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1 Introduction

There are topics in the physical literature which do not exhaust themselves, but

always deserve new analyses. Amongst these, the program to a quantum gravity

theory has a signi�cant part, remaining an open problem of Physics and an active

area of current research. In spite of the fact that many attempts have been made

to include gravity in the quantization program, a satisfactory and de�nitive the-

ory still does not exist. Many lines of research in quantum gravity developed over

last decades, under di�erent names, such as the Supergravity, Kaluza-Klein, String,

Twistors, D-brane, Loop Quantum Gravity, Noncommutative Geometry and Topos

theories, have elucidated the role of quantum gravity, without, however, providing

conclusive results (see for instance [1] for a recent review of the status of quantum

gravity). Whereas these good ideas stay only as good promises in the direction of

a �nal theory of the quantum gravity, and since the relevant scale of the Standard

Model, or any of its supersymmetric extensions, is much below the typical gravity

scale, it seems appropriate to treat, in an intermediate step, some aspects of gravity

in quantum �eld theory by considering the approach which describes the matter

quantum �elds under the in
uence of a gravitational background. This framework

has a wide range of physical applicability, the most prominent being the gravita-

tional e�ect of particle creation in the vicinity of black-holes, raised up for the �rst

time by Hawking [2].

The study of quantum �eld theories on a general manifold has become an area

of intensive research activity, and a substantial progress has been made on a variety

of interesting problems. In particular, great strides have been made towards the

understanding of the question of how the spectral condition can be de�ned. While

the most of the Wightman axioms can be implemented on a curved spacetime, the

spectral condition (which expresses the positivity of the energy) represents a serious

conceptual problem. On a 
at spacetime the Poincar�e covariance, in particular the

translations, guarantees the positivity of the spectrum, and �xes a unique vacuum

state; but on a general curved spacetime, due the absence of a global Poincar�e group,

there does not exist a useful notion of a vacuum state. As a result, the concept

of particles becomes ambiguous, and the problem of the physical interpretation

becomes much more diÆcult. One possible resolution to this diÆculty is to choose

some quantities other than particles content to label quantum states. Such an advice

was given by Wald [3] with the purpose of �nding the expectation value of the energy-

momentum tensor. For free �elds, this approach leds to the concept of Hadamard

states. The latter are thought to be good candidates for describing physical states,

at least for free quantum �eld theories in curved spacetime, according to the work of

DeWitt and Brehme [4] (see [5, 6, 7] for a general review and references). In a seminal



2 CBPF-NF-015/03

work, Radzikowski [8] showed that the global Hadamard condition can be locally

characterized in terms of the wavefront set, and proved a conjecture by Kay [9] that

a locally Hadamard quasi-free Klein-Gordon state on any globally hyperbolic curved

spacetime must be globally Hadamard. His proof relies on a general wavefront set

spectrum condition for the two-point distribution, which has made the connection

with the spectral condition much more transparent (see also [10, 11]).

The wavefront set was introduced by the mathematicians H�ormander and Duis-

termaat around 1971 [12, 13] in their studies on the propagation of singularities of

pseudodi�erential operators, which rely on what is now known as a microlocal point

of view. This subject is of growing importance, with a range of applications going

beyond the original problems of linear partial equations. In particular, the link with

quantum �eld theories on a curved spacetime is now �rmly established, specially

after Radzikowski's work. A considerable amount of recent papers devoted to this

subject [10, 11, 14, 15, 16, 17, 18, 19, 20] emphazises the importance of the microlocal

technique to solving some previously unsolved problems.

At the same time, it seems that not so much attention has been drawn to super-

symmetric theories in this direction. Much of the progress made in understanding

the physics of elementary particles has been achieved through a study of super-

symmetry. The latter is a subject of considerable interest amongst physicists and

mathematicians. It is not only it fascinanting in its own right; in the 30 years that

have passed since its proposal, supersymmetry has been studied intensively in the

belief that such theories may play a part in a uni�ed theory of the fundamental

forces, and many issues are understood much better now. Although no clear signal

has been observed up to now, supersymmetry is believed to be detectable, at least if

certain minimal models of particle physics turn out to be realized in nature, and cal-

culations and phenomenological analysis of supersymmetry models are well-justi�ed

in view of the forthcoming generation of machines, as the new super collider LHC

being buit at CERN, which is expected to operate in a few years time and will have

probably enough high energy to reveal some of the predicted supersymmetry parti-

cles, such as neutralinos, sleptons and may be indirectly squarks. It also has proven

to be a tool to link the quantum �eld theory and noncommutative geometry [21, 22].

Furthermore, in recent years the supersymmetry have been instrumental in uncove-

ring non-perturbative aspects of quantum theories [23, 24]. All of this gives strong

motivations for trying to get a deeper understanding of the structure and of the

properties of supersymmetric �eld theories.

This work is inspired in the structurally signi�cant, recent results on quan-

tum �elds propagating in a globally hyperbolic, curved spacetime, and represents

a natural attempting to construct a generalization of some of the conventional ma-

thematical structures used in quantum �eld theory, such as manifolds, so as to
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include super�eld models in supermanifolds (curved superspaces). These structural

questions are not without physical interest and relevance! It is the purpose of the

present paper to study how such a construction can be achieved.

The outline of the paper is as follows. We shall begin in Sec. 2 by describing some

global properties of supermanifolds according to Rogers [25], and the problem of con-

structing their bodies in the sense of Catenacci et al. [31] and Bryant [32]. Then, by

working with a class of G1 supermanifolds constructed by Bonora-Pastin-Tonin [28]

(BPT-supermanifolds), we demonstrate that this class of supermanifolds satis�es the

criterions which guarantee that a supermanifold admits a Hausdor� body manifold.

In Sec. 3, superdistributions on superspace are de�ned. We derive some results not

contained in [42]. In particular, we generalize straightforwardly the notion of distri-

butions de�ned on a manifold to distributions de�ned on a supermanifold. In Sec.

4, we discuss the algebraic formalism so as to include supersymmetry on a super-

manifold. The results from this section may be seen as a natural extension of the

\Haag-Kastler-Dimock" axioms [45, 46] for local \observables" to supermanifolds.

In Sec. 5, we summarize some basics on the description of Hadamard (super)states.

The focus of the Sec. 6 will be on the extension of the H�ormander's description of the

singularity structure (wavefront set) of a distribution to include the supersymmetric

case. This �lls a gap in the literature between the usual textbook presentation of

the singularity structure of superfunctions and the rigorous mathematical treatment

based on microlocal analysis. In Sec. 7, we present the characterization of a type

of microlocal spectral condition for a superstate !susy with m-point superdistribu-

tion !susy
m on a supermanifold, in terms of the wavefront set of superdistributions,

which is equivalent to the requirement that all of the component �elds satisfy the

microlocal spectral conditions [11] on the body manifold. This is in accordance with

the DeWitt's remark [26] which asserts that in physical applications of supersym-

metric quantum �eld theories, the spectral condition of the GNS-Hilbert superspace

is restricted to the ordinary GNS-Hilbert space that sits inside the GNS-Hilbert

superspace. Finally, the Sec. 8 contains ours �nal considerations.

2 Notions of Supermanifolds

This section introduces some few basic fundamentals on the theory of supermani-

folds. We follow here the work of Rogers [25] which is both general and mathema-

tically rigorous. Rogers' theory has an advantage, a supermanifold is an ordinary

Banach manifold endowed with a Grassmann algebra structure, so that the topo-

logical constructions have their standard meanings. In this context see also the

Refs. [26]-[36].

We start by introducing �rst some de�nitions and concepts of a Grassmann-
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Banach algebra, i.e., a Grassmann algebra endowed with a Banach algebra structure.

This leads to the key concept of supercommutative superalgebra.

DEFINITION 2.1. An algebra is said to be a supercommutative superalgebra � {

or a Z2-graded commutative algebra { if � is the direct sum � = �0 � �1 of two

complementary subspaces such that 1I 2 �0 and �0�0 � �0, �0�1 � �1, �1�1 � �0.

Moreover, for all homegeneous element a x, y in �, xy = (�1)jxjjyjyx, where jxj = 0

if x 2 �0 and jxj = 1 if x 2 �1. In particular, it follows that the square of odd

elements is zero.

We shall assume that the superalgebra � is a Banach space with norm k � k

satisfying the condition

kxyk � kxkkyk ; 8x; y 2 �; k1Ik = 1 :

Let L be a �nite positive integer and G denote a Grassmann algebra, such that G

can naturally be decomposed as the direct sum G = G0�G1, where G0 consists of the

even (commuting) elements and G1 consists of the odd (anti-commuting) elements in

G, respectively. Let ML denote the set of sequences f(�1; : : : ; �k) j 1 � k � L;�i 2

N ; 1 � �1 < � � � < �k � Lg. Let 
 represent the empty sequence in ML, and (j)

denote the sequence with just one element j. A basis of G is given by monomials

of the form f�
; ��1��2 ; : : : ; ��1��2 : : : ��kg for all � 2 ML, such that �
 = 1I and

�(i)�(j) + �(j)�(i) = 0 for 1 � i; j � L. Futhermore, there is no other independent

relations among the generators. By GL we denote the Grassmann algebra with L

generators, where the even and the odd elements, respectively, take their values.

L being assumed a �nite integer (the number of generators L could be possibly

in�nite), it means that the sequence terminates at �1 : : : �L and there are only 2L

distinct basis elements. An arbitrary element q 2 GL has the form

q = qb +
X

(�1;:::;�k)2ML

q�1;:::;�k�
�1 � � � ��k ; (2.1)

where qb; q�1:::�k are real numbers. An even or odd element is speci�ed by 2L�1 real

parameters. The number qb is called the body of q, while the remainder q � qb is

the soul of q, denoted s(q). The element q is invertible if, and only if, its body is

non-zero.

With reference to supersymmetric �eld theories, the commuting variable x has

the form

x = xb + xij�
i�j + xijkl�

i�j�k�l + � � � ; (2.2)

aElements from �0 and �1 are said to be homegeneous if they have a de�nite parity, i.e., an

element x 2 �0 is said to have even parity, while an element x 2 �1 is said to have odd parity.

Products of homogeneous elements of the same parity are even and of elements of di�erent parities

are odd.
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where xb; xij; xijkl; : : : are real variables. Similarly, the anticommuting variables (in

the Weyl representation) � and �� = (�)� have the form

� = �i�
i + �ijk�

i�j�k + � � � ; �� = ��i�
i + ��ijk�

i�j�k + � � � ; (2.3)

where �i; �ijk; : : : are complex variables. The summation over repeated indices is to

be understood unless otherwise stated.

Remark. As pointed out by Vladimirov-Volovich [37], from the physical point of

view, super�elds are not functions of �i; �ijk; : : : and xb; xij; xijkl; : : :, but only depend

on these variables through � and x, as it occurs with ordinary complex analysis where

analytic functions of the complex variables z = x+ iy are not arbitrary functions of

the variables x and y, but functions that depend on x and y through z. N

The Grassmann algebra may be topologized. Consider the complete norm on

GL de�ned by [38]:

kqkp =

0
@jqbjp + LX

(�)=1

jq�1:::�k j
p

1
A

1=p

: (2.4)

A useful topology on G is the topology induced by this norm. The norm k � k1 is

called the Rogers norm and GL(1) the Rogers algebra [25]. The Grassmann algebra G

equipped with the norm (2.4) becomes a Banach space. In fact G becomes a Banach

algebra, i.e., k1Ik = 1 and kqq0k � kqkkq0k for all q; q0 2 G.

