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Abstract

The eigenvalues of the Crystalline Electric Field (CEF) Hamiltonian with cubic
symmetry are analytically obtained for trivalent rare-earth ions of ground state
J=5/2, 7/2, 4, 9/2, 6, 15/2 and 8, via a Computer Algebra approach. In the
presence of both CEF and an e�ective exchange �eld, Computer Algebra still allows
a partial factorization of the characteristic polynomial equation associated to the
total Hamiltonian, a result of interest to the study of the magnetic behavior of rare-
earth intermetallics. An application to the PrX2 intermetallic compounds (X=Mg,
Al, Ru, Rh, Pt ) is reported.
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1. Introduction

The Crystalline Electric Field (CEF) concept is one of the basic tenets of solid state
physics. The seminal work of H. Bethe [1] opened the way to the application of symmetry
operations in the construction of e�ective Hamiltonians and the classi�cation of orbitals
according to the irreducible representation of the point group of the site. Since that time
the theory has advanced through the contributions of Stevens [2], Elliott and Stevens
[3] and Judd [4], among others. Crystal �eld theory has become a standard tool for
calculating thermal, spectroscopic, magnetic and related properties in solids. In what
concern the rare earth ions (with un�lled 4f-shell), the cubic symmetrical CEF eigenvalues
and eigenfunctions were systematically studied by Lea, Leask and Wolf [5] (LLW). Their
results, computed numerically, were displayed in tables and graphical form and are basic
in the determination of the crystal �eld parameters from neutron inelastic scattering data
[6].

The purpose of this paper is to present a computer algebra approach to the study
of crystal �eld of cubic symmetry. Explicit analytical results for the eigenvalues for all
angular momenta J

0

s of interest to rare-earth ions ( J=4, 6, 8, 5/2, 7/2, 9/2 and 15/2) are
for the �rst time presented. This extends our recent work for J=4 [7]. In a further e�ort,
we try to analyze the induced magnetic moments and magnetic order for the case where
in addition to the CEF interaction, exchange between 4f magnetic ions is introduced.

An outline of the paper goes as follow: in the next section the algebraic approach
is precisely de�ned and the eigenvalues reported; in the third section we try to extend
the algebraic approach used in studying crystal �eld eigenvalues to the more complex
problem in which, in addition to the presence of the crystal �eld, an e�ective magnetic
�eld is applied in the (1,0,0) direction. We show that apart from the case J=15/2, the
polynomial characteristic equation associated to the model Hamiltonian may be factored
into simpler polynomials, which contain all the magnetic information. An application to
the magnetic properties of PrX2 ( X = Mg, Al, Ru, Rh and Pt ), using an algorithm
developed previously [7], is performed. The fourth (and last) section summarizes the
results obtained.

2. Analytical Eigenvalues of the Crystal Field Hamiltonian of Cubic

Symmetry

For cubic symmetry, the CEF Hamiltonian is

Hcf = B4(O
o
4 + 5O4

4) +B6(O
o
6 � 21O4

6) (1)

where On
m, the Stevens operators, are expressed in powers of the components J+, J�

and Jz of the angular momentum operator [2]; B4 and B6 are adjustable parameters.
Equation (1) applies in a coordinate system (x; y; z) which coincides with three of the
fourfold symmetry axes of the crystal; z is assumed as the direction of quantization.
Taking jJ;m> as eigenfunctions of Jz (J and m are respectively the angular momentum
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and magnetic quantum numbers), the eigenvalues of Hcf are the roots of the polynomial
equation in the variable y

det j< n; J j Hcf � y�n;m j J;m > = 0 (2)

Until now CEF eigenvalues have been obtained only numerically, the results displayed
in tables and in graphical form, as in LLW [5]. These plots have been used in the obtention
of the CEF parameters, from the analysis of inelastic neutron scattering data [6]. It is
worth mentioning that for B6 = 0, analytical results have been available for more than
thirty years [8].

Equation (2) is dealt with using REDUCE, a well known computer language, for J=
5=2, 7/2 , 4, 9/2, 6, 15/2 and 8. REDUCE is also employed in factoring the corresponding
polynomials (of degree 2J + 1). It turns out, surprisingly, that the eigenvalues of Hcf are
analytically expressible in terms of B4 and B6.

In what follows we list the CEF eigenvalues for di�erent J's; the labels �0s; which
characterize the symmetry nature of the CEF orbitals [9], are those used by LLW [5].

