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Abstract

One �nds convergent solutions for the Whittaker-Hill equation destituted of free

parameters by treating it as a particular case of the generalized spheroidal wave

equation. Solutions in series of trigonometric functions result from the expansions in

series of Gauss hypergeometric functions for the solutions of the GSWE. From these

solutions, the four Arscott solutions are recovered when there are free parameters

in the Whittaker-Hill equation.
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1 Introduction

The Whittaker-Hill equation (WHE) in Arscott's form [1] reads

d2w

du2
+

�
� � (p + 1)�cos(2u) �

�2

4
sin2(2u)

�
w = 0; (1)

where �, p and � are constants. This equation results from variable separation for the
Helmholz equation in paraboloidal coordinates [1], as well as from variable separation for
the Dirac equation in Minkowski spacetime when we use cylindrical curvilinear coordi-
nates [2]. The Arscott solutions to Eq.(1) are given as series whose coe�cients satisfy
3-term recurrence relations. The series convergence condition requires that a charac-
teristic equation, relating its parameters, be valid and that is possible only when some
parameter is at our disposal.

On the other hand, the Leaver version [3] for the generalized spheroidal wave equation
(GSWE) is

x(x� x0)
d2U

dx2
+ (B1 +B2x)

dU

dx
+
�
B3 + !2x(x� x0)� 2!�(x� x0)

�
U = 0; (2)

and the coe�cients for its usual series solutions also satisfy 3-term recurrence relations.
Now, if we perform the Campbell change of variables [4]

x = x0 cos
2(u); w(u) = W (x) (3)

in Eq. (1), we �nd

x(x� x0)
d2W

dx2
+ (�

x0
2
+ x)

dW

dx
+�

(p + 1)� � �

4
�

�2

4x20
x(x� x0) +

�(p + 1)

2x0
(x� x0)

�
W = 0:

Comparing this equation with the Eq. (2) we see that the WHE is a GSWE with

B1 = �x0=2; B2 = 1: (4)

and consequently, in addition to Arscott's solutions, we can also obtain solutions to Eq.
(1) from those for Eq. (2). This becomes particularly important when we suppose that all
the parameters in the WHE are �xed, that is, when Arscott's solutions do not converge.
In e�ect, if x is real, the problem concerning the convergence is solved in the sense that,
for the GSWE, convergent solutions are known for the case in which all the parameters are
�xed. For 0 � x � x0 (\angular" wave equation) the solutions can be expanded as a series
of Gauss hypergeometric functions [5]. For x0 � x < 1 (\radial" wave equation), there
are the Leaver expansions in series of con
uent hypergeometric functions and Coulomb
wave functions [3]. In each of these solutions an arbitrary parameter, say �, is introduced
in order to satisfy the characteristic equation and the summation index n runs from �1
to 1. Therefore our prescription to obtain solutions to the WHE is very simple: we
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rewrite it as a GSWE with B1 = �x0=2, B2 = 1 and then particularize its solutions for
the case in question. However, there are some more comments which we outline next.

The expansions in series of hypergeometric functions were �rst performed in order
to �nd convergent solutions to an \ angular" GSWE without free parameters. When
we choose the phase parameter as equal to zero and take the summation index n to be
n � 0, they become expansions of the Fackerell and Crossman type [6] for a GSWE with
free parameters, that is, expansions in terms of Jacobi polynomials. Despite this, if we
only restrict the values of n to n � 0, we �nd conditions under which each expansion
in hypergeometric functions may provide two values for phase parameter, as we will see
in Section 2.1. On the other hand, in Section 2.2, we will �nd that, for the WHE, the
general expansions in terms of hypergeometric functions reduce to expansions in series of
trigonometric functions with phase parameters and �1 < n < 1, generalizing, in this
manner, the Arscott solutions for the case of no free parameters. Moreover, by setting
n � 0, we will �nd, as a consequence of the results of Section 2:1, that in each of these
solutions the phase parameter assumes the values 0 and 1=2, and hence we recover the
four Arscott solutions. In Section 3 we present some additional comments.

