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1 Introduction

The Casimir e�ect can be viewed as the re
ection of vacuum 
uctuations by mirrors.
The presence of a re
ecting boundary alters the modes of a quantized �eld, and results
in shifts in the vacuum expectation values of quantities quadratic in the �eld, such as
the energy density. Typically, Casimir e�ects for massless �elds may be estimated by
dimensional analysis. If r is the distance to the nearest boundary, then the Casimir
energy density is typically of order r�4 times a dimensionless constant. This constant is
usually of order 10�3 in four-dimensional spacetime. It is of course possible to �nd a much
smaller result due to special cancellations. For example, the Casimir energy density for
a single, perfectly conducting plate is zero, even though the mean squared electric and
mean squared magnetic �elds are separately nonzero.

However, these typical results arise from calculations of speci�c geometries, not from
any general theorem. This leaves the possibility of exceptions, where the energy density
is much larger than would be expected on dimensional grounds. Indeed, one possible
mechanism for ampli�cation of vacuum 
uctuations has already been proposed [1, 2]. This
mechanism is based on the fact that the contribution of various parts of the frequency
spectrum to the Casimir e�ect is a highly oscillatory function [3, 4]. The contributions of
di�erent ranges of frequency almost, but not quite, completely cancel one another. This
opens the possibility that one can inhance the magnitude of the e�ect by altering the
re
ectivity of the boundary in selected frequency ranges.

In this paper, we wish to propose a di�erent mechanism for ampli�cation of vacuum

uctuations. This is the use of parabolic mirrors to create anomalously large e�ects near
the mirror's focus. It is well known in classical physics that a parabolic mirror can focus
incident rays which are parallel to the mirror's axis. This means that a particular plane
wave mode becomes singular at the focus. One might wonder if this classical e�ect on
modes produces large vacuum 
uctuations near the focus. We will argue that the answer
to this question is yes.

The outline of this paper is as follows: In Sect. 2, the essential formalism needed
to compute mean squared �eld averages in the geometric optics approximation will be
developed. It will be argued that the dominant contributions will come from interference
terms between di�erent re
ected rays. In particular, expressions will be given for the case
of two re
ected rays from a single incident ray in terms of the path length di�erence of the
two re
ected rays. In Sect. 3 the speci�c case of parabolic mirrors will be studied, and the
condition for the existence of multiply re
ected rays given. It will be shown here that there
is a minimum size required for a parabolic mirror to produce large vacuum 
uctuation
focusing. Section 4 deals with a couple of technical issues, including the treatment of
the apparently singular integrals which arise. In Sect. 5, we give explicit results in an
approximation in which the mirror is only slightly larger than the minimum size needed to
focus vacuum 
uctuations. The possible experimental tests of these results are discussed
in Sect. 6, and conclusions are given in Sect. 7.

Units in which �h = c = 1 will be used throughout this paper. Electromagnetic
quantites will be in Lorentz-Heaviside units.
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2 Basic Formalism

The approach which will be adopted in this paper is a geometric optics approximation.
This approximation assumes that the dominant contribution to the quantities which we
calculate comes from modes whose wavelengths are short compared to the goemetric
length scales of the system. The justi�cation of the approximation will lie in a self-
consistent calculation leading to large contributions from short wavelength modes. At �rst
sight, it might seem that this approximation would always fail, and that only modes whose
wavelengths are of the order of the goemetric length scales will contribute signi�cantly to
quantities such Casimir energy densities. However, there is a circumstance in which this
intuition can fail. This is when there are two or more re
ected rays produced by the same
incident beam. It then becomes possible to have an anomalously large interference term
between these rays, as will be illustrated below.

Let us �rst consider the case of a massless scalar �eld, '. Let the �eld operator be
expanded in term of normal modes as

' =
X
k

(ak Fk + ay
k
F �
k) ; (1)

where ay
k
and ak are creation and annihilation operators, and Fk are the mode functions.

The formal vacuum expectation value of '2 becomes

h'2if =
X
k

jFkj2 : (2)

In the absence of a boundary, the modes Fk are simply plane waves. In the presence of
the boundary, there are both incident and possibly one or more re
ected waves for each
wave vector k. Write the mode function as

Fk = fk +
X
i

f
(i)
k

; (3)

where fk is the incident wave and the f
(i)
k

are the re
ected waves. (Note that here k
denotes the incident wavevector.) We may take all of these waves to be plane waves with
box normalization in a volume V , in which case

fk =
1p
2!V

ei(k�x�!t) : (4)

The f
(i)
k

take the same form, but with k replaced by the appropriate wavevector for the
re
ected wave.