DEFINITION 2.2. A Grassmann-Banach algebra is a Grassmann algebra endowed

with a Banach algebra structure.

A superspace must be constructed using as a building block a Grassmann-

Banach algebra GL and not only a Grassmann algebra.

DEFINITION 2.3. Let GL = GL;0 � GL;1 be a Grassmann-Banach algebra. Then

the (m;n)-dimensional superspace is the topological space Gm;nL = GmL;0 � G
n
L;1, which

generalizes the space Rm , consisting of the Cartesian product of m copies of the even

part of GL and n copies of the odd part.

For an (m;n)-dimensional superspace, a typical element of this set used in

physics is denoted by (z) = (z1; : : : ; zm+n) = (x1; : : : ; xm; �1; : : : ; �n=2; ��1; : : : ; ��n=2).

For instance, for the (4; 4)-dimensional Minkowski superspace, which is the space of

e.g. N = 1 Wess-Zumino model formulated in super�eld language and modelled as

G
4;4
L = G4L;0 � G

4
L;1, (z) = (x1; : : : ; x4; �1; �2; ��1; ��2). The norm on G4;4L is de�ned by

kzk =
P4

i=1 kxik +
P2

j=1 k�jk +
P2

k=1 k
��kk. The topology on G4;4L is the topology

induced by this norm { which is also the product topology.
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In supersymmetric quantum �eld theory, super�elds are functions in superspace

usually given by their (terminating) standard expansions in powers of the odd co-

ordinates

F (x; �; ��) =
�X

(
)=0

f(
)(x)(�)
(
) ; (2.5)

where (�)(
) comprises all monomials in the anticommuting variables � and �� (belong-

ing to odd part of a Grassmann-Banach algebra) of degree j
j; f(
)(x) is called a com-

ponent �eld, whose Lorentz properties are determined by those of F (x; �; ��) and by

the power (
) of (�). The following notation, extended to more than one � variable, is

used (2.5): (�) = (�1; ��1; : : : ; �n; ��n), and (
) is a multi-index (
1; �
1; : : : ; 
n; �
n) with

j
j =
Pn

r=1(
r + �
r) and (�)(
) =
Qn

r=1 �

r
r
���
rr . In Eq.(2.5), for a (4,4)-dimensional

superspace, � = (2; 2).

Rogers [25] considered super�elds in Gm;nL as G1 superfunctions,b i.e., functions

whose coeÆcients f(
)(x) of their expansions are smooth functions of Rm into GL,

extended from R
m to all of Gm;0L by z-continuation [25], which maps functions of real

variables into functions of variables in Gm;0L .

DEFINITION 2.4. Let U be an open set in Gm;0L and let � : Gm;0L ! R
m be the body

projection which associates to each m-tuple (x1; : : : ; xm) 2 G
m;0
L

an m-tuple (�(x1); : : : ; �(xm)) 2 R
m . Let V be an open set in R

m with V =

�(U). We get through z-continuation { or \Grassmann analytic continuation" { of

a function f 2 C1(V;GL) a function z(f) 2 G1(U;GL), which admits an expansion

in powers of the soul of x

z(f)(x1; : : : ; xm) =
LX

i1=���=im=0

1

i1! � � � im!

�
@i11 � � �@

im
m

�
f(�(x))s(x1)

i1 � � � s(xm)
im ;

where s(xi) = (xi � �(xi)) and �(xi) = (xi)b.

One should keep always in mind that the continuation involves only the even

variables z : C1(�(U)) ! G1(U), and that z(f)(x1; : : : ; xm) is a supersmooth

function if their components are smooth for soulless values of x. This justi�es the

formal manipulations in the physics literature, where super�elds are manipulated

as if their even arguments were ordinary numbers [34]: a supersmooth function is

completely determined when its components are known on the body of superspace.

According to De�nition 2.4, the super�eld F (x; �; ��) 2 G1(U;GL) admits an

expansion

F (x; �; ��) =
�X

(
)=0

z(f(
))(x)(�)
(
) ;

bWe use the pre�x \super" for entities involving odd Grassmann variables.
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but here with suitable f(
) 2 C1(�(U);GL).

Now, we are going to consider some helpful aspects about supermanifolds, based

on the work of Rogers [25], replacing the simple superspace Gm;nL by a more general

supermanifold. Rogers used the concept of G1 superfunctions to de�ne the concept

of G1 supermanifolds (which can be considered as Banach real manifolds C1 mo-

delled on Gm;nL of dim N = 2L�1(m+n)), with a structure allowing for the de�nitions

of neighbouring points and continuous superfunctions. An (m;n)-dimensional G1

supermanifold generalizes the concept of an m-dimensional C1 manifold: just as a

manifold is a Hausdor� topological space such that every point has a neighbourhood

homeomorphic to Rm and has local coordinates (x1(p); : : : ; xm(p)) in R
m , a super-

manifold is a topological space which locally looks like Gm;nL (but not necessarily

in its global extent) and has local coordinates (x1(p); : : : ; xm(p); �1(p); : : : ; �n(p)) in

G
m;n
L , and whose transition functions ful�ll a suitable supersmoothness condition.

DEFINITION 2.5. A supermanifold is in general a paracompact Hausdor� topologi-

cal space M, together with an atlas of charts f(X�; k�) j � 2 Ig, over a Grassmann-

Banach algebra GL, where the X� cover M and each coordinate function k� is a

homeomorphic local maps from X� onto an open subset eX� � G
m;n
L , also Hausdor�.

The existence of in�nitely di�erentiable coordinates systems makes the super-

manifold di�erentiable. The di�erentiable structure in this topological space is due

to Gr (r = p or p =1) structure of transition functions, k� Æ k�1� , between overlap-

ping coordinate patches, k�(X�\X�) and k�(X�\X�), required to be supersmooth

morphisms for any �; � 2 I. The local coordinates are:

ui = pi Æ k� 7�! (i = 1; : : : ; m) ;

vj = pj+m Æ k� 7�! (j = 1; : : : ; n) :

In this sense Gm;nL is an example of G1 supermanifold, unlike of the coarse

topology in the DeWitt sense [26] whose structure cannot be even a metric one.

DEFINITION 2.6. Let eX� be an open in Gm;nL and f : eX� ! GL, then:

(a) f is called G0 in eX� if f is continuous in eX�.

(b) f is called G1 in eX� if exist m+n functions Gkf : eX� ! GL, k = 1; : : : ; m+n

and functions � : Gm;nL ! GL such that:

f(a+ h; b+ k) =f(a; b) +
mX
i=1

hifGif(a; b)g+
nX
j=1

kjfGj+mf(a; b)g+

+ k h; k k �(h; k) ;

and �(h; k)! 0 when k h; k k! 0. In this sense, Gif ! f 0i .
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We can generalize to Gp, with �nite p in the following: f is Gp in eX� if is possible

choose Gkf which are Gp�1 with f 2 G1 em eX�. If it is true to all p, f is called G1.

In fact, any function which is absolutely convergent (power series) is G1 on eX�, in

other words:

f(z) =
1X

k1:::km+n=0

ak1:::km+n
zk11 : : : z

km+n

m+n ;

f : eX� ! GL; eX� � G
m;n
L and ak1:::km+n

2 GL :

Another important fact is the C1 structure:

[Dpf(z)][`1; `2; : : : ; `p] =
m+nX

k1:::kp=1

l1k1 : : : l
p
kp
(GkpGkp�1 : : : Gk1f)(z) ;

for all z 2 eX� open in Gm;nL and l1k1 : : : l
p
kp
2 (Gm;nL )p. The latter denotes a product

space of p copies of Gm;nL . In this way the p derivative of f 2 L[(Gm;nL )p;GL] are

elements of continuous p-linear maps of (Gm;nL )p into GL. This formalism is interes-

ting and agrees to the H�ormander's one [39] (pg.11), where f (p) 2 Lp(X�; X�), are

elements of continuous p-linear forms from X� to X�.

Remark. The discussion of di�erentiability by Jadczyk-Pilch [27] is simpler than the

one given by Rogers [25]. In particular, knowing already that a function f is a C1

map between Banach spaces, it is needed only to look at its �rst derivative to know

whether f is supersmooth or not, while according to Rogers an investigation of all

derivatives is necessary. However, the concept of supersmoothness by Jadczyk-Pilch,

and the concept of G1 di�erentiability by Rogers are equivalent. N

2.1 The Body of a Supermanifold

Now that the general idea of structure on a supermanifold has been introduced,

it is time to restrict our attention to the case of fundamental interest: the pro-

blem of constructing the body of a G1 supermanifold which serves as the physical

spacetime. Roughly speaking, the body of a supermanifold M is an ordinary C1

spacetime manifold M0 obtained from M getting rid of all the soul coordinates.

Because of its extreme generality, Rogers' theory includes many topologically exotic

supermanifolds which are not physically useful, admitting the possibility of nontri-

vial topology in the anticommuting directions and classes of supermanifolds without

a body manifold. But, intuition suggests that only a bodied G1 supermanifold can

be physically relevant!

The question of the existence of the body of a supermanifold was clari�ed in the

papers by R. Catenacci et al. [31] and P. Bryant [32]. Their approach is independent
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of the atlas used, and it is based on the fact that any G1 supermanifold M admits

a foliation F. This type of structure is de�ned and related to the natural notions of

quotient and substructure on a supermanifold. As with many important concepts in

mathematics, there are several equivalent ways of de�ning the notion of a foliation.

The simplest and most geometric is the following. Let M be an (m;n)-dimensional

supermanifold of class Gp, 0 � p � k.

DEFINITION 2.7. A foliation of class Gr, 0 � r � p, and of codimension m, is

a decomposition of M into disjoint connected subsets fL�g�2A, called the leaves of

the foliation, such that each point of M has a neighbourhood U and a system of Gr

coordinates (x; �) : U ! GmL;0 � G
n
L;1 such that for each leaf L�, the components of

U \ L� are described by surfaces on which all the body coordinates �(x1); : : : ; �(xm)

are constant. We denote the foliation by F = fL�g�2A.

The coordinates referred in the De�nition 2.7 are said to be distinguished by

the foliation F. Under certain regularity conditions on F, the quotient space M=F

can be given the structure of an ordinary m-dimensional di�erentiable manifoldM0,

which is called the body manifold of M (for details see [31]). A G1 supermanifold

whose F foliation is regular is called regular itself. On regular supermanifolds the

following theorem holds:

THEOREM 2.8 (Catenacci-Reina-Teo�latto Theorem). Let M be a regular

G1 supermanifold. Then its body M0 is a C
1 manifold.

However, according to P. Bryant [32], the necessity of regularity of the soul

foliation in the sense of Catenacci-Reina-Teo�latto is not suÆcient to guarantee

that a supermanifold admits a body manifold. He derived necessary and suÆcient

conditions, namely that leaves should be closed and do not accumulate, for the

existence of a Hausdor� body manifold.

THEOREM 2.9 (Bryant Theorem 2.5). Suppose that M is a supermanifold. In

order that M admits a body manifold, it is necessary and suÆcient that the leaves

of the soul foliations are closed in M and do not accumulate.

For our purposes, it will be suÆcient to consider the class of G1 supermani-

folds constructed by Bonora-Pasti-Tonin [28] (we shall call BPT-supermanifolds for

brevity), which has important applications in theoretical physics and ful�lls The-

orems 2.8 and 2.9, as we shall verify presently. These supermanifolds consist of

the Grassmann extensions of any ordinary C1 spacetime manifold. From a given

m-dimensional physical spacetime, one constructs �rst a (m; 0)-dimensional super-

manifold, and the (m;n)-dimensional supermanifold by taking the direct product
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with G0;nL . This construction is the closest to the physicist's intuitive view of super-

space as a manifold with some anticommuting coordinates, with the odd Grassmann

variables being topologically trivial.

