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1. INTRODUCTION

let £ and F be complex locally convex spaces, UC E be open and non-
void, and #(U:F) be the vector space of all holomorphic mappings from U
into F. Motivated by uniform convergence of mappings, three natural topo-
logies fo,’fw and ;’6 have been used on #,(U:F); see references 5, 6, 7,
and 8. Let Q(U;F) be the collection of all “ﬁi—bounded subsets of
¥(UsF), where i =0, w, &; and @ (U:F) be the collection of all amply

bounded subsets of 4({U:F). Then %o € %y C?fd and B (Us;F) >3 (U:F) >

* To appear in the Proceedings of the International Conference on Infinite

Dimensional Holomorphy, University of Kentucky, Lexington, Kentucky,

U.S5.A., 1973, to be printed in Lecture Notes of Mathematlcs, Springer-
Verlag.
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&%(U;F)::d%a(U;F). l'e are interested in th2 study of the following properties

of E, where i, j =0, w, 6§, a:
A;5(UF): e have @1(U;F) = @j(U;F).

?ij(U5F): P seminorm on {{U;F) is bounded on @& (U;F) if and only if it

is bounded on é%(U;F).

C(U;F): Theve is some locally convex topolooy on #(U:F) whose collec-

tion of bounded sats is é%(U;F).

“le can rephrase Bij(U;F) by saying that the bornolocical topolocies associat

ed to & (UsF) and E%(U;F) are equal.

I one of the above properties is true for eve ry F, or for every Fand everyU, we

omit F, or F and U, from the notation and write Ai

j(U)s Bij(u)’ C(U), or Ajj’

Bij’ C, respectively.

There are some routine facts about these properties, of which we point

out the following: P17 (UsF) eand B, (UsF) are ﬂwwstnm;Aﬁ(wF)=Aﬁ(wF)
J .

- JF = M A . = . . f a an _' a, . s =
and B1J(U,.) Bji(UfF)’ Aij(U’F) B1j(U,F) ifTi#aoandj #a A1a(U F)
= Bia(U;F) O C(UF) ¥4 # a.

This article is a continuation of ref. 2. Its main results oive instan-
ces in which Aoa (Propositions 2, 3, 5, 6), Ama (Proposition 1) and Boa(E)
(Proposition 4) hold. Sore examples are civen. ‘e point out the relationship
of E having Aoa to E being infrabarreled; it is phrased in such a way that £
should be c21led holamorghicelly infrabarreled vhen = has Ana‘ On the other

hand, we also define E being holomorphically barre]ed,_épd point out some

current examples having such a proparty.

For the notation and terminology we refer mostly to ref. 6, 8, 3; see

also 12, 11.
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2. THE WEAK CASE

PROPOSITION 1. A veak complex locally convex space E has Awa

PrROOF. We first prove that E has Awa(E;F), where F is a complex normed
space. let I be an algebraic basis of the topological dual space E'. If

J C I, we have the Tinear mapping

myxe b » (¢>(x))¢€d € CJ .

If f e #(EsF), there are J C I finite and a e%(CJ;F) such that f = aon,.
If a is effective, that is it depends effectively on all variables indexed by
J (as we may assume by decreasing J), then J and a are determined by ¥; we then
denote them by Jf and ag. If ae N(I), we define D% f(0) ¢ F as bzing equal
to 0%a,(0) 1F  s(a)C Jg, and to 0 if s(a) ¢ I, where NI) is the additive

group formed by every a: I > N with finite support s(a), and D* a_ is the

f

a-th partial derivative of 2. Llet b: N(I) + R be such »that b>9, b(0) £9

and , for all finite J C I, the set formed by every a belonging to the support

b

of b for which s{c) € J is finite, we set
P (f) = sup{d(a)-[| D*F(0)] 5 o e NT)y,

This supremum is finite since, for every o, either b(a) = 0, cr s(a) ¢ Jf; or

else b(a) # 0 and s(a) < Jes in the first two cases b(a)- | D*f(0)] =0,

whereas the third case occurs only finitelyv many times. Py* fe pb(f) is 2
seminorm on #(E;F). It is ported by {0}. In fact, lete >0, J I he
finite, and \’61 be formed by every x € E such that |¢(x)] < ¢ for anv ¢ ¢ J.

