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ABSTRACT

The strongly velocity-~dependent gravitational effects
of the pure massless scalar field are described. To this end,
geodesics are studied for a sourceléss; singularity-free, new
exact solution éf the Einstein-scalar field equations. The
static, cylindrically symmetric system is desbribed in Weyl's

canonical coordinates with cosmic time.
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1. INTRODUCTION

Some years ago Melvin [fl,2:] and Thorne I: 3 7] inves-
tigated solutions of the Einstein-Maxwell's equations corresponding
to ‘electromagnetic fields without matter, charge or current. Such
sourceless structures are ordinarily termed geons (Wheeler [ 4 ]).
In the pure electric and magnetic geoné, the electromagnetic fluxes
are held together solely by their inherent gravitational pull.

It seems worthwhile to investigate the theore&ical
possibility of geons arising also from fields of nonelectromagnetic

’

nature. Indeed, exact and numerical solut@ions of various'
classical fieids have recentl; been objects of great interest,
mainly due to their'possible relevance to microphysics [:5,6,7:].
The study of the scalar field is particularly important, since it
is one of the simplest quantities permitted by the stringent
covariance requirements of general relativity.

In this paper we investigate a sourceless, long range
scalar field in the absence of matter or any other field. Under
such conditions, some subtle gravitational effects inherent to
the pure‘scalar field can be studied in detail. As in Melvin's
universe, we assume staticity and cylindrical symmetry of the
system. We label the system "scalar geon", after noticing the
finiteness of the physical components of the energy-momentum
tensor, as well as of several gravitational invariants. We also
study the motion of test particles and light rays, and thereby

explain how the gravitation of the pure scalar geon acts on the

different components of the velocity.



2. LINE ELEMENT AND INVARIANTS

We investigate the line element

ds? = at? - (dr? + dz?)eb’r®’ - r2d¢? (1)

where b = const. It is an exact solution of the Einstein-scalar

equations [ 8]

= (2)
Riv Z(aus) 3,8

where S = bz is a scalar field. The absence of a distributed __...

source of S is ensured [ 9] by the vanishing Laplacian

au[gl/zg““avs:] = 0 . (3)

The scalar curvature R and other gravitational invariants
are finite everywhere, and decrease monotonically with increasing
radial distance:

_bZrZ

R = -2b%e , RsR? = R2 , RMVRPY = 3R? | . O (4)

! pC pv

Similarly, all qomponents of the enérgy—momentum Ts take extreﬁe
(finite) values on the z-~axis and decrease radially. Taken ..
together, these results imply nonexistence-of'singular sources

of fields. The lines of force of the gradient of scalar field
are held together by self—gravitation alone. Our static, cylin-
drically symmetric system is then the massleés‘scalar counterpart

of the electromagnetic geons of Melvin [11:] .



3. TIMELIKE GEODESICS AND LIGHT RAYS

Scalar geons present unusual gravitational features.

To see these, we initially investigate the timelike geodesics:

o ) ¥ = 0 , ¥x, =1, _ _ (5)

where a dot means d/ds. From the symmetries of the system we

readily find

' 2y1/2 -b%r? . L y-2
s' = (1-v*) ’ z' = te ’ ' = Arxr ' (6,7,8)
where v, £,\ are constants and a prime means d/dt. The radial

velocity satisfies

-b%r?

- 2,.2 -3
2b7r%y e , (9)

r" = ~b?yr (r'? - g?e
from which we obtain the first integral

-2 1242 - 2.2 .
12 . .2 _Azr .]ebr _gze 2b°r (10)

We next consider three simple cases:
a) motions in planes z = const. We set £ = 0 in (10)

and use (8) to obtain
(dr/d¢)? = r’(r?/r2 - 1) e (11)
where r  is the minimal radial location of the particle, given by

M= vt | (12)



The particle spirals inwards until it reaches r = r,, then spirals
outwards to radial infinity.
b) meridian plane motions chossing the z-axis. Setting

A=0 in (10) and using (7) gives

’ ' 2.2
(dr/dz)? = P gec?a - 1 (13)

where o # m/2 is the angle of incidence on the z-axis, given by
t?sec?a = v? , » ' - (14)

The shape of orbit is obtained numerically: after crossing the
z~axis, the particle goes to radial infinity in a direction which
gradually tenas to a normal of z-axis. If the angle of incidence
o is less than 45° the particle seems repelled from the inner
regions of the scalar geon; it is attracted only when the particle
recedes beyond a certain radial distance. For larger angles of
incidence the acceleration is everywhere directed towards the
z-axis.