For the convenience of the reader, we recall now the construction of Bonora-

Pasti-Tonin [28]. Let f(U�;  �) j � 2 Ig be an atlas for M0. For each � 2 I consider

the subset X� of the Cartesian product U� � G
m;0
L de�ned by

X� = f(x; �x) j x 2 U�; �x 2 G
m;0
L ; and �(�x) =  �(x)g ; (2.6)

and de�ne k� : X� ! G
m;0
L by k�(x; �x) = �x for (x; �x) 2 X�. k� is a homeomorphism

and its image is an open subset of Gm;0L .

An important property of the z-continuation is the composition of functions.

Let U be an open set in R
m , and let the map f : Rm ! G

k;0
L be represented by

the set of C1 functions ffi(x1; : : : ; xm); i = 1; : : : ; mg. De�ne z(f) as the set of

functions fz(fi)g. Let V be an open set in Rn , and consider the maps f : U ! V

and g : V 0 ! G
k;0
L , respectively, where V 0 � V , and both f; g are C1 functions.

Then

z(g Æ f) = z(g) Æ z(f) : (2.7)

Now consider the disjoint union M =
S
�2I X�. Two points of M are equivalent if

and only if (x; �x) � (x0; �x0), such that (x; �x) 2 X� and (x0; �x0) 2 X� and x = x0,

�x0 = z( � Æ 
�1
� )(�x). Of course M is a Hausdor� space. Then consider the space MG

equal to the space M modulo the equivalence relation above. The k�'s provide MG

with a G1 di�erentiability structure, so thatMG is a G1 (m; 0) supermanifold. Let

�G : MG ! M0 be a continuous and open projection. Locally �G jX�
(x; �x) = x for

(x; �x) 2 X�. Since MG is a regular supermanifold, we �nd straightforwardly that

�G Æ k�1� =  �1
� Æ � for �x 2 k�(X�). This can be expressed by the commutative

diagram:

X�
k�1� ��� G

m;0
L

�G

??y ??y�
U�

 �1� ��� R
m

Finally, we construct the (m;n)-dimensional supermanifold M by taking the

direct product of MG with G0;nL . The projection �S :M!M0 is the composite map

�G Æ 
, where 
 :M!MG is the projection onto the �rst factor. The map 
 is G1,

unlike �G which is a C1 function but not a G1.

COROLLARY 2.10. Let M be a BPT-supermanifold. Then the leaves of the soul

foliation are regular, closed in M and do not accumulate.

Proof. First of all, it is worthwhile noticing that, according to the construction of

Bonora-Pasti-Tonin, two points of a BPT-supermanifold are in the same leaf if,
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and only if, they are equivalents in the sense de�ned in their paper. Then the soul

foliation can be de�ned by M=�
def
= M=F. Once veri�ed the corollary, we see that a

BPT-supermanifold possesses an ordinary body manifold de�ned by soul foliation

M0
def
= M=F, where M0 denotes the body manifold.

In order to show that the leaves of a BPT-supermanifold are closed, the following

considerations are needed: we say that the soul foliation of a BPT-supermanifold is a

Hausdor� space, and that the structure of their supermanifold is regular. This can be

veri�ed through the following theorem by Bryant [32] (Theorem 3.2): Suppose that

M is a supermanifold of dimension (m;n) and � = fUi; �ig is a good atlas; then the

following conditions are equivalent: (i) � = fUi; �ig is a regular superstructure onM,

(ii) when s and t lie in Ui, s � t implies s � t and (iii) the body map � :M!M=F

is locally modelled on �0 : Bm;n ! R
m in the sense that exist homeomorphisms

��i : �Ui ! �0�iUi such that ��i Æ �jUI = �0 Æ �. When these conditions are satis�ed,

M=F is Hausdor� and is a smooth manifold of dimension m with charts f�Ui; ��ig.

For the case of the equivalence relation (s � t) of a BPT-supermanifold, we see

that it must be � in the Bryant sense because embodies � and is transitive. Then �

implies � on the same charts. This means that the conditions of the Theorem 3.2 by

Bryant must be properties of the BPT foliation, and hence is Hausdor� and regular.

Now, the fact that the leaves of a BPT-supermanifold are closed is clear: each point

(�(s)) of M=� is closed, given that the BPT-supermanifolds is a Hausdor� space,

and the inverse application theorem guarantees that a leaf is necessarily closed, since

being F the leaf in M, F = ��1�(s) where ��1 is a continuous map.

Finally, we shall verify that the leaves of a BPT-supermanifod do not accumu-

late. First, we shall suppose that the leaves of soul foliation accumulatec in a given

pair of points, eg s+; s� 2 M. Note that as M=F is Hausdor�, given two points

x 2 M=F and y 2 M=F with x 6= y, we can separate them by disjoint open sets.

Choice, for example, �s+ = x and �s� = y, where � : M ! M=F. Then, we also

can choose s+ 2 F 0 [ �+ (a transverse submanifold) and s� 2 F 0 [ �� (another

transverse submanifold). If this is true, s+; s� must be in the same leaf, by indica-

ting that �s+ = �s� contradicting the statement which a soul foliation is Hausdor�.

Hence, the leaves do not accumulate. In order to complete the prove, we examine the

condition �s+ = �s�. Due the possibility of choosing arbitrary transverse submani-

folds, we select �(s) and �(t) through the some disjoint neighbourhoods of s and t

resp. such that does not exist a Ui which intersects �(s) and �(t). But �s+ = �s�
implies that s and t are in the same chart Ui, so the leaves do not accumulate since

�(s) [ �(t) = ;.

cThe leaves of a soul foliation accumulate if there exist two points s+; s� and a sequence F (n)

such that for arbitrary transverse submanifolds �+ through s+ and �� through s�, there is some

F (no), with F (no) [ �+ 6= ; and F (no) [ �� 6= ;.
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The existence of a body manifold places us in a position to consider physically

interpretable �eld theories on supermanifolds. In order to establish applicability

in a physical system, we need to impose some restrictions regarding to the body

manifoldM0, associated with the supermanifoldM. Apart from another aspects, the

causality principle plays a crucial role in our construction. Therefore, we restrict our

body manifold, (M0; g0), to be globally hyperbolic Lorentz manifold, by consisting

of a 4-dimensional smooth manifold M0 (any dimension would be possible) that

can be smoothly foliated by a family of acausal Cauchy surfaces [6] and a smooth

metric g0 with signature (+;�;�;�). This means that the body manifold must

be topologically equivalent to the Cartesian product of R and a smooth spacelike

hypersurface � (a Cauchy surface). � intersects any endless timelike curve at most

once. A 4-dimensional globally hyperbolic Lorentz manifold is orientable and time

orientable, i.e., at each x 2 M0 we may designate a future and past light cone

continuously. Moreover, M0 is assumed to have a spin structure, so that one can

consider spinors de�ned on it.d

Remark. As it has been emphasized in [10], a natural background geometry that

admits a supersymmetric extension of its isometry group can only be of the Anti-

De-Sitter (AdS) type. In other words, the global supersymmetry should not be com-

patible with most spacetimes, an exception being the AdS space. This requirement

seems to be an extremely restrictive condition, since the AdS space has problems

with closed time-like curves, apparently violating causality and leading to problems

during quantization. Namely, boundary conditions at in�nity are needed. Neverthe-

less, one should remind that this result refers to extended supergravity theories with

gauged SO(N) internal symmetry [41]; this is not, however, our case in this paper.

Furthermore, this result can mainly be justi�ed by the heuristic form of introducing

the superspace (which may be bypassed taking into account the Rogers' theory of

a global supermanifold). As stressed by Bruzzo [36], \: : :the usual ways of dealing

with superspace �eld theories are highly unsatisfactory from a mathematical point

of view. The superspace is de�ned formally, and, for instance, general coordinate

transformations are mathematically not well de�ned. As a consequence, there is

now room for studying global topological properties of superspace." As it shall be

tackled further on, Section 4, the mathematical structure of the supermanifolds cho-

sen here leads to a natural formulation of superdi�eormorphisms, G1, from (M; g)

to (M0; g0), from the z-continuation of ordinary di�eomorphisms, so that these struc-

tures become, projectively, well-de�ned isometries whenever M0 =M and restricted

dIt can be shown that a 4-dimensional globally hyperbolic Lorentz manifold admits a spin

structure [40]. In fact, Geroch [40] pointed out that a noncompact, parallelizable 4-dimensional

manifold admits a spin structure. Geroch's parallelizability criterion applies to a 4-dimensional

globally hyperbolic Lorentz manifold.
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to the ordinary body manifold. N

3 Superdistributions

In this section, as a natural next step, we extend the de�nition of the objects most

widely used in physics: distributions. We de�ne superdistributions on supermanifolds

over the Grassmann-Banach algebra GL, as continuous linear mappings to GL from

the test function space of G1 superfunctions with compact support. We derive some

results not contained in [42].

3.1 Distributions on a Manifold

To prepare for the extension of the theory of distributions to supermanifolds, we �rst

consider their de�nition on manifolds. Following [39], the spacetime manifold M0

(hereM0 denotes an ordinary manifold obtained from a supermanifoldM by throw-

ing away all the soul coordinates) is a Hausdor� space covered by charts (X�; k�),

where the open sets X� are homeomorphic neighbourhoods to open sets in Rn . A C1

structure on M0 is a family F = f(X�; k�) j � 2 Ig, called an atlas, of homeomor-

phisms k�, called coordinate functions, of open sets X� �M0 on open sets eX� � R
n ,

such that (i) if k�; k� 2 F, then the map k� Æ k
�1
� : k�(X� \X�)! k�(X� \X�) is

in�nitely di�erentiable, (ii) M0 =
S
�2I X�. Let f 2 C1

0 (Rn) denotes the set of C1

functions of compact support on eX� � R
n . Then, we can represent each f by func-

tions �f of compact support on M0 by f = �f Æ k�1� , for each k�, where �f 2 C1
0 (M0).

Elements of D0(M0), the topological dual of C1
0 (M0), are distributions u on M0,

by which we mean collections fuk�gk�2F of distributions uk� 2 D
0( eX�) such that

u is uniquely determined by the uk� and relations u = uk� Æ k�. Moreover, since

for any other coordinate system one has u = uk� Æ k� in (X� \X�), it follows that

uk� = (k� Æ k
�1
� )�uk� = uk� Æ (k� Æ k

�1
� ) in (X� \X�).

3.2 Distributions on the Flat Superspace

With the purpose of de�ning superdistributions on supermanifolds, we must �rst

consider superdistributions on an open set U � Gm;nL , where Gm;nL denotes the 
at

superspace. We begin by introducing the concept of superdistributions as the dual

space of supersmooth functions in Gm;0L , with compact support, equipped with an ap-

propriate topology, called test superfunctions. This can be done relatively straight-

forward in analogy to the notion of distributions as the dual space to the space

C1
0 (U) of functions on an open set U � R

m which have compact support, since

the spaces Gm;0L and Gm;nL are regarded as ordinary vector spaces of 2L�1(m) and
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2L�1(m + n) dimensions, respectively, over the real numbers.

