +D�K
y
2n

y
2n

y
1D

�K1

�
+
1

4

�
D�K

y
1n1r

2�n2K2 +D�K
y
2n

y
2l
1�ny1K1

�
�1

4

�
Ky

1n1l
1�n2D�K2 +Ky

2n
y
2r

2�ny1D�K1

�
�1

8

�
Ky

1n1l
1�r2�n2K2 +Ky

2n
y
2r

2�l1�n
y
1K1

�
+ (1$ 2) ; (19)

where n =
p
u� and we used the de�nitions

l� = uy�@�u� ; r� = u�@�u
y
� ; (20)

D� = @� +
1

2
(ny@�n + n@�n

y) : (21)
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In the case of the Wess-Zumino term the pure SU(2) contribution L�dWZ vanishes. The
remaining two contributions are

LkdWZ = � !Nc

48�2f2�

"
Ky

2n
y
2l1r2n2DK2 +DKy

2n
y
2l1r2n2K2

�1

2
Ky

2n
y
2

�
l31 + l1r

2
2 � l1r2l1

�
n2K2

�(Fi $ �Fi) + h:c:

#
+ (1$ 2) ; (22)

and

LkeWZ =
!Nc

48�2f2�

"
Ky

1n
y
1Sn

y
2DK2 +DKy

1n
y
1Sn

y
2K2

+
1

2
Ky

1n
y
1 (Sl2 � r1S)n

y
2K2 � (Fi $ �Fi)

#
+ (1$ 2) ; (23)

where Fi is the pro�le of the ith soliton and S = l22 + r21 � l2r1. When performing
(Fi $ �Fi ; i = 1; 2), the replacements l $ r; n $ ny should be done. Moreover, we
have used that for bound antikaons _K = i!K, with ! > 0.

Similar expressions can be obtained for the Skyrme and symmetry breaking terms L4

and LSB, respectively. Since their lengthy explicit forms are not particularly instructive
we are not going to display them here.

Next, the quantization of the two soliton system is performed using collective coordi-
nates. We rotate the bound states, one independently of the other

u1 ! A1u1A
y
1 ; u2 ! A2u2A

y
2 ;

K1 ! A1K1 ; K2 ! A2K2 ; (24)

where A1 and A2 are SU(2) matrices. This dependence on the collective coordinates will
be reexpressed in terms of the relative coordinate C = Ay

1A2. In order to obtain the
physical particles we perform projections onto states with good spin and isospin quantum
numbers. The corresponding general wavefunctions of the hyperons can be found e.g. in
Ref.[18].

Finally, to obtain the interaction potential we have to take matrix elements of L(int)

between the relevant two{baryon wavefunctions and integrate out the center of mass
coordinate ~R. For the latter purpose it is convenient to express the individual positions
of the particles in terms of ~R and their relative separation ~r ,

~x1 = ~R +
m2

m1 +m2
~r ;

~x2 = ~R � m1

m1 +m2
~r ; (25)

where m1 and m2 are the physical masses of the individual particles. We choose ~r to
point in the ẑ direction and perform the integration in ~x0 = ~x� ~R. In this way we obtain

V
(int)
HN (r) = �

Z 1

0

dR R2

Z 1

�1

d�

Z 2�

0

d' < L(int) > (26)
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where � = r̂ � R̂. By performing the analytical integration over ' one obtains an operator
with a general structure that allows to identify the di�erent components of the potential,
like e.g. central component, spin-spin component, etc. The remaining integrations over
R and � are to be done numerically.

The formalism developed so far is valid for both H = �;�. Nevertheless, as several
steps in this procedure imply long and involved calculations, in what follows we restrict
ourselves to the study of the �N interaction potential. Since � is an isoscalar particle
the number of terms to be calculated is greatly reduced in this particular case.

4 The �N potential in the adiabatic approximation

We illustrate the general procedure to derive the interaction potential by considering some
speci�c terms of the interaction Lagrangian. In this derivation we neglect terms depending
on the collective rotational velocities (non-adiabatic terms). These terms would give rise
to e.g. spin-orbit contributions and are subleading by, at least, one order in 1=Nc with
respect to the contributions considered here. It should be noticed that, even within this
approximation, the full calculation of all the terms contributing to the �N potential
is quite long. To be con�dent of our results all the expressions were cross-checked by
independent calculations, with the exception of the L4 kaonic contributions which could
only be evaluated with the help of an algebraic computer code.

