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1 Introduction

Recently, we have proposed a bosonic loop space formalism for understanding the impor-

tant problem of triviality in interacting Gauge Field theories ([1], [2]). The basic idea

used in our work above mentioned in order to analyze such kind of quantum triviality

phenomena was the systematic use of the framework of the loop space to rewrite particle-

field path integrals in terms of its ensembre of quantum trajectories and the introduction

of a noisely electromagnetic field as an external quantized reservoir.

The purpose of this letter is to point out quantum field triviality phenomena in the

context of our previous loop space formalism for the case of Fermionic Quantum Chromo-

dynamics with finite number of colors but in presence of an external non-abelian trans-

lation independent U(∞)-flavor charged white noise simulating a quantum field reservoir

([1]).

In order to show exactly this triviality result for Q.C.D(SU(Nc)) in such a context of

an external non-abelian reservoir, we use of Migdal-Makeenko loop space expression for

the spin quark generating functional of abelian vectorial quarks currents ([3]) – associated

to the physical abelian vectorial mesons, added with the explicitly evaluation of U(M)-

flavor Wilson Loops at the t’Hooft M → ∞ limit for translation invariant noise-flavor

field configurations.

We finally arrive at our main result that the triviality of Quantum Chromodynamics

at such a kind of flavor reservoir, is linked to the problem of quantum decoherence in

Quantum Physics ([1]). In appendix A, we present an aplication of our study to the

Physical Problem of Confining in Yang-Mills Theory. In appendix B, we present the

detailed analysis of the problem of large N in Statistics, which mathematical ideas have

underlyning our Path-Integral Analysis in the bulk of this letter.

2 The Triviality - Quantum Decoherence Analysis for

Quantum Chromodynamics

In order to show such a triviality - quantum decoherence on Fermionic Q.C.D(SU(Nc))

with finite number of colors in the presence of U(∞) flavored random reservoirs, let us

consider the physical Euclidean generating functional of the Abelian quarks currents in

the presence of an external translation invariant white-noise U(M) non-abelian field B
(M)
µ ,

considered here as a kind of “dissipative” non-abelian reservoir structure and correspond-

ing to the interaction quarks flavor charges with a U(M) vacuum-reservoir structure,
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namely

Z[Jµ(x), B(M)
µ ] =

〈
detF

[
0 �D(Aµ, B

(M)
µ , Jµ)

�D∗(Aµ, B
(M)
µ , Jµ) 0

]〉
Aµ

(1)

Here the Euclidean Dirac operator is explicitly given by

�D(Aµ, B(M)
µ , Jµ) = iγµ(∂µ + g(M)B(M)

µ + eAµ + Jµ) (2)

with eAµ(x) denoting the SU(Nc) Yang-Mills non-Abelian quantum field (translation de-

pendent) configurations averaged in eq.(1) by means of the usual Yang-Mills path integral

denoted by 〈 〉Aµ , Jµ(x) is the auxiliary source field associated to the abelian quark cur-

rents and g(M)B
(M)
µ is a random translation invariant external U(M) flavor Yang-Mills

field with a constant field strength

Fµν(B) = (igM)[B(M)
µ , B(M)

ν ]. (3)

Here E
(M)
F denotes the stochastic average on the ensemble of the external random

U(M) non-abelian strenght fields defined by the U(M)-invariant path-integral ([4])

E
(M)
F {O(Bµ)} ≡ 1

E
(M)
F {1}

(∫ ( D∏
µ=1

M2∏
a=1

dBa
µ

)

× exp

{
−1

2

[
(igM)2TrU(M)([B

(M)
µ , B(M)

ν ]2)
]}

×O(B(M)
µ )

)
(4)

with O(B
(M)
µ ) denoting an U(M)-flavor invariant observable on the presence of an external

translation invariant random U(M)-valued non-abelian reservoir field B
(M)
µ .