Let 
 � R
m be an open set. 
 = �(U) regarded as a subset of Gm;0L , it is identi�ed

with the body of some domain in superspace. Let C1
0 (
;GL) be the space of GL-

valued smooth functions with compact support in GL. Every function f 2 C1
0 (
;GL)

can be expanded in terms of the basis elements of GL as:

f(x) =
X

(�1;:::;�k)2M
0
L

f�1;:::;�k(x)�
�1 � � � ��k ; (3.1)

where M0
L
def
=f(�1; : : : ; �k) j 0 � k � L;�i 2 N; 1 � �1 < � � � < �k � Lg and

f�1;:::;�k(x) is in the space C1
0 (
) of real-valued smooth functions on 
 with com-

pact support. Thus, it follows that the space C1
0 (
;GL) is isomorphic to the space

C1
0 (
) 
 GL [42]. In accordance with the De�nition 2.4, the smooth functions of

C1
0 (
;GL) can be extended from 
 � R

m to U � Gm;0L by Taylor expansion.

In order to de�ne superdistributions, we need to give a suitable topological

structure to the space G1
0 (U;GL) of GL-valued superfunctions on an open set U �

G
m;0
L which have compact support. According to a proposition by Rogers, every G1

superfunction on a compact set U � G
m;0
L can be considered as a real-valued C1

function on U � R
N , where N = 2L�1(m), regarding Gm;0L and GL as Banach spaces.

In fact, the identi�cation of Gm;0L with R
2L�1 (m) is possible [31]. We have here an

example of functoriality. Indeed, let X and Y denote a G1 supermanifold and a

Banach manifold C1, respectively. Then with each supermanifold X we associate a

Banach manifold Y , via a covariant functorial relation � : X ! Y , and with each

G1 map � de�ned on X, a C1 map �(�) de�ned on Y [31].

Following, we shall �rst consider only the subset C1
K of C1

0 (U � R
N ) which

consists of functions with support in a �xed compact set K. Since by construction

C1
K is a Banach space, the functions C1

K have a natural topology given by the �nite

family of norms

k�kK;m = sup
jpj�m

x2K

jDp�(x)j ; Dp =
@jpj

@xp11 � � �@x
pm
m

; (3.2)

where p = (p1; p2; : : : ; pm) is a m-tuple of non-negative integers, and jpj = p1 + p2 +

: : :+ pm de�nes the order of the derivative. Next, let U be considered as a union of

compact sets Ki which form an increasing family fKig1i=1, such that Ki is contained

in the interior of Ki+1. That such family exist follows from the Lemma 10.1 of [43].

Therefore, we think of C1
0 (U � R

N ) as
S
iC

1
Ki
(U � R

N ). We take the topology

of C1
0 (U � R

N ) to be given by the strict inductive limit topology of the sequence

fC1
Ki
(U � R

N )g. Of another way, we may de�ne convergence in C1
0 (U � R

N ) of a

sequence of functions f�kg to mean that for each k, one has supp �k � K � U � R
N

such that for a function � 2 C1
0 (U � R

N ) we have k���kkK;m ! 0 as k !1. This
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notion of convergence generates a topology which makes C1
0 (U � R

N ), certainly, a

topological vector space.

Now, let F and E be spaces of smooth functions with compact support de�ned

on U � Gm;0L and U � R
N , respectively. If � : E! F is a contravariant functor which

associates with each smooth function of compact support in E, a smooth function

of compact support in F, then we have a map

k�kK;m �! k�(�)kK;m ; (3.3)

providing G1
0 (U;GL) with a limit topology induced by a �nite family of norms.

We now take a result by Jadczyk-Pilch [27], later re�ned by Hoyos et al [29],

which establishes as a natural domain of de�nition for supersmooth functions a set

of the form ��1(
), where 
 is open in Rm . Let ��1(
) be the domain of de�nition

for a superfunction f 2 G1
0 (�

�1(
);GL), where �
�1(
) is an open subset in Gm;0L

and 
 is an open subset in R
m , and let e� 2 C1

0 (
;GL) denotes the restriction of

� to 
 � R
m � Gm;0L . Then, it follows that (@p11 � � �@

pm
m �)e= @p11 � � �@

pm
m
e�, where the

derivatives on the right-hand side are with respect to m real variables. Now, suppose


 =
S
i
eKi where each eKi is open and has compact closure in eKi+1. It follows that

C1
0 (
;GL) =

S
iC

1
eKi
(
;GL). Then, one can give C

1
0 (
;GL) a limit topology induced

by �nite family of norms [42]

ke�k
eK;m = sup

jpj�m

x2 eK

jDpe�(x)j = sup
jpj�m

x2 eK

8<
:

X
(�1;:::;�k)2M

0
L

jDpe��1;:::;�k(x)j
9=
; : (3.4)

Finally, a suitable topological structure to the space G1
0 (U;GL) of GL-valued

superfunctions on an open set U � Gm;nL which have compact support, it is obtained

immediately by the natural identi�cation of Gm;nL with R2L�1 (m+n) and by the obvious

extension of the construction above, which allows us de�ne a limit topology induced

to the space G1
0 (U;GL) by �nite family of norms,

k�(�)kK;m+n = sup
jpj�m+n

z2K

jDp(�(�))(z)j ; Dp =
@jqj+jrj

@xq11 � � �@x
qm
m @�r11 � � �@�

rn
n

: (3.5)

The derivatives @jqj=@xq11 � � �@x
qm
m commute while the derivatives @jrj=@�r11 � � �@�

rn
n

anticommute, and jpj = jqj + jrj =
Pm

i=1 qi +
Pn

j=1 rj de�nes the total order of the

derivative, with rj = 0; 1.

We are now ready to de�ne a superdistribution in an open subset U of Gm;nL .

The set of all superdistributions in U will be denoted by D0(U). A superdistribution

is a continuous linear functional u : G1
0 (U) ! GL, where G

1
0 (U) denotes the test

superfunction space of G1(U) superfunctions with compact support in K � U . The

continuity of u on G1
0 (U) is equivalent to its boundedness on a neighbourhood of
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zero, i.e., the set of numbers u(�) is bounded for all � 2 G1
0 (U). The last statement

translates directly into:

PROPOSITION 3.1. A superdistribution u in U 2 G
m;n
L is a continuous linear

functional on G1
0 (U) if and only if to every compact set K � U , there exists a

constant C and (m+ n) such that

ju(�)j � C sup
jpj�m+n

z2K

jDp(�)(z)j ; � 2 G1
0 (K) :

Proof. First, it is worth keeping in mind that GL can be identi�ed with R
2L�1 [31]. In

fact, a number system assuming values in some Grassmann algebra with L generators

is speci�ed by 2L�1 real parameters. Let F and E be spaces of smooth functions with

compact support de�ned on K � U � Gm;nL and K � U � R
2L�1 (m+n), respectively.

If we have a functorial relation � : F ! E and a linear functional eu : E ! R
2L�1 ,

we can compose � with eu to obtain the pullback of eu by �, i.e., u = ��eu = eu Æ �,
and hence a linear functional ��eu : F ! R

2L�1 . Then, the statement follows if eu
is continuous on E. But this clear from the Proposition 21.1 of [43], which can be

applied verbatim for a functional eu on E.

3.3 Distributions on a Supermanifold

Next we will obtain an extension of basic results about superdistributions on the


at superspace in the case of general supermanifolds.

DEFINITION 3.2. Let M a G1 supermanifold. For every coordinate system pi Æ k�
in M one has a distribution uk� 2 D

0( eX�) where eX� is an open from G
m;n
L such that

uk� = f(pi Æ k�) Æ (k
�1
� Æ p

�1
i )g�uk� ; (i = 1; : : : ; m+ n) ; (3.6)

in k�(X� \ X�), where pi is a projection into each copies (i) from Gm;n, such that

xi = pi Æk� and yj = pj+m Æk�, with (i = 1; : : : ; m; j = 1; : : : ; n). We call the system

uk� a distribution u in M. The set of every distribution in M is denoted by D0(M).

THEOREM 3.3. Let eX�; � 2 I, be an arbitrary family of open sets in Gm;nL , and

set eX =
S
�2I

eX�. If u� 2 D0( eX�) and u� = u� in ( eX� \ eX�) for all �; � 2 I, then

there exist one and only one u 2 D0( eX) such that u� is the restriction of u to eX�

for every �.

To prove this theorem, it is interesting to state the following results:

LEMMA 3.4. Let eX1; : : : ; eXk be open sets in Gm;nL and let � 2 G1
0 (
Sk

1
eX�). Then

one can �nd �� 2 G1
0 ( eX�); � = 1; : : : ; k, such that � =

Pk
1 �� and if � � 0 can

take all �� � 0.
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Proof. We can choose compact sets K1; : : : ; Kk with K� � eX�, so that the supp

� �
Sk

1K�. (every point in supp � has a compact neighbourhood contained in someeX�, a �nite number of such neighbourhoods can be chosen which cover all of supp

�. The union of those which belong to X� is a compact set K� � eX�. Now, if eX is

an open set in Gm;nL and K is a compact subset, then one can �nd � 2 G1
0 ( eX) with

0 � � � 1 so that � = 1 in a neighbourhood of K. So, we can choose  � 2 G1
0 ( eX�)

with 0 �  � � 1 and  � = 1 in K�, then the functions:

�1 = � 1; �2 = � 2(1�  1); : : : ; �k = � k(1�  1) : : : (1�  k�1) :

have the required properties since

kX
1

�� � � = ��
kY
1

(1�  �) = 0 ;

because either � or some 1�  � is zero at any point.

COROLLARY 3.5. Let eX1; : : : ; eXk be open sets in Gm;nL and K a compact subset

� eX�. Then one can �nd �� 2 G1
0 ( eX�) so that �� � 0 and

Pk
1 �� � 1 with equality

in a neighbourhood of K.

Proof of the Theorem 3.3. If u is a distribution, then:

u(�) =
X

u�(��) ; if � =
X

�� (where �� 2 G
1
0 ( eX�)) ;

and the sum is �nite. By the Lemma 3.4, every � 2 G1
0 ( eX) can be written as such a

sum. If
P
�� = 0)

P
u�(��) = 0, then we conclude that

P
u�(��) is independent

of how we choose the sum. Let K =
S
supp � compact set K � eX and using the

corollary 3.5, we can choose  � 2 G1
0 ( eX�) such that

P
 � = 1 in K and the sum

is �nite. Then  ��� 2 G
1
0 ( eX� \ eX�) so u�( ���) = u�( ���). HenceX

u�(��) =
XX

u�(�� �) =
XX

u�(�� �) =
X

u�( �
X

��) = 0 :

We have showed that if
P
�� = 0 )

P
u�(��) is zero, then u is unique. In order

to show that u is distribution, choose a compact set K � eX and a function  � 2

G1
0 ( eX�) with

P
 � = 1 in K and �nite sum. If � 2 G1

0 (K) we have � =
P
� �

with � � 2 G1
0 ( eX�) so that the �rst equation this proof gives

u(�) =
X

u�(� �)

but, if u� is a distribution, then:

ju�(� �)j � C sup
jpj�m+n

z2K

jDp(� �)(z)j ; � � 2 G
1
0 ( eX�)
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where sup Dp� can be estimated in terms of �, and so we conclude that

ju(�)j � C sup
jpj�m+n

z2K

jDp�(z)j ; � 2 G1
0 (K) :

This completes our proof.

THEOREM 3.6. Let F an atlas for M. If for every pi Æk 2 F one has a distribution

uk 2 D0( eXk) and the above de�nition is true when piÆk and p0iÆk
0 belongs to F, then

there is one, and only one, distribution u 2 D0(M) such that u Æ (k�1 Æ p�1i ) = uk for

every pi Æ k 2 F.