4.1 The direct contributions

Let us start by considering a direct interaction of the L�d-type. One sees that there
is no L2 contribution of this kind to the �N potential. The reason is that, after the
introduction of the collective coordinates, eq.(17) contains the expression

Cylj1C = lj1aC
y�aC = lj1aRab(C)�b ; (27)

with Rab a rotation operator de�ned by eq.(A.1). Because of eq.(A.8) this leads to a
vanishing �N matrix element. The most important contribution comes from L4 , which
is responsible for the central repulsion. It can be easily obtained by replacing L and R
from eq.(13) by their SU(2) counterparts, since the kaon acts here as a spectator. After
taking matrix elements and replacing in eq.(26), we obtain

V �d
C (r) =

2�

3�2

Z 1

0

dR R2

Z 1

�1

d�

"
(F 0

1F
0
2)

2
+

�
F 0
1

s2
x2

�2

+

�
F 0
2

s1
x1

�2

+3

�
s1s2
x1x2

�2

�
 
F 02
1 �

�
s1
x1

�2
! 

F 02
2 �

�
s2
x2

�2
!
(x̂1 � x̂2)2

#
;(28)

where si = sinFi , ci = cosFi and F 0
i = dFi=dxi.

As an example of the treatment of the Lkd{type terms we take the contribution from
the Wess{Zumino term, eq.(22). Again, after the introduction of collective coordinates,
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all terms containing expression (27) vanish. In this case, however, there are still two
additional terms. One of these terms gives simply

Cyl31C = �6F 0
1

s21
x21

; (29)

since l3 is an isoscalar proportional to the SU(2) contribution to the baryon density. This
is the only non-vanishing contribution. The other term contains the expression

Cyl1Cr2C
yl1C = "ijkl

i
1ar

j
2bl

k
1cC

y�aC�bC
y�cC

= "ijkl
i
1ar

j
2bl

k
1c�d�b�fRad(C)Rcf (C) (30)

and although the corresponding collective matrix element is non-zero, the total matrix
element vanishes due to the antisymmetry of "{tensor. Therefore, from eq.(29) we �nally
obtain Z

d' < �02N
0
1jLkdWZj�2N1 > = � !Nc

8�2f2�
k22F

0
1

s21
x21
OC : (31)

It should be mentioned that the terms containing more than two Cy; C pairs give
non-zero contributions to the direct L4 interactions since no "{tensor is present in that
case.

4.2 The exchange contributions

To illustrate the calculation of the exchange contributions we consider the �rst two terms
in the symmetrized form of Lke2 . After introducing collective coordinates and neglecting
non-adiabatic terms they reduce to

1

2
D�K

y
1n1Cn2D

�K2 + (Fi $ �Fi) + h:c: (32)

Using Eq.(A.10) the relevant matrix element reads

< �01N
0
2j
1

2
D�K

y
1n1Cn2D

�K2j�2N1 > =
1

4
�IN
3
;IN

0

3

< J�0

3 jD�K
ynjJN3 >1< JN

0

3 jnD�KjJ�
3 >2

(33)

The individual matrix elements can be calculated using a projection theorem given in
Ref.[18]. Given the explicit form of the hegdehog ansatz we obtain

n2D
0K2=

!k2
2
p
�
(s=2 � ic=2~�2 � x̂2) ;

n2D
aK2=

1

2
p
�

�
ik02s=2 x̂

a
2 +

�
c=2k

0
2 � c=32

k2
x2

�
~�2 � x̂2 x̂a2 + c=32

k2
x2

�a2 + c=22
k2
x2
s=2 (x̂2 � ~�2)

a

�
(34)

where k0 stands for the radial derivative of the kaon wavefunction. Moreover, we use the
short-hand notation

s= = sin
F

2
; c= = cos

F

2
: (35)
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Similar expressions are obtained for the operator D�K
y
1n1. In this way, one obtains the

explicit form of the matrix element, eq.(33). Next, we integrate out the center of mass
coordinate. At this stage it is convenient to de�ne the operators