\¥]

The family (VQJ) is a base of neighborhoods of 0 in E. Set

¢,y = supla! bla)e 15 o e v sy oy,
<

where




294

ar =Ty g ad)s jal = Iy al¢)s
clearly 0 < Ccg <* = The estimate

Po(f) € c v suplf] F(x)!]5 xeV_;}

1

{

holds true. 1Indeed, if Jf¢ J, then f is unbounded on V_ﬂJ by Liouville
theorem . If JfC J, we distinguish two alternatives. By assuming s(a) C Jf,
hence s(a) < J, Cauchy inequality aives us
. :
0% a(0)]] < af =710 swpllag(2)]1s 2 € ),

J

where Qe:J is formed by every z = e C f

such that |z = for any

¢ € Jf; hence

e <o el sudl £l xe v b

By assuming s(a) tdf, then Daf(o) = 0. From these cases we conclude that the

above estimate is true. Hence P, is ported by {0}.

Let now ¥ < #(E;F) be fw- bounded. Then ¥ depends on some finite KclI,
that is JfCK for every f € ¥. Indeed, if ¥ fails to do so, we argue
inductively to find f_e ¥ (meN) such that Je #¢ anddf ¢ K =
= df, UL U me_](mﬂ). Choose ¢, € Jfo and ¢ € If, ¢, ¢ K (m>1); they
- are pairwise different. Since af is effective, choose o € N(I) so that

m o -
O € S (o) © Jg and p%m afngO) #0, that is D “‘fm(O) #0 (me N). They are
pairwise different since their supports are pairwise different; and, for all
finite Jc I, the set formed by every me N for which s(am) C J is finite.
Define b by letting

G.m -1
blag) = m|[D" £ (0)]| T (meN),

b(0) =1 and b(a) = 0 for every remaining a e w1 Then Pp{f,) > m(meN),
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acainst the fact that ¥ is tl—bounded. There results that ¥ depends on some
finite K C 7. Since ¥ is ¥ -bounded, hence %, - bownded, and X is Tocally

compact, ¥ is locally bounded. Thus Awa(E;F) holds.

IfEet,e >0, HC T is finite and UC £ is the band formed hy every
x € E such that [¢(x) - ¢(E) <€ for every ¢ € H, then Awa(U;F) holds too;
the above proof applies except for minor notational changes havinc to do
with the domain of definition of ac for ¥ e J(U;F) and with replacina 9 by
g. Since a non-void open UC E is a union of bands UA(A € A), we conclude

that Awa(U;F) is true. Finally Awa(U;F) holds for every complex locally

convex F once it does for every cormplex normed F. This proves Awa' Q.E.D.

3. THE CARTESIAN PRODUCT CASE

PROPOSITION 2., A cartesian product E = Ml Ei of semimetrizable comlex

locally convex spaces Ei(i e 1) has A"a'

PROOF. I+t is known that a semimetrizahle complex locally convex space has
Aoa' Ve first prove that £ has Aoa(E;F), where F is a complex normed space.
Let ¥C#HI(EF) be qgo-bounded. Then ¥ depends on some finite K €1, that is ¥ is

contained in the imace 0¥ the mapping)&(nieK E.sF) > Z%(E;F) which results

from composition by the projection £ - HiaVEi' To prove this it is enourh to

~

show that every sequence © e ¥ {me {i) depends on some finite subset of I.

Since each ¥ ¢ %(E;F) depends on a finite subset of I . there is a denumerable
J T such that every fr depends on a finite subset of J. Since Mieyg Ei is
semimetrizable, the sequence i?m) is locally bounded. Ye can finc a finite
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subset K ¢ J and a neighborhood Vi of 0 in Ei for everv 1 € K such that,

letting Vi = Ei for the remaining i € I, and VY

HieI Vi, we have

sup{llfm(x)li; me N, xe V} < + o,
Since every fm is bounded on V, it follows from Liouville theorem and
uniqueness of holomorphic continuation that every fm depends on K; hence (fm)
depends on K. Therefore ¥ depends on some finite K € I. Since ¥is

E%-baunded and HieKE1 is semimetrizable, ¥ is locally bounded. Thus Aoa(E;F)
holds.

If Uis the band IIiEI Ui’ where Ui C'Ei is open and non-void for every
iel and U, = Ei except for finitely many i's, then Aoa(U;F) holds too; the
above proof applies with minor notational chances. Since a non-void open
UCE is a union of bands U, (A € A), we conclude that Aoa(U;F) is true.