Eigenvalues of the Crystal Field Hamiltonian for J integer:

J= 4 ( Pr3+ , Pm3+ ), F6=1260

E(�1) = 4(7b4 � 20b6)

E(�3) = 4(b4 + 16b6)

E(�4) = 2(7b4 + 2b6)

E(�5) = �2(13b4 + 10b6)

J= 6 (Tb3+, Tm3+ ), F6=7560

E(�1) = �2(63b4 � 8b6)

E(�2) = 22(3b4 + 8b6)

E(�3) = 6(19b4 � 8b6)

E(�4) = �8(12b4 � b6)

E(�(1)
5 ) = 4(5b4 � 5b6 �M)

E(�
(2)
5 ) = 4(5b4 � 5b6 +M)

M2 = 421b24 + 126b4b6 + 784b26

J= 8 ( Ho3+ ), F6 = 13860

E(�1) = 8(49b4 � 8b6)

E(�(1)
3 ) = 4(7b4 + 22b6 �G)

E(�(2)
3 ) = 4(7b4 + 22b6 +G)

E(�
(1)
4 ) = 2(49b4 + 58b6 � 12N)

E(�(2)
4 ) = 2(49b4 + 58b6 + 12N)

E(�
(1)
5 ) = �2(91b4 + 82b6 + 4M)
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E(�
(2)
5 ) = �2(91b4 + 82b6 � 4M)

G2 = 6601b24 + 2492b4b6 + 5476b26
N2 = 126b24 � 49b4b6 + 5476b26
M2 = 364b24 � 1183b4b6 + 1054b26

Eigenvalues of the Crystal Field Hamiltonian for J semi-integer

J= 5=2 ( Ce3+, Sm3+ )

E(�7) = �4b4

E(�8) = 2b4

J= 7=2 (Yb3+ ), F6 = 1260

E(�7) = �6(3b4 + 2b6)

E(�6) = 2(7b4 � 10b6)

E(�8) = 2(b4 + 8b6)

J= 9=2 ( Nd3+ ), F6 = 2520

E(�6) = 4(49b4=5� 16b6)

E(�(1)
8 ) = �49b4=5 + 16b6 �M

E(�
(2)
8 ) = �49b4=5 + 16b6 +M

M2 = 721b24 + 1568b4b6 + 1360b26

J= 15=2 ( Dy3+, Er3+ ), F6 = 13860

E(�6) = 2(147b4 � 20b6)

E(�7) = �26(b4 + 12b6)

For x � 0 we have:

E(�
(1)
8 ) = (�2=3)[67b4 � 88b6 + 4Msin(�=3 + �=6)]

E(�(2)
8 ) = (�2=3)[67b4 � 88b6 � 4Msin(�=3 � �=6)]

E(�
(3)
8 ) = (�2=3)[67b4 � 88b6 + 4Msin(�=3 � �=2)]

and for x � 0 we have

E(�
(1)
8 ) = (�2=3)[67b4 � 88b6 � 4Msin(�=3 � �=2)]

E(�(2)
8 ) = (�2=3)[67b4 � 88b6 � 4Msin(�=3 + �=6)]

E(�
(3)
8 ) = (�2=3)[67b4 � 88b6 + 4Msin(�=3 � �=6)]
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where

M2 = 14251b24 + 1816b4b6 + 8929b26
� = arctanf�[�(Q2+ 4P 3)]1=2=Qg

Q = �(1024=27)[170072b34 + 22998b6b
2
4 + 232629b4b

2
6 � 6686b36]

P = �(16=9)M2

b4 = F4B4 =Wx

b6 = F6B6 =W (1 � jxj)

F4 = 60

3. Magnetic Moments of the Rare-Earth Intermetallic Compounds

The standard model used to discuss magnetic properties of cubic rare-earth inter-
metallics of formula RX2 (R=rare-earth, X=non-magnetic ion) takes into account [5]: 1)
the CEF interaction; 2) the e�ective inter-ionic exchange interaction between 4f spins.
The latter, in the molecular �eld approximation, gives rise to the following Hamiltonian

Hex = �g�Bh:J (3)

where g is the Land�e factor, �B the Bohr magneton and h the total magnetic �eld:

g�Bh = g�Bh0 + �0(g � 1)2 < J > (4)

In (4), �0 is the exchange parameter and h0 an applied magnetic �eld; < J > is the
thermal average of the angular momentum operator J.

Then, the standard model Hamiltonian, from which we derive magnetic quantities is

H = Hcf +Hex (5)

If the eigenvalues of H in equation (5) are available, the magnetic moments in the n
direction (n is a unit vector), are given by

g�B < i j J:n j i >� �
dyi
dh

= �g�B
dyi
d�

(6)

where h = h:n and � = g�Bh.
In what follows we take n = (1; 0; 0), so that

Hex = �g�BhJx (7)

We now make use of equation (2), substituting H for Hcf and obtain, using REDUCE,
rather complicated polynomials of degree 2J + 1. Fortunately, REDUCE can factor most
of the polynomials into simpler factors. Tables 1 and 2 show the kind of factors obtained
for di�erent J

0

s.
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Table 1

J Factor polynomials

4 three of 2nd degree, one of 3rd degree

6 three of 3rd degree, one of 4th degree

8 two of 4th degree, one of 9th degree

Table 1: Factor Polynomials for J integer.
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Table 2

J Factor polynomials

5/2 three of 1st degree, two of 2nd degree

7/2 four of 2nd degree

9/2 two of 2nd degree, two of 3rd degree

15/2 no simple factors

Table 2: Factor Polynomials for J semi-integer.