If we now insert Eq. (3) into Eq. (2), we obtain a sum involving both the absolute
squares of the incident and the re
ected waves, and the various possible cross terms
between the di�erent waves:

h'2if =
X
k

"
jfkj2 +

X
i

jf (i)
k
j2 +

X
i

(f�
k
f
(i)
k

+ fkf
(i)�

k) +
X
i6=j

f
(i)
k
f (j)�

k

#
: (5)
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This quantity is divergent and needs to be renormalized by subtraction of the correspond-
ing quantity in the absence of boundaries. We will argue in Sect. 4.1 that this is given by
the above sum without the cross terms:

h'2i0 =
X
k

(jfkj2 +
X
i

jf (i)

k
j2) : (6)

The renormalized expectation value is then given by the sum of cross terms

h'2i = h'2if � h'2i0 =
X
k

"X
i

(f�
kf

(i)
k

+ fkf
(i)�

k) +
X
i6=j

f
(i)
k
f (j)�

k

#
: (7)

Let us examine a particular cross term:

T12 =
X
k

(f (1)
k
f (2)�

k + f
(2)
k
f (1)�

k) : (8)

Here f (1)
k

and f
(2)
k

are both of the form of Eq. (4), except with k replaced by k1 and k2,
respectively. These might be two re
ected waves, both corresponding to the same incident
wavevector k, but di�erent re
ected wavevectors, k1 and k2. Only the direction, not the
frequency changes upon re
ection, so

jk1j = jk2j = jkj = ! : (9)

We can now write

T12 = 2Re
X
k

1

2!V
ei[k1�k2)�x ! 1

8�2

Z
d3k

cos[(k1� k2) � x]
!

; (10)

where the in�nite volume limit has been taken. The argument of the cosine function is
proportional to the di�erence in optical path lengths of the two rays, �`, so that

(k1 � k2) � x = !�` ; (11)

and hence

T12 =
1

8�2

Z
d3k

cos!�`

!
: (12)

Note that the integral in the above expression will diverge as (�`)�2 in the limit that
�`! 0. Thus within the geometric optics approximation, we can obtain an anomalously
large contribution if there are two distinct re
ected rays with nearly the same optical path
length. If this is the case, it provides the self-consistent justi�cation of the approximation.
The dominant contribution to the integral will come from modes with wavelength of the
order of �`; if this is small compared to all other length scales in the problem, then the
use of geometric optics should be a good approximation.

In this paper, we will examine the case of parabolic mirrors and show that for points
near the focus, there can be two re
ected rays with nearly the same path length. Their
path lengths di�er �nitely from that of the incident ray. In this case, the dominant
contribution to h'2i comes from a single term of the form of T12, and we can write

h'2i � 1

8�2

Z
d3k

cos!�`

!
: (13)
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Note that the interference terms between the incident and the re
ected rays give a much
smaller contribution because the �` is much larger for these terms. We can also now
write down expressions for several other quantities of interest. These include h _'2i, where
the dot denotes a time derivative, as well as the scalar �eld energy density

�scalar =
1

2
h _'2 + jr'j2i � h _'2i : (14)

In the last step we used the fact that

j _f (i)
k
j = jrf (i)

k
j (15)

for plane wave modes. We can also obtain renormalized expectation values for electro-
magnetic �eld quantities, such as hE2i and hB2i, or the electromagnetic energy density
�EM = 1

2
(hE2i + hB2i). Here E and B are the quantized electric and magnetic �eld

operators, respectively. The mode functions for these �elds are of the form of the right-
hand-side of Eq. (4), except with an extra factor of ! and a unit polarization vector.
Thus, when we account for the two polarizations of the electromagnetic �eld, we have

hE2i = hB2i = �EM = 2h _'2i = 2�scalar =
1

4�2

Z
d3k ! cos!�` : (16)

3 Optics of Parabolic Mirrors

3.1 Conditions for Multiply Re
ected Rays

A parabolic mirror is illustrated in Fig. 1. The parabola described by

x =
b2 � y2

2b
(17)

has its focus at the origin, x = y = 0. Consider a ray incident at angle � and re
ected at
angle �0 relative to the x-axis. Further suppose that this ray reaches the x-axis at x = a,
where a � b. We wish to �nd the relationship between the angles � and �0. First note
that