Finally, Aoa(U;F) holds for every complex locally convex F once it does for

. i

every complex normed F. This proves Aoa' Q.E.D.

4, THE DENUMERABLE DIRECT SUM CASE

LEmMA 1. Let E (me N) and F be complex locally convex spaces, E = ZmeN Em
be the topological direct sum, UcC E be open and non-void, and Sm = E0+...+Em+
+9+ ... (me N). Then ¥ c B(U;F) is amply bounded on U if, for every ¢ ¢ U,'

there is a neighborhood V of £ in U such that ¥ is bounded on VN Sm for every

me N.

PROOF. It is enough to prove the lemma when F is seminormed. Ve may

assume that Oel, and it suffices to show that ¥ is locally bounded at 0 on U.
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There is a neighborhood Vm of 0 in ;m(meN) such that, letting V = szN Vm,

then V< U and ¥ is bounded on V N Sm for every me N. Now, ¥ is bounded
on VN So° Thus the set of mappings t e V0r+ f(t, 0,...) e F, for all fe ¥,

is bounded on Vo’ hence equicontinuous at 0 on Vo’ Set wo = Vo’ and chonse

M e R so that

-

sup{| | f(x,s 0, )15 FeX, x e WY <M. (M

Assume that, Tor some me N, we have defined a neighborhood wk<: Vk of 0 in

Ek for every k =0, ..., mso that

SUP{IIf(XOa---,Xm,O,---)Il; fe ¥, XoE wo,...,xmewm}<M;
‘ (2)

this is indeed the case for m = 0, by (1). Now, ¥ 1is bounded on V N Sm+].

Thus the set of mappings t ¢ Vm+]'+ f(xo,..., Xps ts 0,...) € F, for all

! N s
fek¥, X, E ho,..., X € ”m’ is bounded on V

m m+1° hence equicontinuous at 0

on Vm+1‘ By (2), choose a neighborhood wm+]<: Vm+1 of 0 in Em+1 so that

sup{||f(x,,..

cXpa10se )]s fe X N PR R LLU AL

m+]
In this way, we get a sequence wm C.Vm of neighborhoods of 0 in Em(meN) such
that, letting W =2\ W CV, we will have ||f(x)|| < M for every fe ¥

and x € W. Hence ¥ is locally bounded at 0 on U. Q.E.D.

A separable, or reflexive, complex normed space satisfies the following

"boundedness hypothesis", see reference 3:

BH: A complex normed space either is finite dimensional, or else there is

an entire complex function on it which is unbounded on some of its bounded

subsets.

Actually, it is conjectured that BH holds true for every complex normed

space.
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PROPOSITION 3. let E = ZmN Em be a topological direct sum of complex
normed spaces Em(ms:?i). For E to have Aoa it is sufficient that all Em be
finite dimensional, or else that all £ =0 except for finite many m's.

Conversely, this condition is necessary for E to have Aoa(E;C), provided all

Em satisfy the boundedness hypothesis.

PROOF. Set Sr’,1 = EO+...+Em +0+ ... € E (meN). Let us prove suffi-

ciency. Assume first that alil Em are finite dimensional. Let UCE be open
and non-void, and F be & complex locally convex space. FEach Ee Uhas a
neighborhood V in U such that VNS is compact for every me N. If ¥

- %g(U;F) is éz_bounded, X is bounded on VN Sm for every me N. By Lemma
1, ¥ is amply bounded. Hence E has Aoa' Next, if all Eq, = 0 except for

finitely many m's, then E is normable, hence it has Aoa'

let us prove necessity. We first remark that, if f e j@(EO; C) is

bounded on every bounded subset of Eo and o e(E ) (m

m = 1,2, ...), we

have * ¢ J(£;C) defined by

f*(xo,...,xm,...) = Z:=1 f(mxo)¢m(xm) for x ¢ E

o€ E(meN).

In fact, let g, € #0(E;C) be given by

k  ~
gk(xo,...,xm,...) = Inq T(mxo) ¢m(xm) fork =1, 2, ...