In the fermionic loop space framework ([1], [2], [3]), we can express the quark functional

determinant, eq.(1) – which has been obtained as an effective generating functional for

the color Nc-singlet quark current after integrating out the Euclidean quark action –

as a purely functional on the bosonic bordered loop space composed of all trajectories

Cxx = {Xµ(σ), Xµ(0) = Xµ(T ) = x; 0 ≤ σ ≤ T}, namely

Z[Jµ(x), B(M)
µ ] =

〈
exp

{
− Ncspur

[∑
Cxx

PDirac

[
exp

( ∮
Cxx

dσ
i

2
[γµ, γν ](σ)

× δ

δσµν(X(σ))

]
× TrU(M)(Φ[Cxx, B

(M)
µ ])

}
× Φ[Cxx, Jµ] × TrSU(Nc)(W [Cxx, Aµ]

)]}
(5)
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where Φ[Cxx, B
(M)
µ ] is the usual Wilson-Mandelstam path-ordered loop variable defined

by the translation invariant random external (reservoir) U(M) field B
(M)
µ , and W [Cxx, Aµ]

is the same loop space object for the dynamical quantum color gauge field SU(Nc).

Note the appearance of the Migdal-Makeenko area – loop derivative operator with

the Dirac index path ordenation in order to take into account explicitly the relevant

spin-orbit interaction of the quarks Dirac spin with the set of interacting vectorial fields

{Aµ(x), Bµ, Jµ(x)} in the theory described by eq.(1) ([3]) (the well-know bordered loops).

The sum over the closed bosonic loops Cxx, with end-point x is given by the proper-

time bosonic path integral below ([1],[2])

∑
Cxx

=

∫ ∞

0

dT

T

∫
dDx

∫
X(0)=x=X(T )

DF [X(σ)] × exp

{
−1

2

∫ T

0

Ẋ2(σ)dσ

}
. (6)

Following the idea of our previous work on Triviality-Quantum Decoherence of Gauge

theories [1], we need to show in eq.(5) that at the t’Hooft topological limit of M → ∞ in

the ensemble of external white-noise reservoir fields B
(M)
µ as implemented in ref. [1], one

obtains for the Wilson Loop EF (Φ[Cxx, B
(M)
µ ]) an area-power behavior on the (minimal)

area S[Cxx] bounded by the large area loops Cxx inside the loop space functional on

eq.(5), after considering the average of the infinite-flavor limit on the external translation

independent white-noise Bµ field eq.(3)–eq.(4).

In the context of a cummulant expansion for the loop space integrand in eq.(5) defined

by the U(M) path integral eq.(4), one should firstly evaluate the following Wilson Loop

path integral (loop normalized to unity) on the U(M)-noise reservoir field B
(M)
µ :

E
(M)
F {TrU(M)(φ[Cxx, B

(M)
µ ])}

=
1

E
(M)
F {1}

∫ +∞

−∞

(
M2∏
a=1

D∏
µ=1

dBa,(M)
µ

)

× exp

{
+

1

2
(gM)2TrU(M)([B

(M)
µ , B(M)

ν ]2)

}

× 1

M
TrU(M)P

{
eigM

H
Cxx

B
(M)
µ dXµ

}
. (7)

By using the non-abelian Stokes theorem for constant gauge fields, one obtains the

following result for large M ([4]):

1

M

(
TrSU(M)P

{
eigM

H
Cxx

B
(M)
µ dxµ

})
=

1

M

(
TrSU(M)P

{
eigM

R
S[Cxx]

F12(B(M))S12
})

(8-a)

or equivalently:

1

M
TrSU(M)

(
Pe−(gM )2[B1,B2]S[Cxx]

)
= exp

{
+

(g2
MS[Cxx])

2

2M
(Tr[B

(M)
1 , B

(M)
2 ])2

}
+ O(

1

M
)

(8-b)
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where we have choosen the large loop Cxx to be contained in the plane µ = 1, ν = 2

without loss of generality.

A simple field re-scaling on the path-integral eq.(7) as written below, after inserting

the M → ∞ leading exact result of the Wilson Loop noise factor eq.(8) on the cited

equation (7):

Ba
µ=1 → B̃a

µ=1

[
g2

M +
(g2

MS[Cxx])
2

M

]− 1
4

(9)

Ba
µ=2 → B̃a

µ=2

[
g2

M +
(g2

MS[Cxx])
2

M

]− 1
4

(10)