ÔC = (I)�0N (I)N 0� ;

ÔS = (~�1)�0N � (~�2)N 0� ;

ÔT = 3 r̂ � (~�1)�0N r̂ � (~�2)N 0� � (~�1)�0N � (~�2)N 0� (36)

and make use of the relationZ 2�

0

d' ~�1 � x̂i ~�2 � x̂j =
2�

3

�
xijÔS +GijÔT

�
(37)

with xij = x̂i � x̂j and

Gij =
3R2

2xixj
(�2 � 1) + xij : (38)

Using the expressions given above we obtain the complete resultZ
d' < �01N

0
2j
�
1

2
D�K

y
1n1Cn2D

�K2 + (Fi $�Fi) + h:c:

�
j�2N1 > =

= � 1

12
�IN
3
;IN

0

3

(
!2k1k2

�
3s=1s=2ÔC � c=1c=2x12ÔS � c=1c=2G12ÔT

�
+ÔC (�3k01k02s=1s=2x12)

+ÔS

"
k1k2
x1x2

c=21c=
2
2

�
c=1c=2(1 + x212)� 2s=1s=2x12

�

+
k1k

0
2

x1
c=31c=2(1 � x212) +

k01k2
x2

c=1c=
3
2(1� x212)

+k01k
0
2c=1c=2x

2
12

#

+ÔT

"
� k1k2
x1x2

c=21c=
2
2

�
c=1c=2(G11 +G22 �G12x12)� s=1s=2G12

�

+
k1k

0
2

x1
c=31c=2(G22 �G12x12) +

k01k2
x2

c=1c=
3
2(G11 �G12x12)

+k01k
0
2c=1c=2G12x12

# )
: (39)

In order to recover the operator structure of the potential as given in eq.(1) we still
have to perform a Fierz rearrangement and write the operators ÔC ; ÔS; ÔT in terms of
the operators OC;OS;OT appearing in such equation. We obtain

� ÔC + � ÔS +  ÔT =
1

2
(� + 3�)OC +

1

2
(�� �)OS +  OT ; (40)
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where �; � and  are arbitrary functions depending only on the relative separation r. All
the other exchange contributions to the interaction potential can be treated in exactly
the same way.

5 Numerical results and discussion

In the numerical calculations we used the physical values for the di�erent mesonic pa-
rameters appearing in the Lagrangian, that is m� = 138 MeV; mK = 495 MeV; f� =
93 MeV; fK=f� = 1:22 and take � = 4:26 in order to �t the mass di�erence between
the nucleon and the �. With these values the hyperon excitation spectrum is rather well
described. On the other hand, the absolute baryon masses come out too high by about
800 MeV. This is a generic problem of the topological soliton models that can be �xed by
properly taking into account the quantum corrections to the soliton mass [19]. Recently,
this has been explicitly shown in the case of the bound state soliton model [20].

The individual contributions of the di�erent direct and exchange terms to the �N
potential are shown in Fig.2 and Fig.3 , respectively. As a general feature we see that
the pionic contributions are much larger (in absolute value) than the kaonic ones as ex-
pected from Nc-counting. We also notice that in the present scheme the direct terms only
contribute to the central potential. In particular, although there is an attractive sym-
metry breaking contribution to V �d

C , such part is completely dominated by the repulsive
contribution coming from the quartic term. As already mentioned there are no L2- and
LWZ-contributions of this type. In the case of the direct kaonic part the quartic and WZ
contributions are attractive and similar in magnitude. As seen in Fig.3 all the di�erent
terms in the Lagrangian contribute to the exchange potentials. All these contributions
are attractive except for those coming from the symmetry breaking term LSB which are,
in any case, quite small.