Set s(r) = sup{lf(xo)l; ||x0|l< r} for reR, r0. Ifp = (p],...pm,...),

where Pp € R, Py > 0, is such that

Zm=1s(mr)om < + oo,

define V  as the open subset of all(x ) e E for which Ixol ] <ry

|on(xp) [<pp(m=1.2,...). Then g ~ £* as k -« uniformly on V_. Since

these Vrp cover E, then f* is entire
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Let E have Aoa(E,C). We discard the case in which all Em= 0 except for

finitely many m's; without loss of generality, we may assume that all Em £0.
Choose O s(Em)', o #0 (me N). Let us prove that E0 is finite dimensional
if it satisfeis BH. Assume that Eo is infinite dimensional. There is

fe %f(Eo; C) which is unbounded on the closed unit ball B of E,- Let f be
the n-th partial sum of the Taylor series of f at 0 (n € N). Then fn +~f on

E for f% as n » o, but {fn; ne N} is not bounded on B. We may consider

f: e ®(E;C) since fn is a continuous on Eo’ hence it is bounded on every
bounded subset of Eo' Clearly {f;; ne N} is %%—bounded on E, since
{fn; n e N} is %;—bounded onjEO and every compact subset of E is contained

in some Sm. However, {f:; n e N} 1is unbounded on every neighborhood of O

in E. In fact, for every €n > 0 (me N), if we choose m=1, 2, ..

. SO
that me > 1, we see that

%*
fn(xo, 0,...,0, X 0,...) = fh(mx0)¢m(xm)

: VN e I !
is unbounded for x_ € Eo’I'X RS St Xp € Eps lop(x )] e ,neN. Thus E

would not have Aoa(E;C), against the assumption. It follows that E0 is finite

0

dimensional; and likewise for all Em. Q.E.D.

DEFINITION 1. A non-void open subset U of a complex locally convex
space E is "Runge subset"” of E if, for every complex locally convex space FA
and every f e #(U;F), there are o e (°(E;F) and Ap € C(me N) such that

A > © 8 m> and the sequence km(f-fmIU)(m e N) is amply bounded on U.

LEMMA 2. let U be a Runge subset of a complex Jocally convex space E
which is a topological direct sum of dits vector subspaces E1 and EZ’ and

m: E - E] the corresponding projection. If U N E] = w(U), for every
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complex locally convex space F and every f e %(U;F) such that f|(U N E1) =0,
there are f_e ©(E;F) and A e C such that flEy =0 (me N), A »= as

m + o , and the sequence Am(f—fmlU)(m e N) is amply bounded on V.

PROOF. Choose fm(m e N) according to Definition 1. It suffices to
replace f_by g, =f - f ome @(EF), since gmlE] = 0, and the sequence

(Am fm)o-n (me N) is amply bounded on‘w-](U F\E1), hence on U. Q.E.D.

REMARK 1. If Uis g-balanced, where £ ¢ U, then U is a Runge subset
of E. In fact, if f e #(U;F) and fm e<P(E;F) is the m-th partial sum of the
Taylor series of f at g(me N), for every t € U and every continuous semi-
norm 8 on F there are ¢ >0, 0 < 6 < 1, and a neighborhood V of t in U such
that [f(x) - f(x)] < 8" for x e V, me N. If Ay € C(me N) and
1im.sup|Am|1/m.s 1 as m~>«, the sequence Am(f—fm|U)(m e N) is then amply
bounded. There remains to impose the additional condition Am > © as m > o,
In this case, if £, is a vector subspace of £ and f{(U O E;) =0 then f [E =

=0 (me N), so that we can discard Lemma 2, provided ¢ € E]‘

A subset X of a direct sumE = ZieIEi of vector spaces Ei(i e I) is

"cylindrical” if X is the inverse image of its projection in ZieJEi for some

finite J C 1.

PROPOSITION 4. If E =% E_is a topological direct

meN Em sum of complex

seminormed spac:s Em(m e N) and U is a cylindrical Runge subset of E, then E

has Boa(U)'

PROOF. We may assume that U is the inverse image in E of its projec-
tion in Eo; then U is the inverse image in £ of its projection in on...xE

(me N). Let F be a complex Tocally convex space. Take a seminorm p on
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%(U;F) which is bounded on its amply bounded subsets. Set Sp = Egter B 40+ ..

