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Abstract

Molecular invariants may be deduced in a very compact way
through Grassmann algebra. In this work, a generalized valence is
defined for an atomic group; it reduces to the known expressions
for the case of an atom in a molecule. It is the sum of the corre-
lations between the fluctuations of the atomic charges q. and q,
(C beleongs to the group and D does not) around their average

values. Numerical results agree with chemical expectation.
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1. Introduction

In MO calculations, molecular quantities of chemical signifi-
cance are often associated with scalars (invariants in the tensor
sense) {1]. Among them, we may recall:

— the Mulliken charge q, of atom A in a molecule (2]

— the bond index I‘. between atoms A and B [1,3);

— the self-=charge IA‘ {1,3), which measures the softness S, of
atom A in the molecule [4];

-~ the valence VA of atom A (5,6].

The valence of atomic groups is mentioned in chemistry, under-
stood as an integer. However, to our knowledge, this quantity has
not been explicitly defined. This is what we intend to do in this
note, making use of the properties of a multilinear alternating
space; the latter has proven very convenient in the treatment of
fermionic systems. An alternative formination of the wavefunction
antisymmetry has been recently proposed [7), through an n-linear

map in the Hilbert spaces # defined by

A" 91 9 x % xi..x 8¢ — ¥ (1)

where % is a2 multilinear alternating space.
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We shall show that the definition of inner product in an n-linear
alternating space may be used in order to define the concept of
atomic group valence, or generalized valence VG. We shall also see
that the known Armstrong-Semenov {5,6] formula for VA is a partic-
ular case of VG' We report some examples in different kinds of

compounds.

2. Inner product of n-vectors in the Hilbert-Grassmann space

Let us generalize the inner product to n-vectors in a multili-
near alternating space §. In a vector n-dimensional space E the

inner product is a symmetrical and positive bilinear form F

Fow Cz.2%)m ¢2%2. ) )

where ta are covariant and tb contravariant vectors, i.e. {a € E,
t® e Y 18).

We may suppose F£ = 8. In (1), it is possible to define an inner
product in each space [9]. Thus, being n an integer, let uxs consi-

der the 2n linear form I' defined by.
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P @ pener £ 380 een, E0) = det(t .2°) @

where ( Za.tb } is the inner product between the elements {ae E 4
and tbe I*. There exists a linear transformation linking # and SC*,

through the metric tensor S, that is the overlap matrix of the

problem [11.

If 'xm C xm ) are the covariant (contravariant) coefficients
of spin-orbital a in the i-th MO, the first-order reduced density

matrix is [1]
b ib
!"lct - 2 X X (4)
i
where i runs over the occupied MO’s. The form I' may be written as

o= detZ 2" ) = det(n)) (O

for the {a(ta ) mean

T = (X oooX o0aX p) ; Sl T Bl (6)
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In (5),

€.t°) = o <o)

is a bilinear alternarting form both in the rows and in the col~
umns of the matrix [, hence I is alternating separately in the
¢.'s and in the ¢ 's.

Now, (3) (1.e.(5)) is the most general inner product between
all the £'s. This is a very powerful tool. Here, in order to build
the quantities with which we are concerned, we shall need only the

simple, known inner products (7). The number n, the dimension of

'y is given by the number of atomic orbitals used in (4).

3. Valence of an atomic group

Let us define, for an atom A in a molecule, the invariants re-
quired for our purposes, in terms of the quantities introduced in
the former section. As we <hall restrict to closed-shell cases, we

do not need a2 spin label.,

I, - Z Cr.28X 2 .2%) (8

a,a’ €A
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-h=
b
La= ) Cea2°Xe.e®) 5 v, =3I, (9
aEA ‘ »
bEn
qA - %-(IAA + VA) (1 0)

The quantity IA‘ is related to S, We have introduced {10) the

softness of an atomic group G by including the bond indices IA.,

linking atoms within the group, in its self-charge IG' If Gm
{ Aihz...AL }:
Tom) ) et Xe.e®) (1)
G a b
A, BB a€a
ber
v -;Z(z .2° %E,. %) a2
G a b
F Y aEA
BeG ben
and hence
1