2 On the Expansions in Hypergeometric Functions

In this section our analysis is based on the two expansions in terms of hypergeometric
functions, U1 and U2, for the solutions to Eq. (2) and so we write them out. The �rst of
them is

U1 = e�i!x0y
1X

n=�1

bnF (�n� �; n + � �+B2 � 1; B2 +B1=x0; y); (5)

y := (x0 � x)=x0 (6)

(\:=" means \equal by de�nition"). In the case where there are no free parameters in the
di�erential equation, the recursive relations for the coe�cients bn are

�nbn+1 + �nbn + 
nbn�1 = 0; (7)

where

�n = i!x0
(n+ � + 1)(n+ � �B1=x0)(n+ � +B2=2 � i�)

2(n + � +B2=2)(n + � +B2=2 + 1=2)
; (8a)

�n = �B3 � (n+ �)(n+ � +B2 � 1) �

�!x0
(B2 +B1=x0)(B2 � 2) + 2(n+ �)(n + � +B2 � 1)

2(n+ � +B2=2� 1)(n + � +B2=2)
; (8b)


n = �i!x0
(n+ � +B2 � 2)(n + � +B2 +B1=x0 � 1)(n + � +B2=2 + i� � 1)

2(n+ � +B2=2� 3=2)(n + � +B2=2� 1)
: (8c)
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The characteristic equation for � is given by the sum of two in�nite continued fractions,
namely,

�0 =
��1
0
��1�

��2
�1
��2�

��3
�2
��3�

:::+
�0
1
�1�

�1
2
�2�

�2
3
�3�

::: : (9)

Note that in Eq. (5) we are supposing that

B2 +B1=x0 6= 0;�1;�2; ::: : (10)

To write the second solution, we �rst de�ne B
0

2 and B
0

3 through

B
0

2 := 2�B2 �
2B1

x0
; B

0

3 := B3 +
B1

x0

�
B1

x0
+B2 � 1

�
: (11)

Then, U2 is given by

U2 = e�i!x0yy1�B2�B1=x0

1X
n=�1

b
0

nF (�n� �
0

; n+ �
0

+B
0

2 � 1; B
0

2 +B1=x0; y); (12)

along with the the relations

�
0

nb
0

n+1 + �
0

nb
0

n + 

0

nb
0

n�1 = 0; (13)

where �
0

n, �
0

n and 

0

n are obtained from �n, �n and 
n, respectively, by the substitutions

B2 ! B
0

2; B3 ! B
0

3; � ! �
0

: (14)

There is also a characteristic equation similar to Eq. (9) and a condition analogous to
Eq.(10). In what follows it will be important to note the the relations (7) and (13) hold
only for �1 � n �1 and have resulted from the equations"

1X
m=n�1

�mbm+1 +
1X

m=n

�mbm +
1X

m=n+1


mbm�1

#
�

F (�m� �;m+ � +B2 � 1; B2 +B1=x0; y) = 0; (15)

"
1X

m=n�1

�
0

mb
0

m+1 +
1X

m=n

�
0

mb
0

m +
1X

m=n+1



0

mb
0

m�1

#
�

F (�m� �
0

;m+ �
0

+B
0

2 � 1; B
0

2 +B1=x0; y) = 0; (16)

which we get when we insert Eqs. (5) and (12) into Eq. (2). In the sums above, we have
explicitly displayed the changes of indices that we accomplished in order to factorize the
hypergeometric functions.
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2.1 Free Parameters in the GSWE: General Case

We now ask under what conditions the restriction of the sum index to n � 0 in the
solutions U1 and U2 may lead to two possible values for the phase parameters � and �

0

.
This restriction removes the freedom to choose � and �

0

and thus it is allowed only when
there are free parameters in the di�erential equation. We de�ne Sn �rst by

Sn := (�nbn+1 + �nbn + 
nbn�1)F (�n� �; n+ � +B2 � 1; B2 +B1=x0; y): (17)