Ba
µ�={1,2} → B̃a

µ�={1,2}[g
2
M ]−

1
4 (11)

leads us to the exactly result at the t’Hooft limit of U(∞) flavor charge

lim
M→∞

(E
(M)
F {TrU(M)(Φ[Cxx, B

(M)
µ ])}) = lim

M→∞

⎧⎪⎨
⎪⎩
[
g2

M

(
1 +

g2
MS[Cxx]2

M

)]− 1
2
M2

[g2
M ]−( (M2D)

4
)

[g2
M ]−

M2(D−2)
4

⎫⎪⎬
⎪⎭

= exp

{
−1

4
(g∞)2S2[Cxx]

}
+ O(

1

M
) (12)

where g2
∞ = limn→∞((gM)2M) < ∞ denotes the U(∞)-flavor reservoir t’Hooft coupling

constant. Note that we have used the leading M → ∞ limit on the weight on the

numerator of the reservoir field path integral eq.(7). For instance (here Bµ ≡ Ba
µλa with

[λa, λb] = fabcλc)

lim
n→∞

{
exp

[(
1

2
(gM)2 +

(gM)4(S[Cxx])
2

2M

)
×
(
B̃a

1 B̃
b
2B̃

a′
1 B̃b′

2 fabcf
ca′b′

)]}

∼ exp

{[(
1

2
(gM)2

)
× B̃a

1 B̃
b
2B̃

a′
1 B̃b′

2 fabcf
ca′b′

]}

+ O

(
1

M

)
(13)

which produces as the only non-trivial result at M → +∞ in the average eq.(7), that one

arising from the ratio of the Jacobians of the measure change associated to re-scalings

eq.(9)–eq.(11) on the path integral numerator eq.(7) and the normalization path-integral

denominator respectively.

As a result, we get an exponential behavior for our noise U(∞)-averaged Wilson Loop

with an power square area argument.

Finally, we can see that the loop space quark fermion determinant eq.(1) is entirely

supported at those loops Cxx with vanishing small area S[Cxx] for large values of the

noise-field vacuum streinght g2
∞ → +∞, since those of large area S[Cxx] are suppressed
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on the loop space expression generating functional eq.(1) above mentioned, as much as

similar K. Wilson mechanism for charge confining in Q.C.D.

Note that the same matter loop Cxx appearing in eq.(12) enters in the definition of all

loop space objects in eq.(5). As a consequence, we have produced a loop space analysis

supporting that at very large noise strenght (g(∞) → +∞), one has exactly the strong

triviality of the SU(Nc) on the sector of the quark abelian currents, in the mathematical

sense that the dominant loops on the loop path integral eq.(5) are degenerate to the loop

base point x or to the straight line vector bilinear quark field excitations trajectories

motion. It yield as a result, thus

lim
M→∞

E
(M)
F (Z[Jµ(x), B(M)

µ ]) = exp(0) = 1. (14)

This result leads us to the conclusion that the theory has on free field behavior ([5]) at

very strong noise-reservoir of the type introduced in this work signaling a kind of quantum

field phenomena in a flavored dissapative vacuum media that destroys quantum phase

coherence and leading to the theory’s triviality as much as similar mechanism underlying

the phenomena which has been obtained in ref. [1] for white-noise abelian reservoirs.
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References

[1] Luiz C.L. Botelho, Phys. Review D70, 045010 (2004);

Modern Physics Letters A, vol. 20, No 12, 929–946, (2005);

Eur. Phys. J.C 44, 267–276, (2005);

[2] G. Broda, Phys. Ref. Lett 63, 2709 (1989);

L.C.L. Botelho, J. Phys. A23, 1661, (1990);

Int. J. Mod. Phys. A 15, 755, (2000);

Mod. Phys. Letters 17B, No. 23, 1237, (2003);

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon, Oxford,

2001).

[3] A.A. Migdal, Phys. Rep. 102, 199, (1983);

Luiz C.L. Botelho, J. Math. Phys. 30, 2160 (1989);

A.M. Polyakov, Gauge Field and Strings (Harwood Academic, Chur, Switzerland),

1987.



CBPF-NF-015/08 6

[4] A. Di Giacomo, H.G. Dosch, V.I. Shevchenko and Yu Simonov, Phys. Rep. 372,

319, (2002);

Luiz C.L. Botelho, Phys. Rev. 52D, 1729, (1995).