Proof. Let  2 G1 be a coordinate system inM. The Theorem 3.3 states that there

exists one, and only one, distribution U 2 D0( eX ) in such a way for every pi Æ k,

U = ((pi Æ k) Æ  �1)�uk in  (X \Xk) � eX . If  2 F! U = u , we can choose

pi Æ k =  . Now, one de�nes u as a distribution, since U satis�es (3.6) for both

coordinate systems pi Æ k and p0i Æ k
0.

4 Algebraic Framework on a Supermanifold

In the usual treatment of quantum �eld theory in 
at spacetime, the existence of

a unitary representation of the restricted Poincar�e group, P"
+, with generators P�

ful�lling the spectral condition spP� � V +, is very essential. This unitary operator

plays a key role in picking out a preferred vacuum state, i.e., a state which is invariant

under all translations. We choose a complete system of physical states, with positive

energies, just when it is possible to de�ne this vacuum state and consequently the

Fock Space, F. One then de�nes observables as operators on F which act upon the

states. However, the characterization of the vacuum involves global aspects, and in

the case of a curved spacetime it is not evident how to select a distinguished state.

As already mentioned in the Introduction, due the absence of a global Poincar�e

group there is no analogous selection criterium on a curved spacetime: no vacuum

state can be used as reference. To understand the signi�cance of this point under

another point of view, we take into account that, initially, a theory de�ned on a

globally hyperbolic Lorentz manifold could be reduced to the tangent space at a

given point, one negleting the gravitational e�ects. One �nds that the tangent space

theory reduces to a free quantum �eld theory in a Minkowski space which has local

translation invariance and a distinguished invariant state could be established by

a local unitary mapping. Nevertheless, this unitary operator depends on the region

and there exists no unitary operator which does the mapping for all open regions

simultaneously. Therefore, the problem of how to characterize the physical states

arises. For the discussion of this problem on a general manifold, the setting of the
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so-called algebraic approach to quantum �eld theory (see [44, 6, 7]) is particularly

appropriate, because it treats all states on equal footing, specially that states arising

of unitarily inequivalent representations.

The algebraic approach envolves the theory of �-algebras and their states and

Hilbert space representations. In this framework the basic objects are the algebras

generated by observables localized in a given spacetime region. Fields are not men-

tioned in this setting and are regarded as a type of coordinates of the algebras.

The basic assumption is that all physical information must already be encoded in

the structure of the local observables. Haag and Kastler introduced a mathemati-

cal structure for the set of observables of a physical system by proposing the now

so-called Haag-Kastler axioms [45] for nets of C� algebras, later generalized by Di-

mock [46] for local observables to globally hyperbolic manifolds. Recently, a new

approach to the model independent description of quantum �eld theories has been

introduced Brunetti-Fredenhagen-Verch [47], which incorporates in a local sense the

principle of general covariance of general relativity, thus giving rise to the concept of

a locally covariant quantum �eld theory. The usual Haag-Kastler-Dimock framework

can be re-gained from this new approach as a special case.

In this section, we intend to discuss the algebraic formalism so as to include

supersymmetry on a supermanifold. A straight formulation on a supermanifold can

be performed over the algebraic approach easily, since the construction of the alge-

bra does not depend \a priori" of the manifold. Let us describe a physical theory

in a general supermanifold from an extended formulation of the ordinary theory

in curved spacetime. An observable algebra can be generated from �sd(fsf), where

�sd are superdistributions (super�elds) and fsf test superfunctions. A complete su-

peralgebra, like above, is represented by Asa =
S
O
Asa(O), where Asa denotes the

superalgebra, with O � M denoting a bounded open region on a supermanifold

M. We shall assume we have assigned to every bounded open region O in M the

following properties:

P.1 All Asa(O) are �-superalgebras containing a common unit element, where it is

assumed that the following condition of isotony holds:

O1 � O2 =) Asa(O1) ,! Asa(O2) :

This condition expresses the fact that the set (which we call in an improper

way) of supersymmetric \observables" increases with the size of the localiza-

tion region.e

P.2 We de�ne the essential notion of locality so that the restriction of a compact re-

gion O 2M to a compact region of the body of the supermanifold, Ob 2M0, is

eCertainly the set of physically interesting observables are obtained taking the body.
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causally separated from another compact region O0
b
2M0. This implies in the

spacelike commutativity, [Asa(O);Asa(O
0)] = 0. We see that this requirement

is important, because only with this restriction we can work with causality:

the notion of a suitable proper time curve which intersects the Cauchy surface

in a global hyperbolic spacetime makes sense only on the body manifold. So,

there we can establish an evolution of Cauchy surfaces to give us a criterion to

de�ne a Hadamard form to the vacuum state. A superdistribution on a super-

manifold as a two-point function shows us that the causality is well-de�ned in

this context. Therefore, we now state: if Ob is causally dependent on O0
b
, then

Asa(O) � Asa(O
0).

P.3 Following Dimock [46], we require that there be an Asa(O) for each superma-

nifold M equipped with some supermetric g, which generalizes the Lorentz

metric, in a di�eomorphic class. Let k : M0 ! M0
0 be a C1 di�eomorphism

on the body manifold, such that k�(g00) = g0, where g0 is a metric of signature

(+;�;�;�) of the body manifold. Then z(k) :M!M0 is a G1 superdi�eo-

morphism z(k) from (M; g) to (M0; g0) such that z(k)�(g0) = g, and there is

an isomorphism �z(k) : Asa ! bAsa such that �z(k)[Asa(O)] = bAsa(z(k)(O)). One

can also show that z(idM0
) = idM, where idM0

(idM) are the identity functions

on M0(M), respectively. Hence, �z(idM0
) = �(idM) and, by eq.(2.7), we have

�z(k1) Æ �z(k2) = �z(k1Æk2).

It is interesting, in a particular way, choose a suitable �-algebra for a formula-

tion of quantum �elds in connection to the G�arding-Wightman approach [48].f In

quantum �eld theory, it is natural to work with tensor product over test functions,

since is usual the presence of more than one �eld. Therefore, we introduce a tensor

algebra of smooth superfunctions of compact support over O 2 M, where O is an

open region in a supermanifold. Let fm be a test superfunction in Dm(O), so that

F = �m2Nfm(z1; : : : ; zm) 2 Asa(O), where here zi = (xi; �i; ��i) denotes the superco-

ordinates. In a same way we take !m(z; : : : ; zm) 2 D0
m(O), here D

0
m is the dual space

of Dm consisting of m-point superdistributions ! = f!mgm2N, such that !m belongs

to the dual algebra denoted by A0
sa(O). As we are working on involutive superalge-

bras, let us de�ne the operation of involution (�) by f �m(z1; : : : ; zm) = fm(zm; : : : ; z1),

where f �m = fm denotes the complex conjugation.

A superstate ! in this class of algebra is a normalized positive linear functional

! : Asa(O) ! GL, with !(F
�F ) � 0 for all F 2 Asa(O). The normalization means

that !0 = 1. This net of algebra is the Borchers-Uhlmann one [52]. Such an algebra

fSome work concerning the axiomatic supersymmetric quantum �eld theory is contained in [49,

50], where it is shown that the standard Wightman axioms of a relativistic quantum �eld theory

can be modi�ed so as to allow supersymmetry.
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does not contain any speci�c dynamical information, which can be obtained by

specifying a vacuum state on it. Once the vacuum state has been speci�ed, through

the GNS construction which �xes a Hilbert superspace and a vacuum vector, one can

extract from the corresponding time-ordered, advanced or retarded superfunctions

the desired information.

A superstate is said to satisfy the essential property of local commutativity if

and only if for all m � 2 and all 1 � i � m� 1 we have

!m(f1 
 � � � 
 fi 
 fi+1 
 � � � 
 fm) = !m(f1 
 � � � 
 fi+1 
 fi 
 � � � 
 fm) ;

for all fi 2 G1
0 (O), such that the restriction of each fi on compact regions of the

body of supermanifold implies that the supp fijOb and supp fi+1jOb are spacelike

separated. Furthermore, a superstate ! is \quasi-free" if the one-point superdistri-

bution and all the truncated m-point superdistributions for m 6= 2 vanish, i.e., all

m-point superdistributions are obtained from the two-point superdistribution via

relation:

!2m+1(f1 
 � � � 
 fm) = 0 for m � 0 ;

!2m(f1 
 � � � 
 fm) =
X

i1<���<i2m
ik<jk

i1;:::;j2m distinct

!2(fi1 
 fj1)!2(fi2 
 fj2) � � �!2(fi2m 
 fj2m) ;

for m � 1.

It is a well-know result that the physical model can be described by the GNS

construction, showing us how the Hilbert space is constructed and de�ning what

are the operators (just the algebra representation) acting in this space. According

to conventional prescription, for getting the Hilbert space we choose the quotient

between the observable algebra and the ideal N! (to guarantee the scalar product

existence). In this stage the problem of several inequivalent representation persists.

In 
at superspaces, the super-Poincar�e invariance of the vacuum state picks out the

correct representation [49]. In general supermanifolds the case is more delicated;

we will look for (super)Hadamard structures. This is motivated by the ordinary

general manifold case. At last, we choose an acceptable Hilbert superspace from the

algebraic properties via GNS construction by the following identi�cation:

!m(f1 
 � � � 
 fm) = h
!; �!(f1) : : : �!(fm)
!i ;

where here 
! is a distinguished vector in Hilbert superspace, and �! is the re-

presentation of the elements F 2 Asa(O) which play the role of self-adjoint linear

operator acting in the Hilbert superspace over test superfunctions. In addition, we

use the physical requirements on the body manifold in order to de�ne whole set of
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superstates which are supposed to be distinguished by a certain generalized form of

the spectral condition [11].

Remark. The main features of Hilbert superspaces relevant for our purposes are

summarized as follows: (i) when the Grassmann algebra GL is endowed with the

Rogers norm, every Hilbert superspace is of the form H = H 
 GL, where H is

an ordinary Hilbert space,g (ii) the GL-valued inner product h�; �i : H � H ! GL

respects the body operation hxb; ybi = hx; yib and hx; xib � 0 for all 2 H, so that

x 2 H has nonvanishing body if and only if hx; xib > 0. For generalizations of some

basic results of the theory of Hilbert space to Hilbert superspaces we refer to the

recent paper [38] and references therein. N

5 Hadamard (Super)states

As already emphasized, the Hadamard state condition provides a framework in which

we may improve our understanding to the problem concerning the determination of

physically acceptable states. The motivation for we adopt the Hadamard structure

of the vacuum state in curved spacetime quantum �eld theory is quite simple. In

general, as we lost the possibility of pick out a good representation for the model

due the fact that now we have not more an invariant structure over the action

of an isometry group (in the 
at case, the global Poincar�e group), we must get

another condition of choose. Since we are able to describe some aspects of a manifold

observing the evolution of Cauchy surface (CS) coming from of asymptotic 
at

space, a new kind of invariance becomes natural, and this invariance arises from

the preservation of some particular structure while the CS geometry is changing in

determinated manifolds.

In particular, for states whose expectation values of the energy-momentum ten-

sor operator can be de�ned by using the point separation prescription for renor-

malization, Fulling et al. [53] showed that if such states have a singularity structure

of the Hadamard form in an open neighbourhood of a Cauchy surface, then they

have their forms preservated independently of the Cauchy evolution. In this case,

the states are said to have the Hadamard form if they can be expressed as

�Had(x1; x2) =
U(x1; x2)

�(x1; x2)
+ V (x1; x2) lnj�(x1; x2)j+W (x1; x2) ;

where �(x1; x2) is one-half of the square of the geodesic distance between x1 to x2.