CE(me N). Let H, be the vector subspace of all f ¢ % (U;F) such that
fIUNS) =0 (meN). |

If feH ,e>0, there is g e Q(E;F) such that g|Sm= 0 and p(f-g|U)<e,
hence |p(f) - p(gu)| <e. In fact, by Lemma 2 there are f e @(E;F) and N, €€
such that ’r‘n|Sm =0 (n e N), An > ®asn >, and the sequence An(f—ntU) (n € N)
is amply bounded. Hence p[}\n(f-fn|U)] (n e N) is bounded. Then p(f-f [U) + 0 as

n+eo It suffices to take g = fn for n large enough.

We claim that p vanishes on some Hm‘ Let us argue by contradiction.
.Assume that, for every me N, there is fm € Hm such that p(fm) #0; we may
assume that p(f,) > mand that f, is the restriction to U of some element of
CEF). LetF ={f;me N. Then Fl(un S,) is finite since it consists of
at most n+1 elements, for every n e N. As an element of @ (E;F) is bounded on

every bounded subset of E, Lemma 1 implies that Fis amply bounded on U. Thus

p is bounded on ¥, a contradicti on.

Let m be such that p vanishes on Hm. To every f e #(U;F) we associate
f € %(U;F) defined by fm(xo’“"’xm’ Xm+'l’”°) = f(xo,-‘,.,xm, 0,...) if

(xo,..., X . X

m m+1"") e U. Then f—fm € Hm’ p(f-fm) =0 and p(f) = p(fm). Let

Y C 74U;F) be ;fco—boundedg Call %mC %(UsF) the image of ¥ by the mapping
f - fm. Since ¥ ] (U N Sm) is ?;’O—boimded on UN Sm, it is §mp1y bounded there
because on...xEm is seminormablie. Hence %m is amply bounded on U. It follows

that p is bounded on }’m, therefore on ¥. Q.E.D.

Concerming Proposition 4, Dineen 4 has shown that E has B0 £;C).

s

We conjecture that E in Proposition 4 has Boa‘




5. THE SILVA CASE

Let Em(m e !!) be complex Tocally convex spaces, E a complex vector space,
P Em -+ E a linear mapping and o Em - Em+1 a compact linear mapping such
that Pm = P © om(m € N). Assume that E = UmsN pm(Em) and endow E with the
inductive 1imit topology. Let U CE be open, set Um = pm'](U) (mei), and

assume U0 non-void.

LEmmMA 3. If F is a complex Tocally convex space, then Xc<(U;F) is amply

bounded on U if and only if }'m = Xomef-?;(Um; F) is amply bounded on U_ for

every m € N. |

PROOF. Necessity being clear, let us prove sufficiency. It is enough to
treat F as being seminormed. We may assume that O € U, and it Ssuffices to .
show that ¥ is locally bounded at 0 on U. Since %o is locally bounded at 0

on Uo’ choose a convex neighborhood V0 of 0 in U0 such that qo(Vo) has a com-

pact closure contained in Uy hence po(Vo) c U, and

sup{ || flo ()] 115 FeXs xe V)< M (1)

for some M € R. Assume that, for some me N, we have defined a convex neighbor

hood Vm of 0 in Um such that om(Vm) has a compact cliosure contained in Uns

hence pm(Vm) C U, and

1’

sup{[|f[pm(x)]||; feX, xe V) M (2)

this is indeed the case for m = 0, by (1). Since %mﬂ is locally bounded at
the closure of om(Vm) on Um+1’ hence equicontinuous there, use (2) to choose a

convex neighborhood V of o (V) in U such that ¢ V _.) has a compact
m+1 m''m m+1 ml ]

closure contained in Um+2’ hence an_.l(VnH_.l) Z U, and

SUP{f!f;_pmH(x)_lH; feX, xe Vm+1} < M.




We also have pm(vm) c pm](vm]). Proceeding in this way and letting

Vo= Uen P (V)
we get a neighborhood V of 0 in U such that |[f(x)[|] < M for every fe ¥,
and x € V. Hence ¥ is locally bounded at 0 on U. _ Q.E.D.