� = �0 � � + 2� ; (18)

where � is the angle of the tangent to the parabola at the point of intersection. If we
di�erentiate Eq. (17), we �nd

dy

dx
= � b

yi
= � tan� ; (19)

where here yi is the y-coordinate of the point of re
ection. Note that the re
ected ray is
described by

y = tan �0 (x� a) : (20)

Combine this relation with Eq. (17) to �nd

yi = � b

tan �0

�
1 �

r
sec2 �0 � 2

�a
b

�
tan2 �0

�
: (21)
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Figure 1: A parabolic mirror has its focus at the origin. A ray incident at an angle � with
respect to the x-axis re
ects o� the mirror and arrives at a point a distance a from the
origin at an angle �0. The line tangent to the point of re
ection is at an angle �.

We expand this expression to �rst order in a=b and note that for yi > 0, we need the
minus sign before the square root. We then �nd

yi � � b

tan �0

h
1 � sec �0 +

�a
b

�
sin2 �0 sec �0

i
: (22)

Now combine this result with Eqs. (18) and (19) to �nd, to �rst order in a=b,

� =
a sin3 �0 sec �0

b(sec �0 � 1)
: (23)

First, we note that � ! 0 as a ! 0 for �xed �0. This is the expected result that all
rays emanating from the focus are re
ected into parallel rays. Equation (23) is plotted
in Fig. 2. We see that for a 6= 0, there can be two re
ected rays for a given incident ray.
However, one of the re
ected rays always corresponds to �0 > �=3. Hence the mirror must
subtend an angle greater than �=3 as measured from the x-axis for this to happen.

Our next task is to compute the di�erence in path lengths for these two re
ected rays.
Consider �rst the distance ` which a particular ray travels after it �rst crosses the line
x = a. This distance can be broken into two segments s1 and s2, as illustrated in Fig. 3.
If xi is the x-coordinate of the re
ection point, then

s1 =
q
(xi � a)2 + y2i (24)

and

s2 =
xi � a

cos �
: (25)
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Figure 2: The incident angle � as a function of the angle �0 of the re
ected ray. Here it
is assumed that the rays arrive near the focus (a=b � 1). For a single incident angle �,
there can be two re
ection angles �0. The maximum of this curve occurs at �0 = �=3.

We may now use Eqs. (17) and (21) to write

s1 � b

sin2 �0

h
1� cos �0 �

�a
b

�
sin2 �0

i
: (26)

Similarly,

s2 � xi � a � b cos �0

sin2 �0

h
1� cos �0 �

�a
b

�
sin2 �0

i
: (27)

Thus,
` = s1 + s2 = b� a(1 + cos �0) : (28)

If there are two distinct re
ected rays with �0 = �01 and �0 = �02, respectively, then the
path length di�erence is

�` = a(cos �01 � cos �02) : (29)

3.2 Parabola of Revolution

In Section 3, we dealt with the rays re
ected from a parabola in a plane. There are two
ways to add on the third spatial dimension. One is to consider a parabolic cylinder and
the other is to consider a parabola of revolution, the surface formed by rotating a parabola
about its symmetry axis. In the latter case, one has an azimuthal angle 0 � � < 2�. Thus
Eq. (13) becomes

h'2ipr = 1

4�2

Z
d�0

Z 1

0

d! ! cos!�` = � 1

4�2a2

Z
d�0

1

(cos �01 � cos �02)
2
: (30)

Here we have evaluatedZ 1

0

d! ! cos!�` = lim
�!0

Z 1

0

d! ! cos!�` e��! = � 1

�`2
; (31)
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Figure 3: The ray re
ects from a point on the mirror with coordinates (xi; yi) and then
arrives at the point (a; 0).

and then used Eq. (29).
We can do an analogous calculation for the various quantites given in Eq. (16) to �nd,

for example,

hE2ipr = 3

2�2a4

Z
d�0

1

(cos �01 � cos �02)
4
: (32)

Here we have usedZ 1

0

d! !3 cos!�` = lim
�!0

Z 1

0

d! !3 cos!�` e��! =
6

(�`)4
: (33)

3.3 Parabolic Cylinder

Another possible geometry in three space dimensions is that of the parabolic cylinder.
Let the cylinder be parallel to the z-direction. The wavevector k of the light rays now
has a z-component, kz, so that

! =
p
�2 + k2z ; (34)

where � is the magnitude of the component of k in the xy plane (perpendicular to the
z-direction). If s is a distance traveled in the xy plane, then the actual distance traveled
is

� = s
!