Then, for n � 0, Eq. (15) becomes

1X
n=1

Sn + ��1b0F (1� �; � +B2 � 2; B2 +B1=x0; y) +

(�0b1 + �0b0)F (��; � + B2 � 1; B2 +B1=x0; y) = 0; (18)

where, from Eq. (8a),

��1 = i!x0
�(� � 1 �B1=x0)(� +B2=2 � 1� i�)

2(� +B2=2 � 1)(� +B2=2 � 1=2)
: (19)

For the solution U1 we must consider three cases: B2 6= 1 or 2, B2 = 1 and B2 = 2.
In each case Eq. (18) will be satis�ed by choosing suitable values for � and appropriate
recurrence relations for bn. We have also to �nd the characteristic equation for each case.
Note that the results below will be applicable to concrete problems only if they satisfy
the condition (10) and if �n, �n and 
n turn out to be �nite.
First case: B2 6= 1 or 2. In this case, Eq. (18) is satis�ed by taking � = 0 (��1 = 0) and�

�0b1 + �0b0 = 0;
�nbn+1 + �nbn + 
nbn�1 = 0 (n � 1)

(20)

with the characteristic equation given by

�0 =
�0
1
�1�

�1
2
�2�

�2
3
�3�

::: : (21)

Another possibility occurs when B2 and B1=x0 have �xed values and satisfy the conditions

B1

x0
6=

3

2
�
B2

2
;

B1

x0
6= �

B2

2
: (22)

Then we can choose � = 1 +B1=x0 along with recurrence relations and characteristic
equation similar to Eqs. (20) and (21), respectively, since again we have ��1 = 0. Teukol-
sky angular wave equation corresponds to the possibility � = 0 and we do not know any
case satisfying the conditions (22).
Second case: B2 = 1. For his case

��1 = i!x0
(� � 1 �B1=x0) (� � 1=2 � i�)

2(� � 1=2)
(23)
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and Eq. (18) can be written as

1X
n=2

Sn + (�1b2 + �1b1 + 
1b0)F (�1� �; 1 + �; 1 +B1=x0; y) +

(�0b1 + �0b0)F (��; �; 1 +B1=x0; y) + ��1b0F (1� �; � � 1; 1 +B1=x0; y) = 0 (24)

This equation is satis�ed by � = 0 and8<
:

�0b1 + �0b0 = 0;
�1b2 + �1b1 + (��1 + 
1)b0 = 0;
�nbn+1 + �nbn + 
nbn�1 = 0 (n � 2):

(25)

The characteristic equation is obtained by noting that these recurrence relations are anal-
ogous to Eqs. (20) with ��1 + 
1 in the place of 
1; then

�0 =
�0(��1 + 
1)

�1�

�1
2
�2�

�2
3
�3�

::: : (26)

Eq (24) can also be satis�ed by � = 1=2 and

�
�0b1 + (�0 + ��1)b0 = 0;
�nbn+1 + �nbn + 
nbn�1 = 0 (n � 1);

(27)

but only if B1=x0 = �1=2, on the contrary ��1 ! 1. The characteristic equation is
obtained by changing �0 for �0 + ��1 in Eq. (21):

�0 + ��1 =
�0
1
�1�

�1
2
�2�

�2
3
�3�

::: : (28)

In the present case � = 0 does not require that B1=x0 = �1=2, but � = 1=2 does.
Therefore the solution for � = 1=2 must be one of the solutions of a WHE endowed with
free parameters: we will �nd in Section 2.2 that this solution in fact coincides with one of
the Arscott solutions. The solution for � = 0 will coincide with another Arscott solution
only when B1=x0 = �1=2.
Third case: B2 = 2. Then

��1 = i!x0
(� � 1�B1=x0) (� � i�)

2(� + 1=2)
(29)

and Eq. (18) can be written as

1X
n=1

Sn + (�0b1 + �0b0)F (��; � + 1; 2 +B1=x0; y) + ��1b0F (1� �; �; 2 +B1=x0; y) = 0:(30)