A given E is said to be a Silva space if its topology may be defined as
an inductive 1imit through suitable sequences (Em), (pm) and (om) satisfying

all the aforementioned conditions,

- PROPOSITION 5. A complex Silva space E has Aoa

PROOF. We may assume that E is separated. It is known that the topo-
1ogy of E may be defined as an inductive limit through suitable sequences
(Em), (p,) and (o) satisfying all the aforementioned conditions, where more-
over each E i1s a Banach Space. iet F be a complex locally convex space and
X c %(U;F) be ,; ~bounded, U C E being open and non-void; we may assume that
U0 is non-void. Since f e @(U;F) - f:\pm € ;f;(Um;F) 1s “go-continuous, then

}:Opm is '“éo—bounded, hence amply bounded for every meN. By Lemma 3, ¥ is

> A

amply bounded. Q.E.D.

REMARK 2. Let E be a Siiva space. If F is a seminormed space, then ;fo
on 7’£(U;F) is semimetrizable, hence bornological; it then follows from the
fact that E has Aos (Proposition 5), that T, = E, =¥son %(U;F). The same

conclusion then results for every locally convex F.




N4

6. THE BAIRE CASE

PROPOSITION 6. A Baire complex locally convex space E has Aoa'

PROOF. Let F be a complex seminormed space. We start with two classical

remarks.

If X is a non-void Baire space, and 1 is a pointwise bounded set of

continuous mappings from X into F, there is at least one point of X where I/

is lTocally bounded.

If p: E » F is an m-homogeneous polynomial (me N) and a, b e E, then
sup{||p(ra+b) [|3 2 e C, [A] < 1} = sup{||p(atrb)||; A e C, |A| < 1}; in fact
by the maximum principle we may replace |[x| < 1by |A| = 1, and then equality

is clear via A > 1/A, by m-homogeneity. In particular [{p(b) | |<sup{||p (a+rb)] |3
xe C, |A] < 1.

Now, let Xc#(U;F) be %-bounded, UC E being open and non-void, and £ £ U.
Take a balanced open VC E containing 0 such that £ + V C U. By Cauchy integral
the set ’

U= {m) V@ (E); FeX, me N
"~ is pointwise bounded on V because ¥ is bounded on every compact subset {£ + Ax;
AeC, [A] £ 1} of U, where x € V. By the first remark, since V is a Baire'

space, there is a € V where % is locally bounded; let W be a balanced neighborhood

of 0 in V such that a + WCV and U is bounded on a + W. By the second remark, U

is bounded on W. By the Taylor series at £, % is bounded on £ +6W if0 < & < 1.
Hence ¥ is locally bounded. Thus Aoa(U;F) holds for every U and every seminormed

F, hence for every locally convex F. This proves Aoa' i Q.E.D.
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Proposition 6.was also found independently by Dineen 4.
7. SOME EXAMPLES

Example 1. Let é be an infinite dimensional compiex vector space with the
weak topology associated to a norm, and ¥ be the closed unit ball in E'. Then
¥ is &;-bounded, but it is not locally bounded ref. ;E does not have Aoa(E;C).
Actually % is not ﬁ;-bounded ref.2; E does not have Aow (EsC). Q.E.D.

We shall see in Examples 2 and 3 that, if X and Y are complex locally convex
spaces having Aoa’ then E = XxY may fail to have Aoa(E;C). However, it is easy

to see that, if X has Aia for some i = 0, w, § and Y is finite dimensional, then

E has Aia'

Example 2. Let X be an infinite dimensional normed space satisfying BH
(section 4), and Y = C(N) be an infinite denumerable direct sum of C. By suf-
ficiency in Proposition 3, X and Y have Aoa' By necessity, there, E = XxY fails
to have Aoa(E;C). By Proposition 4, E has Boa(E). Now, Boa(E) implies Boa(E) =
= Ros(E); hence E has Aos(E). Since Aga(EsC) = Ag (E5Q) 0 B a(E3C), we see that
E fails to have Ada(E;C)’ Therefore GEO(E;C) =3, (E;C) =(BG(E;C) # €, (E50).

Since Aoa(E;C) = Boa(E;C) M C{E;C), we see that E fails to have C(E;C). Q.E.D.

N

Example 3. let X =C and Y = C(N) be an infinite denumerable cartesian pro-

duct and direct sum of C, respectively. By Proposition 2 and 3, X and Y have
A, Let f, € 72(E;C) (k € N) be defined by £ (xy) = % ¥, where £ = XxY,

X = (xm)mEN e X and y ='(_ym)mEN e Y. The sequence (fk) is Zfo—bounded. However
1t is not locally bounded at 0. Hence E does not have Aoa(E;C). Actually E

does not have Aow(E;C) because we shall prove now that (f,) is not _%@-bounded.