�
: (35)

Thus the di�erence in path lengths for a pair of re
ected rays is !�`=�. We can modify
Eq. (13) to give an expression for the mean value of '2 near the focus of a parabolic
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cylinder as

h'2ipc = 1

8�3

Z
d3k

cos(!2�`=�)

!
: (36)

Similarly, the mean squared electric �eld is given by the analog of Eq. (16):

hE2ipc = 1

4�3

Z
d3k ! cos(!2�`=�) : (37)

The integrations in these two expressions are best done in cylindrical coordinates,
where d3k = � d� d�0 dkz. We can then write

h'2ipc =
1

8�3

Z
d�0
Z 1

0

d��Re

 
ei��`

Z 1

�1

dkzp
�2 + k2z

ei�` k2
z
=�

!

=
1

8�3

Z
d�0Re

Z 1

0

d�� e
1

2
i��` K0

�
�1

2
i��`

�
; (38)

where K0 is a modi�ed Bessel function, and in the last step we used Formula 3.364.3 in
Ref. [5]. Next we use Formula 6.624.1 in the same reference to write

lim
�!�

Z 1

0

dxx e��xK0(�x) = lim
�!�

0
@ 1

�2 � �2

8<
: �p

�2 � �2
ln

2
4�
�
+

s�
�

�

�2

� 1

3
5� 1

9=
;
1
A

=
1

3�2
: (39)

We can combine this last result with Eqs. (30) and (38) to write

h'2ipc = 2

3�
h'2ipr : (40)

Similarly, we can write

hE2ipc =
1

4�3

Z
d�0
Z 1

0

d��2
d

d�`

Z 1

�1

dkzp
�2 + k2z

sin

�
�2 + k2z

�
�`

�

=
1

4�3

Z
d�0

d

d�`
Im

Z 1

0

d��2 e
1

2
i��` K0

�
�1

2
i��`

�
: (41)

If we di�erentiate Eq. (39) with respect to � before taking the limit, we may show that

lim
�!�

Z 1

0

dxx2 e��xK0(�x) =
4

15�3
: (42)

This last identity and Eq. (16) may be used to show that

hE2ipc = 8

15�
hE2ipr : (43)

Thus the results for the parabolic cylinder are related to those for the parabola of revo-
lution by a numerical factor somewhat less than unity.
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Figure 4: Two 
at mirror segments are aligned at angles �1 and �2, respectively, and
subtend angles �01 and �02� �01 from the point of interest. An incident ray has angle � with
respect to the x-axis, whereas the re
ected ray has angle �0.

4 Further Technical Issues

4.1 Re
ected Rays from Line Segments

In this subsection, we examine the problem of the re
ection of rays from a pair of attached
line segments, as illustrated in Fig. 4. The purpose of this exercise is twofold: First, it will
lead to the justi�cation of the renormalization prescription used in writing down Eq. (6).
Second, it will reveal that integrals such as those in Eqs. (7) and (16) should involve an
integration over �0, the angle of the re
ected wave, rather than �, the angle of the incident
wave.

First consider the case 0 < �0 < �01, so the ray re
ects from the lower segment oriented
at angle �1 relative to the horizontal. Here � = �0 + 2�1 � � and hence

2�1 � � < � < �01 + 2�1 � � : (44)

Now consider the case where the ray re
ects from the upper segment, so �01 < �0 < �02 and
� = �0 + 2�2 � �. Here

�01 + 2�2 � � < � < �02 + 2�2 � � : (45)

Note that the range of �0 is ��0 = �02 whereas the range of � is

�� = �02 + 2(�2 � �1) < �02 : (46)

However, for � in the range �01 + 2�2 � � < � < �01 + 2�1 � �, there are two re
ected rays
for each incident ray. This is a range of �� = 2(�2 � �1), and we have

�� +�� = ��0 : (47)
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Although �0 runs over a larger range than does �, we can think of this larger range
as counting the multiple re
ected rays that can result from an incident ray with a given
value of �. This conclusion will continue to hold if we have more than two straight line
segments. We can approximate any curve by a sequence of line segments. In general, the
angle ��0 subtended by the curve di�ers from the range of angle of incident rays, ��, and
if the curve is convex toward the point of interest, �� < ��0. At �rst sight, one might
think that an emmeration of the independent modes should involve an integration over �.
This, however, fails to account for the multiple re
ected rays, which are correctly counted
if we instead integrate on �0.