In 
at spacetime or in the x1 ! x2 limit in curved spacetime, � = 1
2
(x1 � x2)2. It is

clear of this that sing supp �Had = f(x1; x2) j � = 1
2
(x1 � x2)

2 = 0g (we recall that

gThe existence of a subspace H of H called a base Hilbert space is important in physical

applications [51].
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the singular support of a distribution u 2 D0(X) is the smallest closed subset Y of

X such that ujXnY is of class C1). U; V and W are regular functions for all choices

of x1 and x2. The functions U and V are geometrical quantities independent of the

quantum state, and only W carries information about the state. Therefore, for free

quantum �eld models in ordinary globally hyperbolic manifolds, the Hadamard form

plays an important role: it is a strong candidate to describe an acceptable physical

representation.

The search for the Hadamard form in the superspace case is simple, since the

latter is, in general, obtainable by applying the function Æ2(�� � ��0) (or Æ2(� � �0))

and an exponential structure eE(@x;�;
��) to the ordinary Hadamard form �Had (see

Proposition 7.3 below and [54, 55] for details), such that the singularity structure

region is not a�ected.h This issue is recaptured in Section 6. Since we can deal

with a supermanifold which has a body manifold being a globally hyperbolic one

(to guarantee this we just report to the construction of Bonora-Pasti-Tonin [28]),

it is important to establish that only projectively superHadamard structures make

sense. The obvious explanation for this statement is that the structure must cover

the global time notion, and consequently the argument of causality, but over a su-

permanifold the notion of causal curves are not well de�ned unless projectively. The

tool to extend the Hadamard structure to the supersymmetric environment arises

from the fact that the existence and uniqueness of the Grassmannian continuation

(z-continuation) for C1 functions is checked. By a body projection, we always get

the ordinary Hadamard structure such that the latter must be invariant by CS evolu-

tion on the body manifold. This is a consistent result, since we will show in the next

section, through an alternative and equivalent characterization of the Hadamard

condition due Radzikowski [8] which involves the notion of the wavefront set of a

superdistribution, that the structure of singularity is not changed and is condensed

in the ordinary region of any Green superfunction, corroborating to the fact that

only on the body of a supermanifold the causality makes sense.

6 Microlocal Analysis in Superspace

Important progress in understanding the signi�cance of the Hadamard form relates it

to H�ormander's concept of wavefront sets and microlocal analysis [8], in a particular

way by the wavefront set of their two-point functions. It satis�es the Hadamard

condition if its wavefront set contains only positive frequencies propagating forward

in time and negative frequencies backward in time.

hSee, for example, the textbook of Piguet and Sibold [56] where a comprehensive account on

the renormalization of supersymmetric theories through the \algebraic" renormalization approach

can be found.
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The focus in this section will be on the extension of the H�ormander's description

of the singularity structure (wavefront set) of a distribution to include the super-

symmetric case. The well-known result that the singularities of a superdistribution

may be expressed in a very simple way through the ordinary distribution is proved

by functional analytical methods, in particular the methods of microlocal analysis

formulated in superspace language.

6.1 Standard Facts on Microlocal Analysis

The study of singularities of solutions of di�erential equations is simpli�ed and the

results are improved by taking what is now known as microlocal analysis. This

leads to the de�nition of the wavefront set, denoted (WF ), of a distribution, a

re�ned description of the singularity spectrum. Similar notion was developed in

other versions by Sato [57], Iagolnitzer [58] and Sj�ostrand [59]. The de�nition, as

known nowadays, is due to H�ormander. He used this terminology due to an existing

analogy between his studies on the \propagation" of singularities and the classical

construction of propagating waves by Huyghens.

The key point of the microlocal analysis is the transference of the study of

singularities of distributions from the con�guration space only to the rather phase

space, by exploring in frequency space the decay properties of a distribution at

in�nity and the smoothness properties of its Fourier transform. For a distribution u

we introduce its wavefront set WF (u) as a subset in phase space Rn �Rn .i We shall

be thinking of points (x; k) in phase space as specifying those singular directions

k of a \bad" behaviour of the Fourier transform bu at in�nity that are responsible

for the non-smoothness of u at the point x in position space. So we shall usually

want k 6= 0. A relevant point is thatWF (u) is independent of the coordinate system

chosen, and it can be described locally.

As it is well-known [60, 39], a distribution of compact support, u 2 E0(Rn), is a

smooth function if, and only if, its Fourier transform, bu, rapidly decreases at in�nity
(i.e., as long as supp u does not touch the singularity points). By a fast decay at

in�nity, one must understanding that for all positive integer N exists a constant CN ,

which depends on N , such that

jbu(k)j � (1 + jkj)�NCN ; 8N 2 N ; k 2 Rn : (6.1)

If, however, u 2 E0(Rn) is not smooth, then the directions along which bu does not

fall o� suÆciently fast may be adopted to characterize the singularities of u.

For distributions does not necessarily of compact support, still we can verify if

its Fourier transform rapidly decreases in a given region V through the technique of

iThe functorially correct de�nition of phase space is Rn � (Rn )�. We shall here ignore any

attempt to distinguish between Rn and (Rn )�.
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localization. More precisely, if V � X � R
n and u 2 D0(X), we can restrict u to a

distribution ujV in V by setting ujV (�) = u(�), where � is a smooth function with

support contained in a region V , with �(x) 6= 0, for all x 2 V . The distribution �u

can then be seen as a distribution of compact support on Rn . Its Fourier transform

will be de�ned as a distribution on Rn , and must satisfy, in absence of singularities

in V 2 R
n , the property (6.1). >From this point of view, all development is local

in the sense that only the behaviour of the distribution on the arbitrarily small

neighbourhood of the singular point, in the con�guration space, is relevant.

Let u 2 D0(Rn) be a distribution and � 2 C1
0 (V ) a smooth function with

support V � R
n . Then, �u has compact support. The Fourier transform of �u

produces a smooth function in frequency space.

LEMMA 6.1. Consider u 2 D0(Rn) and � 2 C1
0 (V ). Then c�u(k) = u(�e�ikx).

Moreover, the restriction of u to V � R
n is smooth on V if, and only if, for every � 2

C1
0 (V ) and each positive integer N there exist a constant C(�;N), which depends

on N and �, such that jc�u(k)j � (1+ jkj)�NC(�;N), for all N 2 N and k 2 Rn .

If u 2 D0(Rn) is singular in x, and � 2 C1
0 (V ) is �(x) 6= 0; then �u is also

singular in x and has compact support. However, in some directions in k-space c�u
until will be asymptotically limited. This is called the set of regular directions of u.

DEFINITION 6.2. Let u(x) be an arbitrary distribution, not necessarily of compact

support, on an open set X � R
n . Then, the set of pairs composed by singular points x

in con�guration space and by its associated nonzero singular directions k in Fourier

space

WF (u) = f(x; k) 2 X � (Rnn0) j k 2 �x(u)g ; (6.2)

is called wavefront set of u. �x(u) is de�ned to be the complement in Rnn0 of the

set of all k 2 Rnn0 for which there is an open conic neighbourhood M of k such thatc�u rapidly decreases in M , for jkj ! 1.

Remarks. We will now collect some basic properties of the wavefront set:

1. The WF (u) is conic in the sense that it remains invariant under the action

of dilatations, i.e., when we multiply the second variable by a positive scalar.

This means that if (x; k) 2 WF (u) then (x; �k) 2 WF (u) for all � > 0.

2. From the de�nition of WF (u), it follows that the projection onto the �rst

variable, �1(WF (u))! x, consists of those points that have no neighbourhood

wherein u is a smooth function, and the projection onto the second variable,

�2(WF (u))! �x(u), is the cone around k attached to a such point denoting

the set of high-frequency directions responsible for the appearance of a

singularity at this point.
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3. The wavefront set of a smooth function is the empty set.

4. For all smooth function � with compact suport WF (�u) � WF (u).

5. For any partial linear di�erential operator P , with C1 coeÆcients, we have

WF (Pu) � WF (u) :

6. If u and v are two distributions belonging to D0(Rn), with wavefront sets

WF (u) and WF (v), respectively; then the wavefront set of (u+ v) 2 D0(Rn)

is contained in WF (u) [WF (v).

7. If U; V are open set of Rn , u 2 D0(V ), and � : U ! V a di�eomorphism

such that ��u 2 D0(U) is the distribution pulled back by �, then WF (��u) =

��WF (u). N

One further result, which we merely state, is needed to complete this brie�ng

on microlocal analysis.

THEOREM 6.3 (Wavefront set of pushforwards of a distribution). Let f :

X ! Y be a submersion, and let u 2 E0(X). Then

WF (f�u) � f(f(x); �) j x 2 X; (x;
tf 0x�) 2 WF (u) or tf 0x� = 0g ;

where tf 0x denotes the transpose matrix of the Jacobian matrix f 0x of f .

6.2 Wavefront set of a Superdistribution

It is already well-known that the singularity structure of Feynman (or more precisely

Wightman) superfunctions is completely associated with the \bosonic" sector of the

superspace. Although claims exist that the result is completely obvious, we do not

think that a clear proof is available in the literature, to the best of our knowledge.

In fact, there is a certain gap in the scienti�c literature between the usual textbook

presentation of the singularity structure of superfunctions and the very mathematical

treatement based on microlocal analysis. The purpose of the present subsection is to

�ll this gap. As expected, our result con�rms that the decay properties of an ordinary

distribution hold also to the case of a superdistribution, i.e., no new singularity

appear by taking into account the structure of the superspace.

LEMMA 6.4. Let X � Gm;0L be an open set, and u be a superdistribution on X taking

values in GL, i.e., a linear functional u : G1
0 (X) ! GL. Let � be a supersmooth

function with compact support K � X. Then �u is also supersmooth on K, if its
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components (�u)(�(x)) are smooth on a compact set K 0 � 
, where 
 is the body of

superspace. Therefore, the following estimate holds:���c�u(k)��� � (1 + jkbj)
�NC(N; �) :

Indication of Proof. A schematic proof may be constructed along the lines suggested

by DeWitt [26]: from De�nition 2.4 follows that functions of x are in one-to-one

correspondence with functions of xb; this implies that in working with integrals over

G
m;0
L one may for many purposes proceed as if one were working over the body of

superspace, 
 = f(x; 0; 0) 2 X j �(x) 2 R
mg. Because �u(x) vanishes at in�nity,

independently of their souls, the contour in GmL;0 may be displaced to coincide with 
,

without a�ecting the value of the integral. So, the theory of the Fourier transforms

remains unchanged in form. For the sake of simplicity, we take the case for which

s(x) = (x� �(x)) is a smooth singled-valued function of �(x) = xb and L = 2 is the

number of generators of G1;02 . This implies

c�u(k) = Z dx eikx�u(x)

=

Z
dxb e

ikbxb
�
�u(xb) + i xb�u(xb)kij�

i�j
�

= c�u(kb) + (c�u)0(kb)kij�i�j :
The proof follows one making use of repeated integrations-by-parts generalizing the

fact �i k�1
b

�
d
dxb

eikbxb
�
= eikbxb

c�u(k) = (i)j�j

k�
b

�Z
dxb e

�ikbxb
�
D�
xb
(�u(xb)) +D�

xb
(xb�u(xb))kij�

i�j
��

:

Taking the absolute value of both sides and using the Banach algebra property of

GL, we get the estimate:���c�u(k)��� � ���c�u(kb)���+ ���(c�u)0(kb)��� jkijj
� (1 + jkbj)

�j�j

0
@ sup

j�j�m

xb2K0

jD�
xb
(�u(xb))j+ sup

j�j�m

xb2K0

jD�
xb
(xb�u(xb))j jkijj

1
A :

(6.3)

This inequality clearly implies our assertion. Hence, in order that (6.3) be smooth,

we only need that c�u(k) be rapidly decreasing as jkbj ! 1. The proof may be
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generalized to include the case in which s(x) is a multi-valued function of the body

and L is �nite arbitrarily. We �nish the proof by observing that as expected the soul

part of k has a polynomial behaviour.

