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abstract

We introduce a simple model for a set of interacting idealized neurons. The model presents

a self-organized state in which avalanches of all sizes are observed and activity is detected in

all the extension of the simulated system without a typical length scale. The basic elements

of the model are endowed with the main features of neuron function. On this basis it

is speculated that the collective system that they conform, i.e., the brain, should display

self-organized criticality.
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Brain function [1] is largely based on a complex system of connections between its basic

components, neurons and synapses. Schematically, each neuron has an input terminal (the

dendritic arbor) a processing center (the soma) and a transmission terminal (the axon). The

dynamics of neurons and synapses follows a relatively simple sequence: i) the axon, under

the order of its neuron (presynaptic neuron), propagates an electric signal (spike or action

potential). The amplitude of the spike is of the order of tens of millivolts. ii) through

some complicated electrochemical reaction this signal arrives to the soma of another neuron

(postsynaptic neuron) where the inputs from all the presynaptic neurons connected to it

are summed. In the average each neuron is connected to 103 � 104 other neurons. The

amplitude of each of the input signals at the soma is about one millivolt. These inputs may

be either excitatory, hence favoring the likelihood of the appearance of a spike (in the axon

of the neuron, that now becomes a presynaptic neuron) to be transmitted to its postsynaptic

neurons or inhibitory, reducing the likelihood of �ring. If the sum of excitatory signals within

a short period of time surpasses some threshold, the probability for the emission of a spike,

which is the manifestation of the instability, becomes signi�cant. This threshold is tens of

millivolts high and hence a great number of excitatory inputs are necessary in order to allow

a spike. After the traumatic event, that the emission of a spike represents, the neurons

require a period of time to recover. During the 1-2 millisecond following the emission of a

spike, the neuron, without mattering how large the excitatory input may be, is unable of

emitting a second spike. This period is called the absolute refractary period of the neuron.

It allows a maximal frequency of about 500-1000 spikes per second. In some higher cortical

areas this frequency is lowered to values not higher than 30-40 spikes per second, accusing a

wide range of possible absolute refractary periods. On the other hand the brain as a whole

is a system able of auto modi�cations. Here we present for the �rst time (to the best of our

knowledge) a model with some of the main characteristics described above and that, at the

same time, presents self-organized criticality.

By self-organized criticality we understand the tendency of certain collectively organized

systems to reach a steady state without necessity of external tuning of parameters. The
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lack of a typical size for bursts of activity or avalanches (except the own size of the system)

and the lack of a relevant time scale are the main features of the above mentioned steady

state. Self-organized criticality appears in systems and models that, at a �rst glance, could

appear very unlike. Models for interface growth and pinning [2,3], models for biological

evolution [4,5] and models for earthquakes, sand piles and rice piles [6], among others,

present self-organized criticality. Experimental evidence has also been found in earthquakes

[6], superconducting vortex avalanches [7] and sand piles [8].

Research on brain functioning range from multichannel squids measures in real brains

to modeling through neural networks. Self-organization (some times called self-tuning) has

become popular between the scientists that model the brain function ( [9{13]). It has been

used in general problems as, for example, the cortical organization [13], as well as in the

modeling of speci�c activities as, for instance, the breath regulation [10]. In those recent

works a wide variety of technics were introduced or further developed. Among others, the

study of Potts-like neurons in a competitive mechanism [11] and the minimization of cost

functions for the dynamical self-adaptation of the learning rate [12] were explored. In all

these cases the implemented algorithm adapts itself locally to a cost function landscape. In

our model we do not attempt to give a detailed description of the elements of the brain.

Instead, we represent each neuron with a barrier that characterize its instantaneous proba-

bility of releasing a spike, which is the measure of the instability of the neuron. At the end of

the paper it would become clear that the system we are modeling is not only self-organized

but also critical.

In the landscape framework previously mentioned, the barrier height of a given neuron

separates its current state (characterized by its local probability of �ring) from other more

stable states. The barrier height is a relaxed measure of the number of stimulatory inputs

that the neuron must receive to �re. Firing by low-barrier neurons often occurs but high-

barrier neurons are di�cult to �re. An equal barrier (equal �ring probability) population

would decay exponentially in time. When the barrier is high, �ring is di�cult unless accu-

mulative activity of related neurons lower the barrier enough; the �re would only happen at
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later times. The barriers are our measure of stability. The modi�cation of a barrier can be

thought as either the result of the release of a spike by the own neuron or as the consequence

of a received signal that changes the stability of the neuron.

Since the smaller barriers are unstable, a collection of non-interacting neurons would

converge towards a deeply frozen "dead" state with the highest barriers.