The linear mapping
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rig € #(E;C) — d°g(0) € @ (E;C)

is continuous. if FAE;C) is given- its topology ‘wa and Q,’(ZE;C) is given its
inductive 1limit topology. We have the nétura] continuous linear mapping
Q)(ZE;C) - QJ(ZX;C) X Q(ZY;C) x (X, Y, C), these spaces being given their
inductive limit topologies. By projection, there results the natural
continuous Tinear mapping
s: C(2E;5C) ~.L(X,Y,0).
If ¢ €2(X,Y,C), then

o(x.y) = ZmneN Sm *mn>
where Cm € C(m, n € N) and there is p € N such that Cm= 0 for m > u and all

n. The Tinear form

t: ¢ e, (X, Y3C) » ZreN™ S € C

is continuous. Thus u = tesor: #(E;C) - C is a continuous Tinear form. Since

u(fi) = 2k (k € N), we see that (f,) is not féw«bounded.

The proof of Proposition 2 shows that a cartesian product of compiex lTocally
convex spaces has AOa if every denumerable cartesian subproduct has Aoa' This

is false if we replace “denumevable" by "finite" as the foliowing example shows.

Eoample 4. 1f we set £ = C™ B < cim=1,2,...),E = oy Eo it

follows from Exampie 3 that E failis to have Aoa(E;C), or even AOw(E;C), although

every E x. .xE_(meN) has A, bY Proposition 3. Q.E.D.

The following exampie shows that Proposition 4 breaks down if the Em(meN)

are only metrizable.

Example 5. 1fwe setE =C,E =Cm=1,2,...),E = I

m N Em, it follows




from Example 3 that E fails to have AOw(E;C) = BOw(E;C); hence E fails to hawve
Boa(E;C). Q.E.D.

The following example shows that we cannot drop compactness in Proposition

5; see Example 2.

Example 6. 1f Eo is a complex infinite dimensional normed space satisfying
BH (section 4), Ep= C(m=1,2, ...), E = Z o NEps necessity in Proposition 3

shows that E fails to hawe Aoa(E;C). Q.E.D.

To following example shows that we cannot drop denumerability in Proposition

5, as well as in sufficiency in Proposition 3.

Exagmple 7. 1f 1 is a set whose power is at least equal to that of the
continuum, the direct sumE = C(I) of Cindexed by I fails to have Aoa(E;C). In
fact, there is a homogeneous polynomial p: E » C of dearee two which is not
continuous. Let Cij e C(i, j € I) be such that p(x) = Zi,jelcijxixj for every
X = (Xi)iels E. IfJdcl is finite, define P3 E<P(2E;C) by pJ(x) = zi,j e J
Ci5%i%;- The family (p,) is ?io—bounded. It is not locally bounded at 0

since Py = P pointwisely. Thus E faiis to have Aoa(E;C). Q.E.D.

8. HOLOMORPHICALLY INFRABARRELED, OR BARRELED, SPACES
Classically, E is defined to be infrabarreled if, for every F and every
X c L(EsF), if ¥ is bounded on any compact subset of E, then ¥ must be amply

bounded. This form of definition suggests up to say that E is holomorphically
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infrabarreled if, for every F and every ¥ c¥(U;F), if * is bounded on any
compact subset of U, then X must be amply bounded; in other words, E is
called holomorphically infrabarreled if E has Aoa' It is then clear that a

holomorphically infrabarreled space is infrabarreied,

Classically, E is defined to be barreled if, for every F and every

¥ - ~(E;F), if X is bounded on any finite dimensional compact subset of E,
then ¥ must be amply bounded. This form of the definition suggests us to say
that E is holomorphically barreled if, for every F and every X c9(UsF), if

- % is bounded on any finite dimensional compact subset of U, then ¥ must be
amply bounded. It is then ciear that a holomorphically barreled space is
barreled. A superficial inspection of the proofs of Propositions 5, 6 and 2
shows us that the following complex locally convex spaces area actually not
only holomorphically infrabarreled, as stated, but even ho]omorphica]]y

barreled: a_Sﬂva space, a Baire space, and a cartesian product of Frechet

spaces.
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