LEMMA 6.5. By replacing Gm;0L by Gm;nL in the Lemma 6.4, then in this case the

following estimate holds:���c�u(k; �; ��)��� � (1 + jkbj)
�NC(N; �(
))k�1kk��1k � � � k�nkk��nk :

Proof. First, we note that both u and � are G1 superfunctions which can be ex-

panded as a polinomial in the odd coordinates whose coeÆcients are functions de-

�ned over the even coordinates.

u(x; �; ��) =
�X

(
)=0

z(u(
))(x)(�)
(
) and �(x; �; ��) =

�X
(
)=0

z(�(
))(x)(�)
(
) :

Then, the proof follows essentially by similar arguments to the proof of the previous

lemma, taking into account the polinomial behaviour of odd variables, � and ��. In

fact, �u(x; �; ��) is linear function in each odd coordinates separately, because each

odd coordinate is nilpotent, and no higher power of a odd coordinate can appear,

i.e., �u(x; �; ��) is analytic in the odd coordinates. This suggests that to take the

Fourier transform of �u(x; �; ��) on the even variables must be suÆcient to infer on

the smoothness properties of �u(x; �; ��):

c�u(k; �; ��) = �X
(
)=0

LX
(�)=0

(c�u)(
);(�)(kb)(�)(�)(�)(
)

=
�X

(
)=0

�Z
dxb e

ikbxb
�
(�u)(
)(xb) + i xb(�u)(
)(xb)kij�

i�j + � � �
��

(�)(
) :

(6.4)

Then, taking the absolute value of both sides of (6.4), we obtain from the Banach

algebra property of GL and for each integer N the estimate:

���c�u(k; �; ��)��� =
������

�X
(
)=0

LX
(�)=0

(c�u)(
);(�)(kb)(�)(�)(�)(
)
������

�
�X

(
)=0

LX
(�)=0

���(c�u)(
);(�)(kb)��� 

(�)(
)


�(1 + jkbj)

�NC(N; �(
))k�1kk��1k � � � k�nkk��nk : (6.5)

This proves the lemma.
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So, the odd sector of superspace does not produce any e�ect on the singular

structure of u. Combining the results above, we have proved:

THEOREM 6.6. The singularities of a superdistribution u are located at speci�c

values of the body of x, the coordinates of the physical spacetime, independently

of the odd coordinates.

Comment. That the body of the superspace is responsible for carrying all its sin-

gular structure is not too surprising. Apparently, there exists no reason to have

superspaces whose topological properties are substantially di�erent from its body,

which is responsible for carrying all observables, re
ecting some measurable proper-

ties of the model. N

We sum up the preceding discussion as follows:

DEFINITION 6.7 (Wavefront Set of a Superdistribution). The wavefront set

WF (u) of a superdistribution u in a superspace M is the complement of the set of

all regular directed points in the cotangent bundle T �M0, where M0 = �(M) is the

body of superspace, excluding the trivial point kb = 0.

There is a more precise version of De�nition 6.7. As we have seen in Section 3

all of the foregoing de�nitions and statements about supermanifolds may be con-

verted into corresponding de�nitions and statements about ordinary manifolds, since

associated with a supermanifold M of dimension (m;n) is a family of ordinary ma-

nifolds, of dimensions N = 2L�1(m + n), (L = 1; 2; : : :). The resulting manifold

is called the Lth skeleton of M and denoted by SL(M) [26]. With the aid of the

family of skeletons we can de�ne the pushforward (or direct image) of a superdis-

tribution. Let X � SL(M) and Y � M0 be open sets and let � be the natural

projection from SL(M) (or M) to M0, the body map. If we introduce local coordi-

nates x = (x1; : : : ; xN ) in X, then Y is de�ned by xb = (x1; : : : ; xm). There is a

local relationship between the body and the skeletons given by

SL(X)
di�.
= Y � R2L�1 (m+n)�m :

Now, let u be a superdistribution on X, then the pushforward ��u de�ned by

��u(') = u(��'), ' 2 C1
0 (Y ), it is a superdistribution on Y . Using these concepts,

we can establish the following

COROLLARY 6.8. Let � : X � SL(M) ! Y � M0 be the body projection, and let

u 2 D0(X). Then

WF (��u) � f(xb; kb) 2 T
�M0n0 j 9 x

0 = (xm+1; : : : ; xN 0); (xb; x
0; kb; 0) 2 WF (u)g ;

where N 0 = 2L�1(m + n)�m.
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Proof. If x = (xb; x
0), where xb 2 Y , x0 2 RN

0
and � : X ! Y is the body map, then

the Jacobian matrix is of the form �0x = (1; 0) and the statement follows by Theorem

6.3. Thus, with any superspace M and body of superspace M0 the singularities of a

superdistribution ��u are located in a natural way in the set of projections of those

points of the wavefront set of the superdistribution u where singular directions are

parallel to the xb-axis.

Example. For the model of Wess-Zumino, which consist of a chiral super�eld � in

self-interaction, the Feynman superpropagators, in 
at superspace, are [54]:

�F
��(x; �;

��; x0; �0; ��0) = �imÆ2(� � �0)ei(��
� ����0�� ��0)@��F(x� x

0) ;

�F
���(x; �;

��; x0; �0; ��0) = ei(��
� ��+�0����0�2��� ��0)@��F(x� x

0) ; (6.6)

�F
����(x; �;

��; x0; �0; ��0) = imÆ2(�� � ��0)e�i(��
� ����0�� ��0)@��F(x� x

0) ;

where Æ2(���0) = (���0)2, with x; �; �� having the form (2.2) and (2.3), respectively.

According to our analysis, the wavefront set of Feynman superprogators have the

form,

WF (�F
susy) = f(xb; kb; x

0
b
;�k0

b
; x; 0; x0; 0) j (xb; kb; x

0
b
;�k0

b
) 2 WF (�F

susyjM0
)g ;

where susy = (��; ���; ����), x = (xm+1; : : : ; xN 0), x0 = (x0m+1; : : : ; x
0
N 0), �F

susyjM0
�

���
F
susy is the direct image of Feynman superpropagators on the body of superspace,

and WF (�F
susyjM0

) � O [D [8], with the o�-diagonal piece given by

O = f(xb; kb; x
0
b
;�k0

b
) 2 T �M2

0 j(xb; kb) � (x0
b
; k0

b
); xb 6= x0

b
;

kb 2 V � if xb 2 J�(x
0
b
)g ;

where the equivalence relation (xb; kb) � (x0
b
; k0

b
) means that there is a lightlike

geodesic 
 connecting xb and x0
b
, such that at the point xb the covector kb is

tangent to 
 and k0
b
is the vector parallel transported along the curve 
 at x0

b
which

is again tangent to 
.

The diagonal piece is given by

D = f(xb; kb; xb;�kb) 2 T
�M2

0n0 j xb 2M0; kb 2 T
�M2

0n0g :

For this reason, the Feynman superpropagators are singular only for pairs of points

on the body of superspace that can be connected by a lightlike geodesic. N

We end this section quoting the main lesson on the microlocal analysis that we

can use, i.e., the one about how the wavefront set may be lifted from superdistribu-

tions on open sets of Gm;nL to superdistributions on a smooth supermanifoldM. Such
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an extension can be achieved in analogy with the ordinary case. Let O be an open

neighbourhood of z 2M, which is assumed without loss generality to be covered by

a single coordinate patch, and u 2 D0(O) be a superdistribution. Then, there exists

a di�eomorphism � : O ! U � Gm;nL , so that ��u 2 D0(U) is the superdistribution

pulled back by �. Therefore WF (��u) = ��WF (u). Now, let � be a supersmooth

function with compact support contained within O with �(z) 6= 0 { one should keep

always in mind that each component �(
)(�(x)) of �(z) is a smooth function and with

support contained within Ob, where Ob denotes an open neighbourhood of xb 2M0.

Hence, the superdistribution u� can be seen as a superdistribution on Gm;nL which

is of compact support, and given that there are no points belonging to the WF (u),

the Fourier transform, cu�, of u� is well de�ned as a superdistribution on Gm;nL and

satis�es the Lemma 6.5.

7 A Type of Microlocal Spectral Condition

We come back to the question of the Hadamard superstates. As repeatedly stated in

this paper, Hadamard states have acquired a prominent status in connection with

the spectral condition, and are recognized as de�ning the class of physical states

for quantum �eld theories on a globally hyperbolic spacetime. Important progress

in understanding the signi�cance of Hadamard states was achieved by Radzikowski

(with some gaps �lled by K�ohler [10]) who succeeded in characterizing the class of

these states in terms of the wavefront set of their two-point function !2 satisfying

a certain condition. He called this condition the wavefront set spectral condition

(WFSSC). He proposed that a quasifree state ! of the Klein-Gordon �eld over

a globally hyperbolic manifold is a Hadamard state if and only if its two-point

distribution !2 has wavefront set

WF (!2) =
�
(x1; k1); (x2; k2) 2 T

�M2
0 n f0g j (x1; k1) � (x2;�k2) and k

0
1 � 0

	
;

(7.1)

so that x1 and x2 lie on a single null geodesic 
, (k1)
� = g��(k1)� is tangent to 
 and

future pointing, and when k1 is parallel transported along 
 from x1 to x2 yields

�k2. If x1 = x2, we have k
2
1 = 0 and k1 = k2. Radzikowski in fact showed that this

condition is similar to the spectral condition of axiomatic quantum �eld theory [48].

Note that equation (7.1) restricts the singular support of !2(x1; x2) to points x1
and x2 which are null related. Hence, !2 must be smooth for all other points. This is

known be true for theory of quantized �elds on Minkowski space for space-like related

points. The key is the Bargman-Hall-Wightman theorem which shows that this

obtainable by applying complex Lorentz transformations to the primitive domain of

analyticity determined by the spectral condition. However, a similar prediction on
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the smoothness does not exist for time-like related points. Radzikowski suggested to

extend the right-hand side of equation (7.1) to all causally related points, in order

to include possible singularities at time-like related points.

The microlocal characterization of Hadamard states may be applied equally

well to a n-point function, with n > 2. This generalization was achieved by Brunetti

et al. [11]. They suggested a prescription which we recall now. Let Gm denote the

set of all �nite graphs,j into some Lorentz manifold M0, whose vertices represent

points in the set V = fx1; : : : ; xmg 2 M0, and whose edges e represent connections

between pairs xi; xj by smooth curves (geodesics) 
(e) from xi to xj. To each edge

e one assigns a covariantly constant causal covector �eld ke which is future directed

if i < j, but not related to the tangent vector of the curve. If e�1 denotes the edge

with opposite direction as e, then the corresponding curve 
(e�1) is the inverse of


(e), which carries the momentum ke�1 = �ke.

DEFINITION 7.1 (�SC [11]). A state ! with m-point distribution !m is said to

satisfy the Microlocal Spectral Condition if, and only if, for any m

WF (!m) � �m ;

where �m is the set f(x1; k1); : : : ; (xm; km)g for which there exists a graph Gm as

described above with ki =
P
ke(xi) where the sum runs over all edges which have the

point xi as their sources. The trivial momentum con�guration k1 = � � � = km = 0 is

excluded.