However the fundamental driving mechanism for brain functioning is the high connec-

tivity between its parts, and inside those parts. When a neuron �res it changes the stability

of its neighbors. A neuron with a low probability of �ring (high barrier) could be favored to

�re in subsequent time steps by a �ring coming from a related neuron, causing a reduction

of the barrier. At the same time, an inhibitory stimulus of a related neuron could cause an

increase in the barrier height retarding any possible �re action.

While developing our model we have pro�ted the previous knowledge about critical

models gained, for example, in the paper of Zaitzev [2] about pinning and in that of Bak

and Sneppen [4] for evolution. Like them, we have ignored the consequences that external

actions could cause on the sample under study.

Our model, that intends to represent the main characteristics of all that was explained

above, is de�ned by following the simulation sequence: N neurons are distributed on a ring

(a line with periodic boundary conditions). A random barrier, Bi, between 0 and 1, is

assigned to each neuron. The lowest barrier is detected and the corresponding neuron is

�red (this is, at the same time, our updating algorithm and our de�nition of time step) by

assigning a new random number between 0 and 1 to the barrier and by assigning to its �rst

neighbors new random numbers between 0 and 1. Last, the site that su�ers a change in its

barrier as a consequence of �ring itself is prohibited of �ring again during a period of time

Tr (the refractary period). Its neighbors are free to �re at any moment if they ful�ll the

condition of being the lowest. If after a certain time interval t � Tr a nearest neighbor is

�red, the barrier of the temporarily "frozen" neuron is also changed but it continues to be

prohibited to produce a spike until a time t > Tr has elapsed.

Note that with a simpli�ed model, as the one we have introduced, it should not be
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expected a detailed description of the system. However, we believe that it is su�cient to

show some general features, in particular, the kind of universal behavior displayed by the

real system that it represents.

If we begin with an arbitrary distribution of barrier heights, subsequent �re activities

would be completely uncorrelated but, as time goes on (and consequently, the mean height

of the barriers increases owing to the rule of selecting and changing the lowest), it would

become more and more likely that near neighbors are next to �re (respecting the constraint

of the refractary period). After a transient, the system reaches a stationary state boldly

characterized by a step-like distribution for the barrier heights and a threshold Bc for the

distribution of the lower barriers (Figure 1). The spike activity takes place in neurons with

barriers below a self-organized critical value Bc. The distribution of the lowest barriers in

the critical state vanishes at and above the self-organized threshold. For refractary periods

greater than one the threshold remains at the same value but, the barrier distribution

becomes less abrupt and in the limit Tr ! 1 it becomes a uniform distribution ( of zero

amplitude ); in this limit the distribution of the lowest barrier also vanishes except at the

zero value.

Actually, the stationary state is quite richer than that. As explained above, in the

stationary state the events become correlated in space. Following Sneppen and Jensen [14]

we present in Figure 2 a log-log plot of the measure of the distribution C (x) of distances

x between subsequent �ring activities for a refractary period Tr = 1. The straight line

manifests a power law distribution indicating that the system is critical. The possibility

of the existence of a power law for related models was advanced by Bak and Sneppen [4].

However the exponent � for the law C (x) = x� = x�2:32�0:05 does not coincide with the one

they obtained (�3:15� 0:05) indicating that our model belongs to some other universality

class. Further, our model provides the possibility of "tuning" the universality class (the

exponent � depends on the refractary period Tr). As in previous models, the result does not

depend on the initial conditions, so the critical state is a global atractor for the dynamics,

hence it is self-organized. In Figure 3 we show the dependence of the exponent � on the



CBPF-NF-015/97 5

refractary period Tr. As Tr increases � decreases in absolute value and, in the limit Tr !

1, that corresponds to a gradually frozen system (each barrier is updated just once), the

exponent � becomes zero.

In the critical state each barrier su�ers bursts of activity alternated with long periods of

calm. The hanging garden of Babylon shaped picture in Figure 4 presents the instantaneous

values of a single barrier, during a time interval, when the system is at the critical state. It

seems to present a fractal character: if we change the time scale the appearance continues to

be essentially the same as in the magni�cation shown. The bounds for this fractal character

come from the shortest time interval we can consider (�t = 1) and from the system size we

are exploring. Figure 4 is the evidence of punctuated equilibrium at the critical state; note

that above the threshold the density of black points is greater.

Now, if at the critical state all the events become correlated in space it is not too di�cult

to realize that if we look, for a su�ciently long period of time, at the subsequent values of

a single barrier, we will have some \comprehension" of what is usually called avalanche.