9% = g * Vo a3
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From (9) and (12),

=3 1, as
AEG
G

That is, the group valence is the sum of the bond indices be-
tween atoms inside and outside the group. In other words (4,11] VG
is given by the sum of the correlations between the fluctuations
of the charges q, (A belonging to G ) and Q, (B not belonging to
G) from their average values. If the group reduces to one atom, we
meet again formula (9) for VA which 1s, as we mentioned, the known
expression introduced independently in Refs. [5] and {6). Eq. (14)
gives a2 quantitative meaning to the intuitive notion of group
valence.

It is verified that

q;; " z q, (15>

Let us remark that, therefore, the atomic charges of the group

are additive, while neither I, nor V. are obtained through the re-

G G

spective sums of IAA or V‘ .
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4. Results and discussion

The expressions above may be used both in semiempirical and in
ab initio calculations. We have seen that, for other similar inva-
riants [10],the results for different methods do not involve qual-
itative distinctions. We shall hence show results for VG obtained
with the CNDO/2 approach; let us recall that when employing an or-
thogonal basis the bond indices IAB are the Wiberg indices [12].
There is no loss of generality in this choice, for the physical

meaning of a quantity cannot depend of the basis being or not an
orthogonal one [13].

We have reported in the Table the valence for a few atomic
groups in different { mostly organic) compounds. Group valence is
generally suposed to have a single integer value, unlike atomic
valence which may classically have different possibilities. It is
seen that the non~integer values obtained agree well with chemical
expectation. VG shows the peculiarity of each group within the
molecule. In homologous series,vé of a certaln group seems to tend
towards a2 constant value, after an initial greater variation
when going from one to two carbons in the chain. This is found
also for other atomic groups not shown here, as carboxyl in the
acid series.

The methyl group has the highest V., value in toluene, due prob-

G
ably to hyperconjugation. The lowest value of the Table is meth-
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anol"s, but in FCHh it is even smaller ( 0.98 ). Valence for hy-
droxyl exhibits an appreciable range of variation ( 0.99 - 1.29 ).

For the amine group, formamide has its highest value, originat-
ed in the "secondary” bond between N and O {14]). "Secondary"” bonds
have been shown to explain that oxygen uses to have a valence
greater than the classical value of two [1], hence it is not sur-
pr%sing that the carbonyl group is also more than divalent. Vﬁo is
particularly high for thymine (not appearing in the Table), i.e.
2.49; we have instead V&H =1.13 in this molecule, similar to other
ones in the Table. *

Another group not reported is the nitrosyl group. In NZO, Nz°4
and Nzo5 we have respectively vuo' .89, 2.69 and 2.73. The first
molecule has too a large "secondary"” NO bond index.

From the Table, three values arise for the phenyl group valence
( in toluene, phenol and aniline ). For diphenyl, as expected, we

obtain a high value of 1.19.

In short, the groups studied have variating non-integer va-
lence values corresponding to the integers of the classical pat-

terns.



CBPF-NF-015/88

Table 1. Valence V. for some atomic groups
MOLECULE Ven, Vou NH, Veo
nzo 0.98
...... Eﬁgﬁmmmmmmm“ 1.0 s
CHGOH 1.07 1.07
CHacﬂg?F 1.11 1.06
CHS(CH2)20H 1.11 1.05
CHa(Cﬂz)SOH 1.11 1.08
HCHO 1.97
CH ,CHo 1.14 2.11
CH3CH20H0I 1.11 2.12
CHG(Cﬁz)chO 1.11 2.12
CR_COCH 1.14 - 2.22
HCOOH 1.29 2.23
CHaCOOH 1.15 1.18 2.26
CHBCHZCOOH 1.11 1.19 2.28
CHa(Gﬂz)QFOOH 1.11 1.19 2.26
CEHBCH3 1.18
...... B N
Cu“s""z 1.28
NK 0.99
ﬂ2H4 T . e 1.06
HHQOH 1.04
CHBH}I2 ......... 1.03
HCONH2 1.29 2.24
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