Our total predictions for the central, spin-spin and tensor components of the �N
potential are presented in Fig.4. As anticipated from the discussion above, we observe
that the spin{spin and tensor interactions are supressed by an order of magnitude with
respect to the central interaction which turns out to be repulsive at any distance. Noting
that VC is dominated by the pionic contributions it is clear that such a behaviour is very
much related with the well known problem of the missing central attraction at intermediate
distances in the SU(2) Skyrmemodel. As reviewed in Ref.[9] manymechanisms have been
proposed to solve this problem. Whatever such solution could be, our SU(3) calculations
show that the inclusion of strangeness degrees of freedom are not likely to spoil it since
the central kaonic contributions are attractive.

The sign of our predicted spin-spin contribution implies that there will be more at-
traction in the 3S1 channel than in the 1S0. The empirical information about the sign of
the spin-spin interaction is somewhat unclear. From the existing �p scattering data it is
very di�cult to draw a de�nite conclusion. In fact, various versions of the OBE model
that �t the scattering data equally well lead to rather di�erent predictions for the 3S1 and
1S0 scattering lengths (see e.g. Ref.[21]). On the other hand, the hypernuclei data tend to
favor a repulsive �N spin-spin interaction although again the question is not completely
settled. The most clear indication comes from the 4

�H and 4
�He doublet states. How-
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ever, the analysis of these states depends on non-trivial four-body calculations. There is
also some empirical information from other hypernuclei like e.g. 11

� B. There, however,
the situation is even more complicated because of the role played by spin-orbit interac-
tions. Forthcoming experiments on both hyperon-proton scattering [22] and hypernuclear
 spectroscopy [23] are expected to provide critical tests on this issue. >From the point of
view of the Skyrme model our results are consistent with those obtained in the previous
SU(3) collective coordinates calculations [13, 14] in the absence of channel couplings. One
might argue that since in our model the pion exchanges are taken into account beyond
the OBE a good deal of the mixing with the �N channel is taken into account. However,
our approach still allows for non-vanishing o�-diagonal N��N� terms. There are indi-
cations that when such mixing with rotational excited con�gurations is included the sign
of the spin-spin interaction in the Skyrme model might be reversed [13].

Finally, for r > 1:2 fm our prediction for the tensor component of the potential agrees
well with the OBE models. For smaller distances there are large discrepances between
OBE model D and F. For example, at r � :9 fm one has V OBE�D

T � �14 MeV while
V OBE�F
T � +9 MeV . In such region our results favor those of model D.
The dashed lines in Fig.4 represent the results of the collective approach [14] to the

SU(3) Skyrme model. We see that the magnitude and sign of the potentials are similar to
those of the bound state approach. However, the situation is di�erent for the behaviour
at large distances. Although in both cases VC decays basically in the same way, the
range of the VS and VT in the CCA is much longer. This is not di�cult to understand
since in the CCA the only meson that determines the fall-o� of the radial functions is
the pion meson. On the other hand, in the BSA the spin-spin and tensor components
of the �N potential are given by the kaonic components. The corresponding range is,
therefore, associated with the kaon mass which is several times larger than the pion mass.
In the central potential these di�erences do not appear because of the dominance of the
pionic L4-contribution already discussed. It should be mentioned that in all the cases the
behaviour of the potentials at large distances obtained in the BSA is in good agreement
with the results of the OBE models.

6 Conclusions

We have investigated the hyperon-nucleon two-body interaction in the framework of the
bound state approach to the SU(3) Skyrme model. We would like to stress the fact that
the Skyrme model approach incorporates chiral symmetry and the large Nc expansion in
an elegant way. Moreover, by relating the physics of sectors with di�erent baryonic num-
bers it gives parameter free predictions for the present calculation, in contrast with more
phenomenological approaches. Our studies have been based on the product ansatz for
the B = 2 soliton �eld which is adequate for the medium and large separation distances
discussed in this work. We have found that there are three classes of contributions within
the adiabatic approximation used here. One type corresponds to order N1

c purely SU(2)
contributions in which kaons act as simply spectators. The other two are of order N0