The special case o = 1/2 must be treated separately:

we set £ = ) = 0 in (10) and obtain
’ 2.2 ’
dr/dt=ivebr/2. (15)

The motion is rectilinear and perpendicular to the z-axis. The
impression is that a Gaussian-like, Newtonian gravitational

potential is operating, centered on the axis and vanishing at

radial infinity:

N(r) = - %— v? e ) (16)



c) menidian plLane motions not crosdsing the z-axis. We
again set A = 0 in (10) and use (7) to obtain
PP (xPmxg) g (17)

!

(dr/dz)? =

where, as before, r, measures the minimal radial location of the

particle:
bzrfJ = fn [__gz/vzj . . (18)

The trajectories are now U-shaped, with vertex on r,, and present
asymptotic characteristics identical to those of case b).

Nuli geodesics are formally obtained from (5), provided
we set X ku = 0. As a consequence, trajectories for light rays
are still given by equations (11), (13) and (17). Also the law

of motion (15) is satisfied by rays, setting v? = 1.

4., COMMENTS AND CONCLUSION

The line element (1) is written in Weyl's'[:lo:] canoni-
cal coocrdinates. Cosmical time is being used, implying that a
particle once at rest remains at rest [:ll:] . The constant para-
meter b has dimension of inverse length, aﬁd measures the strength
of the scalar field.

We could‘summérize the results of the pfevious Section
as: Particles and light rays travelling under' the gravitational

action of the scalar geon always escape to the radial infinity.



However, it became apparent that the gravitation of the geon
depends strongly on the direction of particle's velocity.
Since this is a feature unknown in nonrelativistic gravity, a
few complementary comments seem worthwhile. We look more
closely into the acceleration equation (9), rewritten as:
a’r/dt? = r [ b2(dz/dt)? - b’ (dr/dt)’ + (d¢/dt)2e’b2rzj- (19)

First, we see that the longitudinal term dz/dt contri-
butes positive definitely to d%r/dt?. BAs a consequence, all
particles and rays which are momentarily travelling parallel to
(but not along!) the z-axis are pushed outwards. In this respect,
the scalar geon greatly differs from Melvin's magnetic universe,
which allows a whole bundle of longitudinal null geodesics
[2,3,127]-

Second, we note that the radial term dr/dt'contributes
negative definitely to d?%r/dt?. However, the contribution is not
sufficient to reverse the motion of any radially outgoing particle,
as is seen from Eg. (15). In Melvin's uhiverse, oppositely,

"the gravitational attraction toward the center of the universe
is great enough to prevent any object of nonzero rest mass from
escaping to radial infinity" E3 j.

Third, although the contribution of the azimuthal term
in d¢/dt to d’r/dt? is positive definite, nevertheless the factor
exp(—bzrz)rmakes this contribution smaller than the corresponding
one in case of flat spacetime (b=0). That is to say, a particle
momentarily performing a purely azimuthal motion is drive; outwards,

although only weakly. Differently from Melvin's universe [:12 j,



the scalar geon does not permit circular orbits for particles
or rays at whatsoever finite radial distance.

Finally, we remark that our scalar geon is a plasm
of index .2, according to Melvin's [l ]|nomenclature. Since pure
electromagnetic universes are also index 2, it seems interesting
to investigate the gravitational_propérties of geons containing
simultanecusly all such fields of long range. Studies along this

“line are already in progress [ 13 ].
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