We de�ne the size s of what we prefer to call anti-avalanche (the name will become clear

now) as the number of consecutive time steps during which the observed barrier remains

constant. In Figure 4 the horizontal segments are the evidence of large anti-avalanches (the

avalanches present in the system during those time intervals are far away from our barrier

of interest or are small enough to, even being in the neighborhood of the barrier, not a�ect

it). The vertical punctuated strips are time intervals of "intense" activity, i.e., periods of

time during which our barrier is submersed in the sea of an avalanche.

Figure 5 shows the distribution of anti-avalanches in the critical state for a single barrier

and for a refractary period Tr = 1. The power law reveals the existence of anti-avalanches of

all scales. The exponent � in the anti-avalanche distribution A (s) = s� is � = �1:60� 0:04

for Tr = 1. Contrary to what was observed in the exponent � for the distribution of

subsequent �ring activity, the exponent � has a very weak dependence and we have not

detected a sensible change in the value of it when going from Tr = 0 (the Bak-Sneppen

model for biological evolution) to Tr = 1.
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Di�erent refractary periods (and consequently, di�erent exponents in the distribution

for jumps and for avalanches) could characterize di�erent time scale features of the brain:

short, rapidly adaptive ones (as for example the breath control) and slower long term ones

(as for example, the conscience).

We have studied our model in some other variants [15] including, among others, ranges

of interactions beyond the �rst neighbor barriers and concomitant values for the refractary

period. In all cases, the system su�ers self-organized criticality indicating that the model is

robust, as it should be if intended to represent any real situation [4]. Similarly to Bak and

Sneppen we have found the interesting feature that systems with many connections present

lower barriers increasing the speed of the collective dynamics. Other interesting observa-

tion is that in systems with several concomitant refractary periods the critical behavior is

dominated by the largest refractary period (the lowest exponent, in absolute value, for the

distribution of consecutive spikes). For brain functioning this implies that higher cortical

areas determine, in last instance, the criticality of the whole brain. As part of the extended

study we have explored a system where neurons were modeled in a more detailed fashion

[16]; the system presented always a self-organized critical state.

As illustrated by the power law distribution of anti-avalanches, at the critical state, the

neurons are connected at all scales. All neurons belonging to a single avalanche should

remain in activity at the "same" time period, thus, they might be considered as a single

domain of the brain. We thus have a hierarchical organization of neurons up to and including

the whole brain and we can speculate that the whole brain acts as a single interconnected

neuron; it su�ers bursts of activity as a consequence of excitations coming, in some way, from

other neurons. A situation similar to this was obtained in the model of Bak and Sneppen

and was previously suggested by Lovelock [17] for biological evolution. It is, very probably,

a general feature of some classes of self-organized critical models and systems.

Koch [18] has called the attention on the di�culty to store in the genoma all the infor-

mation required to initialize a network of neurons without the intervention of an external

programmer. There are in the brain of the order of 1014 synapses to be initialized. Maybe
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the present work adresses the way to liberate the genoma of such burdensome responsabil-

ity. In his work Koch presented a result provided by W. Newsome and K. Britten which

measured the �ring response of a single neuron ( as we have done in Figure 4 ) in a monkey

visual cortex. It is clearly seen in our case as well as in their, the alternance of periods of

high activity (�rings) and periods of calm. The results strongly resemble each other but, for

a quantitative comparation larger experimental measurements would be required. The main

conclusion of this work is that, if the basic elements of some system display the properties

we have worked on throughout the paper, then the global system, i.e. the brain (and each

part of it) should show self-organized criticality. Corroboration of this result would be an

amazing example of self-organized criticality and at the same time will demonstrate the high

universality expected in what is believed to be one of the later evolution products in the

nervous system [1]: the brain.
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FIGURE CAPTIONS

Figure 1.-Distribution of barriers in the critical state (circles) and of the minimumbarrier

(squares). The system size used was N = 2048.

Figure 2.-Log-log plot of the dependence of C (x) with x. The exponent of the power

law is � = �2:32 � 0:05; we used an absolute refractary period Tr = 1.

Figure 3.-Dependence of the exponent � of the power law in Figure 1 as a function of

the refractary period Tr.

Figure 4.-Temporal dependence of the value of a barrier when the system is at the self-

organized critical state. It has a fractal character: if the time scale is changed the shape

continues to be the same, as shown in the zoomed area.

Figure 5.-Distribution of anti-avalanches for a single barrier when the whole system has

attained the self-organized critical state. The value of the exponent of the power law is

� = �1:60� 0:04; as before the calculation was done for a refractary period Tr = 1.
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