[5] E. Witten, Nucl. Phys. B149, 285, (1979);

B.L. Alteshuler and L.B. Joffe, Phys. Rev. Lett 69, 2979, (1992).



CBPF-NF-015/08 7

APPENDIX A

The Confining Property of

the U(∞) - Charge Reservoir

We intend to show the own quantum decoherence/triviality of the U(∞)-charged reser-

voir considered in the bulk of this work. Let us, thus, consider our translation invariant

U(M) non-abelian gauge field theory of the previous analysis. However defined in a fi-

nite volume domain Ω with vol(Ω) = ma4, where m is an positive integer with a playing

the rule of a fundamental lenght scale associated to the elementary cell of volume a4 of

our finite-volume space-times (euclidean). We introduce at this point of our argument a

closed loop C contained in the plane (µ, ν) – section of the domain Ω ⊂ R4 and possesing

area (planar) S[Cµν ] = na2. (See eq.(7)).

〈W [C]〉(∞) = lim
M→∞

(
IM [C]

IM [0]

)
(A-1)

The explicitly expressions for the objects on eq.(A-1) are the following C. Bollini and

J.J. Giambiagi translation invariant gauge field path integrals ([5])

IM [C] =

∫ +∞

−∞

(
M2−M∏

a=1

4∏
µ=1

dAa
µ

)
× exp

{
g2

2
(ma4)TrU(M)([Aµ, Aν ]

2

}

×
(

1

M
TrU(M)P

[
exp

(
ig

∫
C

Aµdxµ

)])
(A-2)

and

IM(0) =

∫ +∞

−∞

(
M2−M∏

a=1

4∏
µ=1

dAa
µ

)
× exp

{
g2

2
(ma4)TrU(M)([Aµ, Aµ]2)

}
(A-3)

The exactly evaluation of eq.(A-2) was presented in our previous analysis, with the

result below, after considering the re-scaling integration variable

Aa
µ → Aa

µ

[
g2

2
(ma4) +

g4(na2)2

M

]− 1
4

µ = 1, 2 (A-4)

Aa
µ → Aa

µ

[
g2

2
(ma4)

]− 1
4

µ �= 1, 2 (A-5)

with the result

IM [C] =

[
g2

2
(ma4) +

g4(na2)2

M

]−(M2)

. (A-6)
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The same procedure is applied too in eq.(A-3) with the associated re-scaling Aa
µ →

Aa
µ

[
g2

2
(ma4)

]− 1
4
. It yields the exactly result for the path-integral normalization factor

IM [0] =

[
g2

2
(ma4)

]−M2

. (A-7)

As consequence, we get the following result for the U(∞)-Loop Wilson average ((g∞)2 =

lim
M→∞

(g2M) < ∞)

〈W [C]〉(∞) = lim
M→∞

(
IM [C]

IM [0]

)

= exp

{
−(g∞)2 ·

(
[na2]2

ma4

)}

= exp

{
−
(

(g∞)2

a2

)
·
[(

n2

m
· a2

)]}
. (A-8)

At this point of our study we call the reader attention that in the final result eq.(A-

8), we have considered already the case D = 4, where one must taken into account

the transmutation phenomena of the Gauge coupling constant g(∞) by considering the

existence of a vacuum area domain a2 (the cell of our space-time) as much as the famous

“Q.C.D. spaghetti vacuum” of Nielsen, Olesen at. al. ([1]).

The area behavior of eq.(A-6) is easily obtained for large area loops n2 >> m in the

following situation: If one considers the relationship n = γm, with γ an adimensional

number (γ < 1) which will be kept constant at the limit of infinite volume m → ∞, one

can see that eq.(A-8) gives area behavior for the Q.C.D. Wilson Loop for very large loop

area

〈W [C]〉(∞) ∼
m→∞

exp

{
−
(

γ(g∞)2

a2

)
· na2

}

= exp

{
−(g∞)2

a2
eff

· Area S[C]

}
(A-9)

At this point, one should envisage to implement a formal Feynman diagrammatic field

theoretic 1
M

– expansion on the finite order group U(M) – Gauge theory by considering

next translation – dependent field corrections on our reservoir field configurations of the

form Aa
µ(x) = A

(∞)
µ + 1

M
Ga

µ(x) in the usual Path-Integral measure with the matter confining

behavior eq.(A-9) already built in the formalism, namely:

D∏
µ=1

M2−M∏
a=1

dAa
µ(x) =

D∏
µ=1

M2−M∏
a=1

dAa
µ · dGa

µ(x) (A-10)
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exp

{
−1

2

∫
Ω

TrSU(M)(Fµν)
2(x)dDx

}

= exp
{
− 1

2

∫
Ω

TrSU(M)

(
(∂µGν − ∂νGµ)(x)

+
ig(∞)

√
Ma

[
Aµ +

1

M
Gµ(x), Aν +

1

M
Gν(x)

])2}
. (A-11)

It is worth remarking that the Feynman’s Diagrammatic associated to the Back-

Ground field decomposition in eqs.(A-10)–(A.11) leads to an exchange of “massive” Glu-

ons and leading, thus, to a infrared-free perturbation analysis of the theory’s observables.
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APPENDIX B

On the law of large number

in statistics

Let us present the usual mathematical methods procedure to define the large N llimit

in Statistics.

The large N problem in Statistics starts by considering a set of N -independent random

variables {X�(w)}�=1,...,N , with w belonging to a given fixed probability space (Ω, dµ(w)),

besides of satisfying the following additionals constraints:

a) Theirs mean value posseses all the same value m:∫
Ω

X�(w)dµ(w) = E{X�(w)} = m (B-1)

b) Theirs associated variance are all equals:

σ2

[(∫
Ω

X2
� (w)dµ(w)

)2

−
(∫

Ω

X�(w)dµ(w)

)2
]

(B-2)

The large N problem in Statistics can be stated now as the problem of defining math-

ematically the normalized limit of “large numbers” N → ∞, of the sequence of random

variables sum below

lim
N→∞

ŜN(w) = lim
N→∞

(
1

σ
√

N

(
N∑

�=1

X�(w) − m

))
. (B-3)

The path-integral solution for this problem contains all needed ideas and expose clearly

the method which were implemented in our analysis in Gauge Field Theory.

Firstly, we define the associated Generating Functionals for each independent random

variable X�(w), with J ∈ R. Namely:

Z{X�}((J)) = E{eiJX�(w)} =

∫
Ω

eiJX�(w)dµ(w)

=

∞∑
k=0

ikJk

k1

(∫
Ω

(X�(w))kdµ(w)

)
(B-4)

It is straightforward to see that the Generating Functional associated to the finite N
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random variable sum eq.(3)

ZN(J) =

N∏
�=1

[
Z{X�}

(
J

(
X� − m

σ
√

N

))]

=

[ ∞∑
k=0

1

k!

ikMk

σkNk/2
· Jk

]N

=

(
1 − J2

2N
− iM3J

3

6σ3N3/2
+

M4J
4

24σ4N2
+ . . .

)N

, (B-5)

with the k-power averages given by the integral expressions below, which are supposed to

be �-independent

Mk =

∫
Ω

(X�(w)kdµ(w). (B-6)

At this point, we define mathematically the large N limit by defining the effective

statistics distribution parameters:

lim
N→∞

(σ
√

N) = σeff < ∞ (B-7)

lim
N→∞

(mN) = meff < ∞ (B-8)

and by taking the N → ∞ limit of eq.(5) in the context of the definitions eq.(7)–eq.(8),

by considering just for simplicity of our formulae writing m = 0 (see eq.(1)).

As a result, we have the simple expression below

lim
N→∞

[lgZN(J)] = N lg

[
1 − J2

2N
− iM3J

3

6σ2N3/2
+

M4J
4

24σ4N2
+ . . .

]

= −
(

J2

2N

)
N = −J2

2
, (B-9)

or equivalently

lim
N→∞

ZN(J) ≡ Zeff
N=∞(J) = e−

J2

2 , (B-10)

which is nothing more than the Generating Functional associated to the Gaussian Statis-

tics distribution:

Zeff
N=∞(J) =

1√
2π · σ ×

∫ +∞

−∞
dx e−ixJ e−

x2

2σ2 (B-11)

which is formally the limit (with m �= 0)

lim
N→∞

{
1√

2π(σ
√

N)
e−

(x−Nm)2

2Nσ2

}
=

1√
2πσ

e−
(x−m)2

2σ2 (B-12)