Passing from a smooth manifold to a smooth supermanifold, it seems reasonable

to require that a superstate satis�es a certain type of microlocal spectrum condition.

A completely analogous statement to the De�nition 7.1 can be achieved, once more

with the aid of the family of skeletons, SL(M), and the graph theory. Let Gr be a set

of �nite \supergraphs," into some SL(M), whose vertices represent points in the set

V = fx1; : : : ; xrg 2 SL(M). Locally the traditional notion of a supergraph drawing is

that its vertices are represented by points in the hyperplane R2L�1 (m+n), its edges are

represented by curves { that are piecewise linear { between these points, and di�erent

curves meet only in common endpoints. If �0 : R2L�1 (m+n) ! R
m is the canonical

projection, then eG = �0G is a graphy composed by the projection of those points

of a supergraph whose edges e represent connections between pairs xbi ; xbj 2 R
m

by curves from xbi to xbj . Then, according to Brunetti et al [11], an immersion of

a graph eG into the body manifold M0 is an assignment of vertices of eG to points

in M0, and of the edges of eG to piecewise smooth curves in M0, e ! 
(e) with

jA graph is a pair G = (V;E), where the elements of V are the vertices (or nodes, or points) of

the graph G, and the elements of E are its edges (or lines). The numbers of vertices of a graph is

its order, and graphs are �nite or in�nite according to their order.
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source s(
(e)) = xb(s(e)) and target t(
(e)) = xb(t(e)), respectively, together with

a covariantly constant causal covector �eld kbe on 
 such that: (i) if e�1 denotes

the edge with opposite direction as e, then the corresponding curve 
(e�1) is the

inverse of 
(e); (ii) for every edge e the covector kbe is directed toward future if

xb(s(e)) < xb(t(e)); (iii) kbe�1 = �kbe . Using this construction, we establish:

DEFINITION 7.2. A superstate !susy with r-point superdistribution !susy
r is said to

satisfy a type of Microlocal Spectral Condition if, and only if, for any r

WF (!susy
r ) =

n
(xb1 ; x

0
1; kb1; 0); : : : ; (xbr ; x

0
r; kbr ; 0) jWF (��!

susy
r ) � e�ro ;

where e�r is the set f(xb1 ; kb1); : : : ; (xbr ; kbr)g for which there exists a graph eG as

described above with kbi =
P
kbe(xbi) where the sum runs over all edges which have

the point xbi as their sources. The trivial momentum con�guration kb1 = � � � =

kbr = 0 is excluded.

Remarks. We would like to call attention to two important points:

� The De�nition 7.2 is in agreement with the DeWitt's remark which asserts

that, in physical applications of supersymmetric quantum �eld theories, the

spectral condition of the GNS-Hilbert superspace is restricted to the ordinary

GNS-Hilbert space that sits inside the GNS-Hilbert superspace.

� The De�nition 7.2 provides us with a \global" microlocal spectral condition. In

our setting the word \global" means that the singular support of all component

�elds is embodied in WF (��!
susy
m ). This is typical feature of supersymmetric

theories in superspace language. For instance, for the chiral super�eld of Wess-

Zumino [54], in analogy to the scalar component �eld, the Hadamard condition

for a spinorial component �eld is formulated in terms of its two-point distri-

bution !2. The latter are obtainable by applying the adjoint of the spinorial

operator to a suitable auxiliary Hadamard state of the squared spinorial equa-

tion. For �xed spinor indices the wavefront set of the latter is contained in

r.h.s. of equation (7.1) and derivatives do not enlarge the wavefront set. N

Next we give a example of an application of our de�niton. We restrict ourselves

to the simplest case of massive chiral/antichiral �elds of the Wess-Zumino model in


at superspace, leaving other cases as the Wess-Zumino model, or supersymmetric

gauge theories in curved superspace for future works.

? The Free Wess-Zumino Model in Flat Superspace
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The simplest N = 1 supersymmetric model in four dimension is the free model

of Wess-Zumino [54], which consists of a chiral super�eld �(x; �; ��), resp. antichiral

super�eld ��(x; �; ��), obeying the di�erential constraint �D _�� = 0, resp. D�
�� = 0.

As usual,

D� =
@

@��
� i��� _�

�� _�@� ; �D _� = �
@

@�� _�
+ i����� _�@� ; (7.2)

is a supersymmetric covariant derivatives. Our notations and conventions are those

of [56]. The elements of the N = 1 superspace are parametrized by even and odd

coordinates zM = (x�; ��; �� _�), with � = (0; : : : ; 3); � = (1; 2); _� = (_1; _2), where �

and its complex conjugate ��, are odd coordinates and by construction they anticom-

mute with each other. In this case the body manifold is Rm and the body map is

the augmentation map � : Gm;nL ! R
m .

The super�eld �(z) is a function mapping superspace into the even part of a

Grassmann algebra [25]. With the help of the commutation rule �D� (e�i��
���@��) =

e�i��
� ��@�(�@=@���)�, the chiral super�eld can be expanded in powers of the odd

coordinates as

�(z) = e�i��
� ��@�('(x) + � (x) + �2F (x)) ; (7.3)

with '
def
= 2�1=2(A + iB) and F

def
= 2�1=2(D � iE). A, B and  are respectively the

scalar, pseudoscalar and spin-1=2 physical component �elds of �, whereas D and E

are their scalar and pseudoscalar auxiliary components. The latter are necessary for

a classical o�-shell closure of the supersymmetry algebra (they do not corresponding

to propagating degrees of freedom in that appear through non-derivative terms).

As above, the antichiral super�eld ��(z), with the help of the commutation rule

D� (ei��
� ��@��) = ei��

� ��@�(@=@��)�, can be expanded in component �elds:

��(z) = ei��
� ��@�('�(x) + �� � (x) + ��2F �(x)) : (7.4)

The quantum version of the Wess-Zumino model is based on the classical

�eld equations

1

16
�D2 �� +

m

4
� = 0 ;

1

16
D2� +

m

4
�� = 0 : (7.5)

Applying the operator D2 to the �rst equation (resp. �D2 to the second equation),

multiplying the second equation by 4m (resp. the �rst equation), and using the

commutation relation [D2; �D2] = 8iD�� �D@�+162; one may combine them in order

to �nd

(2x +m2)� = 0 ; (2x +m2)�� = 0 : (7.6)

To our classical super�elds � and ��, we associate quantum super�elds, an
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operator-valued \superdistributions," smeared with \supertest" functions,

F (z) = e�i��
� ��@�(f(x) + ��(x) + �2h(x)) ;

�F (z) = ei��
� ��@�(f �(x) + ����(x) + ��2h�(x)) ; (7.7)

with F (z); �F (z) 2 G1
0 (U;GL), the GL-valued superfunctions on an open set U � G

m;n
L

which have compact support.

For all F (z); G(z) 2 G1
0 (U;GL), we de�ne the commutation relations�

�( �F );�( �G)
�
=

Z
d�(z)d�(z0) �PJ

��(z; z
0) �F (z) �G(z0) ;

�
��(F );�( �G)

�
=

Z
d�(z)d�(z0) �PJ

���(z; z
0)F (z) �G(z0) ; (7.8)

�
��(F ); ��(G)

�
=

Z
d�(z)d�(z0) �PJ

����(z; z
0)F (z)G(z0) :

where d�(z)
def
= d8z = d4xd2�d2��. We call �PJ

��, �
PJ
���

and �PJ
����

the Pauli-Jordan

superdistributions, fundamental solutions of the homogeneous equations (7.6). In

fact they are two-point distributions, elements of D0(U).

The vacuum expectation value of the product �(F )�(G) satis�es the relation

(
;�(F )�(G)
) = (wsusy
2 (z; z0); F (z)G(z0)) : (7.9)

The distribution wsusy
2 (z; z0) extends the Wightman formalism. For this reason, we

call wsusy
2 (z; z0) Wightman superdistribution of two-points.

The Wightman superdistribution of n-points will be symbolically written under

the form [49]:

wsusy
n (z1; ; : : : ; zn) =

�

;�

�
x1; �1; ��1

�
: : :�

�
xn; �n; ��n

�


�
; (7.10)

and

wsusy
n (Fn) =

Z nY
i=1

d�i w
susy
n (z1; : : : ; zn)Fn (z1; : : : ; zn) : (7.11)

In this de�nition, we have �xed the order in which we take the superdistribution

and the supertest function.

PROPOSITION 7.3. { The two-point Hadamard, Pauli-Jordan and Wightman su-

perdistributions have the following dependence in x; �; ��:

�X
��(x; �;

��; x0; �0; ��0) = �imÆ2(� � �0)ei(��
� ����0�� ��0)@��X(x� x

0) ;

�X
���(x; �;

��; x0; �0; ��0) = ei(��
� ��+�0�� ��0�2��� ��0)@��X(x� x

0) ; (7.12)

�X
����(x; �;

��; x0; �0; ��0) = imÆ2(�� � ��0)e�i(��
� ����0�� ��0)@��X(x� x

0) ;

where X = (Had;PJ;W).
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Idea of Proof. We start from (6.6) and use the fact that in terms of even and odd

solutions of the homogeneous wave equation, the function �F(x � x0) can be write

as

�F(x� x
0) =

1

2

�
i�Had(x� x

0) + "(x0 � x00)�PJ(x� x
0)
�

(7.13)

Then, by replacing (7.13) in (6.6), we immediately get the Hadamard and Pauli-

Jordan superdistribution as stated. The Wightman superdistribution is obtained

directly from the fact the �PJ(x�x0) = �W(x�x0)��W(x�x0) and �Had(x�x0) =

�i(�W(x� x0) + �W(x� x0)).k

PROPOSITION 7.4. Let !susy be a state for the quantum Wess-Zumino model on


at superspace, whose r-point superdistributions !susy
r satisfy the Wightman axioms.l

Then !susy satis�es the De�niton 7.2.

Proof. This is an immediate consequence of Corollary 6.8 above and Theorem 4.6

of [11].

8 Final Considerations

Having proposed an extension of some structural aspects that have successfully been

applied in the development of the theory of quantum �elds propagating on a general

spacetime manifold so as to include super�eld models on a supermanifold, it would be

interesting to consider the perturbative treatment of interacting quantum super�eld

models, in particular the formulation of renormalization theory on supermanifolds.

The main problem which still remains in this rather restrictive framework is the ma-

thematically consistent de�nition of all powers of Wick \superpolynomials" and their

time-ordered products for the noninteracting theory, which serve as building blocks

for a perturbative de�nition of interacting super�elds. Another work devoted to its

solution is in progress [62], such that covariance with respect to supersymmetry is

manifestly preserved. The renormalization scheme underlying our construction is the

one of Epstein-Glaser. It is formulated, unlike the other renormalization schemes,

in con�guration space. Therefore, it becomes appropriate to de�ne carefully per-

turbative renormalization on a generic spacetime manifold. Recently, Brunetti and

Fredenhagen [16] (with some gaps �lled by Hollands and Wald [61]) have shown that

the Wick polynomials and their time-ordered products can be de�ned in globally

hyperbolic spacetimes. By the methods of this paper we can de�ne powers of Wick

\superpolynomials" and their time-ordered products for the noninteracting theory.

kWe remark that our convention is opposite to that one of Fulling [5], where the Wigthman

function is de�ned without the factor i.
lIn [49, 50] is explained how to generalize the standard Wightman axioms so as to include

supersymmetry.
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