c and
correspond to direct and exchange kaonic interactions. Although the formalism we have
followed is suitable for any diagonal or o�-diagonal hyperon-nucleon potential we have
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concentrated on the diagonal �N interaction. There, important simpli�cations appear in
the expressions for the potentials which still happen to be lengthy and cumbersome. We
have found that the central potential is repulsive at any distance. This is strongly related
to the missing intermediate range central attraction of the NN potential as calculated
in the SU(2) Skyrme model. Within our scheme, any of the suggested solutions of this
problem is expected to bring in some attraction also in the �N case. Generally speaking
our results are very similar to those of the SU(3) collective coordinate approach to the
Skyrme model [14]. An exception to this is the range of the spin-spin and tensor interac-
tions. For these quantities the values obtained in the present calculation seem to be more
realistic. Finally, there are some indications that the coupling to vibrations could give the
missing central attraction while the coupling to rotationally excited states may change
the sign of the spin-spin interaction [13]. The formalism developed in the present work
provides a general framework for future investigations of such issues within the bound
state soliton model.
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Appendix

In this appendix we present a set of formulae which are useful for calculating the matrix
elements of the collective lagrangian operators.

The rotation operator written in the cartesian basis

Rab(C) =
1

2
Tr
�
�aC�bC

y
�

(A.1)

can be expressed in terms of the spherical tensor D��(C) in the following way

Rab = ê� � êa ê�� � êb D��; (A.2)

where ê�, with � = +1; 0;�1, are the usual spherical unit vectors and êa the cartesian
ones.

Using Eq.(A.2) it is not di�cult to show that

�
D(1=2)
mn

��
D

(1=2)
m0n0 =

1

2

�
�mm0�nn0 + < m0j�ajm > Rab < nj�bjn0 >� : (A.3)
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The evaluation of the matrix elements amounts to an integration over SU(2). For products
of Rab we have

1

2�2

Z
dC RabRcd =

1

3
�ac�bd ; (A.4)

1

2�2

Z
dC RabRcdRef =

1

6
�ace�bdf : (A.5)

Using explicit forms of the � and N wavefunctions

j� > =
1p
2�

j1
2
J�
3 > ;

jN > =
i

�
(�1) 12+IN3 D(1=2)

�IN
3
;JN
3

; (A.6)

together with the expressions above, the relevant collective matrix elements can be easily
calculated. For the direct terms we have

< �02N
0
1j�2N1 > = �IN

3
;IN

0

3

�JN
3
;JN

0

3

�I�
3
;I�

0

3

; (A.7)

< �02N
0
1jRab(C)j�2N1 > = 0 ; (A.8)

< �02N
0
1jRab(C)Rcd(C)j�2N1 > =

1

3
�ac�bd < �02N

0
1j�2N1 > (A.9)

and for the exchange terms

< �01N
0
2jO

y
�(K1)C��O�(K2)j�2N1 >=

�
IN
3
;IN

0

3

2
< J�

0

3 jOy(K1)jJ
N
3 >< JN

0

3 jO(K2)jJ
�
3 > ;

(A.10)

< �01N
0
2jO

y
�(K1)C��O�(K2)Rab(C)j�2N1 >=

�
IN
3
;IN

0

3

6
< J�

0

3 jOy(K1)�ajJ
N
3 >< JN

0

3 j�bO(K2)jJ
�
3 >

(A.11)
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Fig.1 { Schematic representation of the di�erent types of contributions to the hyperon-nucleon potential.

(a) Direct \pionic" contributions L�d, (b) direct \kaonic" contributions Lkd and (c) exchange \kaonic"

contributions Lke .
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Fig.2 { (a) Central contributions to the �N potential coming from the direct \pionic" terms, L�d. (b) Central

contributions to the �N potential coming from direct \kaonic" terms Lkd. The full line represents the contributions

from L4, the dotted line those from LWZ and the dashed-dotted line those from LSB.
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Fig.3 { Contributions from the exchange \kaonic" terms Lke to: (a) Central component of the �N potential, (b)

Spin-spin component of the �N potential, (c) Tensor component of the �N potential. In the three panels the

dashed line represents the contributions from L2, the full line those from L4, the dotted line those from LWZ and

the dashed-dotted line those from LSB.
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Fig.4 { Components of the �N potential as de�ned in Eq.(1): (a) central component VC, (b) spin-spin component

VS and (c) tensor component VT . In the three panels the full line represents the results of the present calculation

and the dashed line those of the CCA as given in Ref.[14]