This equation is satis�ed by � = 0, provided that�
�0b1 + (�0 + ��1)b0 = 0;
�nbn+1 + �nbn + 
nbn�1 = 0 (n � 1):

(31)
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The characteristic equation has the same form as Eq. (28). On the other hand, if the ratio
B1=x0 is �xed and such that B1=x0 6= �3=2, Eq. (30) is also satis�ed by � = 1 +B1=x0
(��1 = 0) and �

�0b1 + �0b0 = 0;
�nbn+1 + �nbn + 
nbn�1 = 0 (n � 1):

(32)

The characteristic equation now is formally identical to Eq. (21).
Therefore, we can conclude that the restriction of n to n � 0 always admits � = 0, but

it must be noted that we have three di�erent expressions for the characteristic equation:
Eq. (21) if B2 6= 1 or 2, Eq. (26) if B2 = 1 and Eq. (28) if B2 = 2. For � = 0,
U1 represents one of the Fackerell-Crossman solutions [6] to an \angular" wave equation
with free parameters only in the �rst case. The other two cases provide solutions to
a GSWE with B2 = 1 and B2 = 2. As far as we are aware, expansions in terms of
hypergeometric functions for these cases have not been discussed before in the literature.
We have also found that another value for � is possible only under special conditions as,
for example, in the case of the Whittaker-Hill equation, since it belongs to the second
case discussed above and corresponds to � = 0 and � = 1=2.

We will not repeat the analysis for the solution U2, since it is similar to the preceding
one, but taking into account the Eqs. (11-14) and (16). This means that we have to
replace B2 for B

0

2. In particular, the WHE without free parameters will belong to the
case B

0

2 = 2, due to Eqs. (4) and (11).

2.2 Solutions to Whitaker-Hill Equation and Arscott's Case

Now, in the �rst place we will show that, for the WHE deprived of free parameters, the
solutions U1 and U2 reduce to two expansions in sines and cosines series; in the second
place, using the results of Section 2.1, we will show that these expansions will formally
provide the four Arscott's solutions for a WHE with free parameters. To obtain this
result, we use Eqs. (3, 4, 6, 11) to get

y = sin2(u); B
0

2 = 2; B
0

3 = B3 + 1=4: (33)

Then, the hypergeometric functions in U1 and U2 can be written in terms of sine and
cosine [7] according to

F (�n� �; n+ �; 1=2; sin2 u) = cos[(2n+ 2�)u]; (34)

F (�n� �
0

; n+ �
0

+ 1; 3=2; sin2 u) =
sin[(2n+ 2�

0

+ 1)u]

(2n + 2� 0 + 1) sin(u)
(35)

Now, returning to Eqs. (5, 12), we get, up to a multiplicative constant,

U1 = ei! cos(2u)
1X

n=�1

bn cos[(2n+ 2�)u]; (36)

U2 = ei! cos(2u)
1X

n=�1

cn sin[(2n+ 2�
0

+ 1)]; (37)

cn := b
0

n=(2n + 2� + 1): (38)
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The recurrence relations to the coe�cients bn and cn are analogous to Eqs. (7) and (13),
that is,

�nbn+1 + �nbn + 
nbn�1 = 0; (39)

�ncn+1 + �ncn + 
ncn�1 = 0; (40)

where now

�n =
1

2
[� + i(n+ � + 1=2)]!x0;

�m = �B3 � (n+ �)2 � �!x0; (41)


m =
1

2
[� � i(n+ � � 1=2)]!x0;

and

�n =
1

2
[� + i(n+ �

0

+ 1)]!x0;

�n = �B3 � �!x0 � (n+ �
0

+ 1=2)2; (42)


n =
1

2
[� � i(n+ �

0

)]!x0:

If we suppose that there is no free parameter in the WHE, � and �
0

must be determined
from the characteristic equations and we have �1 < n < 1. Note, however, that we
can take � 0 = �� 1=2 and then the characteristic equations for � and � become formally
identical, since Eq. (42) and (43) also do.