All relevant magnetic information are contained in these factor polynomials. For J=4
and J=9/2 the factor polynomials were given in the Appendix of [7]. Let P(y,B4,B6,�)
be one of the above mentioned factors, whose roots yi are the energy eigenvalues.

We have

P (y;B4; B6; �) = 0 (8)

@P

@y

 
dy

d�

!
+
@P

@�
= 0 (9)

Combining equations (8) and (9) we may solve for dy=d�, for each root of the poly-
nomial equation. Most of the algebra involving (8) and (9) are also done with REDUCE.

Equations (8) and (9) can be used to expand the model eigenvalues up to �2. The
procedure has already been discussed in [7] and it allows the determination of the coe�-
cients � and �2 in terms of the parameters of the model (see Appendix for the case J=4).
These coe�cients had been previously obtained by Schumacher and Holligsworth [10] for
the case B6 = 0, using numerical methods. From the expansion of the eigenvalues we can
obtain the expression of the Curie temperature as a function of the model parameters.
Table 3 shows the values of �0 and geff obtained for PrX2, using the values of TC, CEF
parameters and low temperature magnetization measurements given in the literature [6,
11, 12, 13]. Again, the case of X=Al is reproduced for comparison.
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Table 3

x W(mev) Tc(K) mo(ion=�B) geff �o Jgeff �i

PrMg(a)2 0.671 -0.345 10.0 2.00 0.633 9.36 2.53 �3

PrAl
(b)
2 0.739 -0.329 33.0 2.80 0.747 24.23 2.99 �3

PrRu
(c)
2 0.680 -0.330 33.9 1.73 0.481 6.65 1.92 �3

PrRh
(c)
2 0.930 -0.350 7.9 1.16 0.302 3.03 1.21 �1

PrPt(c)2 0.930 -0.380 7.7 1.52 0.397 3.90 1.59 �1

Table 3: Computed e�ective Land�e factors (geff ) and exchange parameters (�0) for
PrX2 compounds. In (a) the CEF data are from [6]; TC and m0 are from [13]; in (b) the
CEF data, TC and m0 are taken from [11] and in (c) the CEF data are taken from [6],
m0 and TC from [12]. CEF parameters refer to x and W (LLW notation) de�ned at the
end of section 2.

4. Conclusions

The main contribution of this paper is the use of Computer Algebra in dealing with
CEF eigenvalues and magnetic quantities of interest to the rare-earth intermetallic com-
pounds. We think that the analytical results obtained for the �rst time for the CEF
eigenvalues and the expansion of the eigenvalues of the total Hamiltonian up to second
order of the e�ective magnetic �eld may give insights not available in the usual numerical
treatment. In section 3 we have tried to show how Computer Algebra can facilitate the
analysis of the characteristic equation associated to the total model Hamiltonian through
the decomposition of a complex problem (a polynomial of the degree 2J+1) into simple
parts (factor polynomials of lower degree). We have also developed a simple algorithm to
obtain magnetic information from these factorized polynomials. The parametrization of
magnetic quantities of some PrX2 compounds (see Table 3) illustrates this procedure. In
our opinion the Computer Algebra approach applied to CEF (not only cubic symmetric)
and magnetic related problems may present potentialities far beyond the simple examples
treated in this paper.
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Appendix

Eigenvalues of the combined CEF and magnetic model Hamiltonian, for J=4, up to
�2 (� = g�Bh).

E(�1) = 4(7b4 � 20b6) +
10�2

21(b4 � 6b6)

E(�
(1)
3 ) = 4(b4 + 16b6) �

14�2

15(b4 � 6b6)

E(�(2)
3 ) = 4(b4 + 16b6) +

2�2

3(5b4 + 14b6)

E(�
(1)
4 ) = 2(7b4 + 2b6) �

�

2
+

7�2

32(5b4 + 3b6)

E(�(2)
4 ) = 2(7b4 + 2b6) +

16�2

35(b4 � 6b6)

E(�(3)
4 ) = 2(7b4 + 2b6) +

�

2
+

7�2

32(5b4 + 3b6)

E(�
(1)
5 ) = �2(13b4 + 10b6)�

5�

2
�

7�2

32(5b4 + 3b6)

E(�(2)
5 ) = �2(13b4 + 10b6)�

2�2

3(5b4 + 14b6)

E(�
(3)
5 ) = �2(13b4 + 10b6) +

5�

2
�

7�2

32(5b4 + 3b6)
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