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Abstract

Concavity properties of a recently generalized (not necessarily extensive) entropy
enable, among others, the generalization of the Bogolyubov inequality, hence of the
Variational Method in equilibrium Statistical Mechanics.
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Attempts to conveniently generalize the standard concept of entropy constitute an
important concern in the Statistics literature [1]. Properties currently discussed in these
works are additivity (or extensivity) and subadditivity. Curiously enough, no major interest
is payed to concavity, which, from a physical point of view, is very important since it
guarantees the thermodynamic stabilty of the system.

On a multifractal basis, a generalized entropy has been recently introduced with the
aim of generalizing Statistical Mechanics [2] and Thermodynamics [3]. This new entropy
has been the subject of much recent work [4{7] and can be regarded as a nonlogarithmic
information measure. Moreover, it has enabled [8] the overcome of a longstanding puzzle
in Astrophysics, namely, the inability of the Boltzmann-Gibbs statistics to provide a
�nite mass for the polytropic model of stellar dynamics [9] (we recall that the long range
gravitational interaction between the stars of a galaxy makes the problem an intrinsically
nonextensive one). This generalized entropy is given (in units of a conventional constant
k) by [2]

Sq =

1 �
X
i

pqi

q � 1
(1)

where the set fpig corresponds to a normalized probability distribution associated with
the microscopic con�gurations of the system, and q 2 <. A nondiagonal version of (1)
reads [7]

Sq =
Tr�̂(1 � �̂q�1)

q � 1
(2)

where �̂ is the density operator (whose eigenvalues are fpig). It has been proven in [2]
that, contrary to what happens with the well known Renyi entropy, Sq is concave (convex)
for q > 0 (q < 0). For q = 1, Sq recovers the familiar Shannon entropy (�Tr�̂ ln �̂).

The aim of the present paper is to show that this concavity property allows for a
natural extension, to arbitrary q, of the celebrated Bogolyubov inequality, hence of the
Variational Method in equilibrium Statistical Mechanics.

Let us �rst consider the function f(x) � (1 � xq�1)=(q � 1). It is straightforward to
verify that, for x � 0,

f(x) � 1� x if q < 2 (3.a)

= 1� x if q = 2 (3.b)

� 1� x if q > 2 (3.c)

It follows that, for q < 2,

Tr�̂0

2
41 � ( �̂

�̂0
)q�1

q � 1

3
5 � Tr�0

 
1�

�

�0

!
= 1 � 1 = 0 (4)

where �̂ and �̂0 are arbitrary density operators (the equality holds if and only if �̂ = �̂0).
If we consider all possible values of q, we obtain
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1� < (�̂=�̂0)q�1 >0

q � 1
� Tr�̂0

2
41� ( �̂

�̂0
)q�1

q � 1

3
5 � 0 if q < 2 (5.a)

= 0 if q = 2 (5.b)

� 0 if q > 2 (5.c)

In the q ! 1 limit, (�̂=�̂0)
q�1 � 1 + (q � 1) ln(�̂=�̂0), hence, Eq. (5.a) implies the well

known inequality [10]

� Tr�0 ln �0 � �Tr�0 ln � (6)

We see that, for q 6= 1, Eqs. (5) cannot be split in two pieces, as in Eq. (6). This is, of
course, a consequence of the nonextensivity of Sq.

Eqs. (5) pave the way for the extension of Bogolyubov inequality. Let Ĥ and Ĥ0 stand
for two arbitrary Hamiltonians, one of which (Ĥ0) is of a manageable nature, whereas the
other (Ĥ) is not easy to handdle, although it is precisely the one in which we are primarily
interested. Associated with these Hamiltonians, we have the follwoing equilibrium density
operators [3]

�̂0 = [1� �(1� q)Ĥ0]
1

1�q =Z0 (7)

with

Z0 � Tr[1� �(1� q)Ĥ0]
1

1�q (8)

and

�̂ = [1� �(1� q)Ĥ]
1

1�q =Z (9)

with

Z � Tr[1� �(1� q)Ĥ]
1

1�q (10)

where � � 1=kT . Let us recall that �̂0 vanishes (�̂ vanishes) whenever the eigenvalues of
[1 � �(1� q)Ĥ0] ([1� �(1� q)Ĥ]) vanish or are negative [2]. By replacing Eqs. (7) and
(9) into (5) we obtain

1�H Z1�q

Z
1�q

0

q � 1
� 0 if q < 2 (11.a)

= 0 if q = 2 (11.b)

� 0 if q > 2 (11.c)

with

H �<
1� �(1� q)Ĥ0

1� �(1� q)Ĥ
>0 (12)
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The free energies associated respectively with H0 and H are given by [3]

F0 = �
1

�

Z1�q
0 � 1

1� q
(13)

and

F = �
1

�

Z1�q � 1

1 � q
(14)

With the help of Eqs. (13) and (14) we can now cast the left member of Eqs. (11) into
the form

1�H 1��(1�q)F
1��(1�q)F0

q � 1
(15)

Finally, we can rewrite Eqs. (11) as follows

F �
F0

H
+
�
1 �

1

H

�
1

�(1� q)
if q < 2 (16.a)

=
F0

H
�
�
1 �

1

H

�
1

�
if q = 2 (16.b)

�
F0

H
+
�
1 �

1

H

�
1

�(1� q)
if q > 2 (16.c)

where we have used the fact that both [1� �(1� q)F0] and [1� �(1� q)F ] are positive.
In the q ! 1 limit we have

H � 1 + �(1� q) < Ĥ � Ĥ0 >0 (17)

hence

F � F0+ < Ĥ � Ĥ0 >0 (18)

which is the well known [10] Bogolyubov inequality.
Inequalities (16) legitimate the use of parameters entering Ĥ0 as variational ones in

order to discuss the complex Hamiltonian H. In other words, it is justi�ed to extremalize
the right-hand side of (16). This is of course the basis of the Variational Method in
equilibrium Statistical Mechanics, which is now generalized to arbitrary q on account of
the concavity properties of Sq.

Notice also in de�nition (12) that a ratio appears rather than the customary di�erence
(H �H0). This again shows that lack of extensivity is not essential in order to attempt
physical applications. On the other hand, lack of concavity, a property which is sometimes
disregarded by the Statistics community, would preclude the use, in Physics, of this type
of variational procedures.

The authors are indebted to E.M.F. Curado and R.N. Silver for interesting remarks.
One of us (A.P.) wishes to thank the CBPF for its kind hospitality.
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