The solutions we have just found are the generalization of Arscott's solutions for no
free parameters in the Whittaker-Hill equation. Moreover they have the same form as the
solutions in series of trigonometric functions for the Mathieu equation for the case in which
there are no free parameters in it [4]. On the other hand, when we suppose that n � 0,
as in Section 2.1, we �nd that � and �

0

have both the values 0 and 1=2 and this provides
the four Arscott solutions for the WHE { analogous to the four solutions for the Mathieu
equation with free parameters. In e�ect, for U1, that follows when we put B1 = �x0=2 in
the second case discussed in Section 2.1. For U2 we have not derived explicitly the results
in Section 2.1, but they are obtained easily by noting that the recurrence relations (43)
stem from"

1X
m=n�1

�mcm+1 +

1X
m=n

�mcm +

1X
m=n+1


mcm�1

#
(m+ �

0

+
1

2
) sin[(2m+ 2�

0

+ 1)u] = 0;(43)

when we consider �1 < n <1. Then, for n � 0, we have

1X
m=1

�
�mcm+1 + �mcm + 
mcm�1

�
(m+ �

0

+
1

2
) sin[(2m+ 2�

0

+ 1)u] +

(�
0

+
1

2
)(�0c1 + �0c0) sin[(2�

0

+ 1)u] + (�
0

�
1

2
)��1c0 sin[(2�

0

� 1)u] = 0 (44)
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To satisfy this equation we have again to take �
0

= 0 and �
0

= 1=2. For �
0

= 0, we see
that �

�0c1 + (�0 + ��1)c0 = 0;
�ncn+1 + �ncn + 
ncn�1 = 0; (n � 1)

(45)

with characteristic equation given by

�0 + ��1 =
�0
1
�1�

�1
2
�2�

�2
3
�3�

:::; (46)

whereas, for �
0

= 1=2, we have

�
�0c1 + �0c0 = 0;

�ncn+1 + �ncn + 
ncn�1 = 0; (n � 1)
(47)

with characteristic equation

�0 =
�0
1
�1�

�1
2
�2�

�2
3
�3�

:::; (48)

Observe that these characteristic equations are formally identical with those of third case
discussed in Section 2.1, as already mentioned at the end of that section.

3 Conclusions

First we have shown that the WHE is in fact a particular case of GSWE. Thus the
representation for the solutions of the latter may be used for the former, even when there
is no free parameter in the WHE. A peculiarity of the expansions in series of Gauss
hypergeometric functions is the fact that, in the case of the WHE, they provide two
expansions in series of sine and cosine similar to the Arscott solutions, but containing
a phase parameter and with the summation index n running from �1 to �1. These
solutions are also similar to the expansions in sine and cosine series for the Mathieu
equation without free parameter. When n is restricted to n � 0, we recover the four
Arscott's solutions to the WHE with free parameters, since such a restriction implies that
the phase parameters assume the values 0 or 1=2.

The second and third case discussed in Section 2.1 are solutions to the special cases
(B2 = 1 and B2 = 2, respectively) of an \angular" GSWE. They represent new solutions,
not discussed in Ref. 5, since the the characteristic equations are di�erent from those of
the �rst case.

Finally we note that a WHE without free parameters is not a useless hypothesis.
In e�ect, the time dependence of a massive scalar test �eld minimally and conformally
coupled to the gravity of a Friedmann-Robertson- Walker (FRW) spacetime �lled with
dust is determined by a GSWE without free parameters [5]. If we examine the case of
conformal coupling we see that we have a WHE. Thus, in the light of Section 2:2, it is
not surprising that the hypergeometric functions (case of positive spatial curvature) have
reduced to a sine or a cosine. On the other hand, Villalba and Percoco [8] have shown
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that the time dependence of a Dirac test �eld coupled to the gravity of FRW spacetimes
�lled with radiation is governed by a WHE as well. However, they did not notice that the
imposition of regularity conditions on the spatial part of the spinor leads to �xed values
for the separation constant which remains arbitrary in their work. Therefore, there is no
free parameter and so the Arscott solutions do not hold for that case.
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