As we vary � through its range of �� < � � � (Note that here � increases in the
clockwise direction.), we have six possibilities:

�� < � < 2�1 � � incident ray only

2�1 � � < � < �01 + 2�2 � � 1 re
ected ray

�01 + 2�2 � � < � < �01 + 2�1 � � 2 re
ected rays

�01 + 2�1 � � < � < �02 + 2�2 � � 1 re
ected ray

�02 + 2�2 � � < � < � � �02 incident ray only

� � �02 < � � � no rays:

In the latter case the incident ray fails to reach the point of interest because it is blocked
by the mirror. Note, however, that the re
ected rays exactly compensate for the missing
incident rays in the sense that if we add up a weighted sum of the angle ranges with
re
ected rays, it is equal to the range with no rays. This observation is the justi�cation
for Eq. (6). The number of incident plus re
ected rays in the presence of the boundary is
the same as the number of incident rays in its absence.

One might ask whether it is important also to include the interference terms between
the multiply refelcted rays. After all, the dominant contribution near the focus of a
parabolic mirror comes from such an interference term. It is indeed true that if one
wishes to compute a quantity such as hE2i in the geometry of Fig. 4, we would need to
include the interference terms. However, one should not expect to obtain an anomalously
large result, but rather one of order r�4, where r is the distance to the nearest boundary.
This follows from the fact that the formula for �`, the analog of Eq. (29) will be of the
form of a product of r times a dimensionless angular dependent function.

4.2 Evaluation of Singular Integrals

We have derived expressions, such as Eqs. (30) and (32), for renormalized quantities near
the focus of a parabolic mirror. Recall that we are dealing with a situation where there
are two re
ected rays for a single incident ray. Here �01 is the angle of one of these rays,
and the angle of the other, �02 is understood to be a function of �01. However, the integrals
in question are singular at the point that �01 = �02. The singularity may be removed by an
integration by parts [6, 7, 8]. We rewrite the integrand using relations such as

1

x2
= �1

2

d2

dx2
lnx2 (48)

and
1

x4
= � 1

12

d4

dx4
lnx2 : (49)



CBPF-NF-015/00 11

Next we perform repeated integrations by parts until we have only an integral with a
logarithmic singularity in the integrand, plus possible surface terms. ThusZ

dx
f(x)

x2
= �1

2

Z
dx lnx2

d2f(x)

dx2
; (50)

and Z
dx

f(x)

x4
= � 1

12

Z
dx lnx2

d4f(x)

dx4
; (51)

provided that the function f(x) is regular at x = 0 and the surface terms vanish.
In our case, the integration on �01 ranges over those values of �0 for which there are

multiple re
ected rays. Within the geometric optics approximation, the integrand would
seem to drop precipitously to zero at the end point of this interval. If one were to go beyond
this approximation, the sudden drop would be smeared out over an interval corrresponding
to about one wavelength. Thus we can think of our integrand as being an approximation
to a function which, along with its derivatives, vanishes smoothly at the endpoints. If so,
then we should be able to ignore the surface terms. In any case, we will here make the
assumption that the surface terms can be ignored, and the singular integrands replaced by
integrands with an integrable logarithmic singularity. The integration by parts procedure
will be illustrated explicitly in the next section.

5 Results for Mirrors Slightly Larger than the Crit-

ical Size

As we found above (See Fig. 2.), there is a critical size which a parabolic mirror must
have before we �nd large vacuum e�ects near the focus. The critical case is that of a
mirror which subtends an angle of �=3 in either direction from the axis of symmetry (the
x-axis in Fig. 1). In order to evaluate the integrals in Eqs. (30) and (32), we need to solve
Eq. (23) for �0 in terms of �, and then express one root �02 as a function of the other, �01.
In general, this is di�cult to do in closed form. There is, however, one case in which an
analytic approximation is possible. This is when the size of the mirror is only slightly
greater than the critical value. Let the angle subtended by the mirror be �=3+ �0, where
�0 � 1. In this case, we can expand the needed quantities in terms of power series. Note
that now both roots for �0 will be close to �=3, so let �0 = �=3 + � and expand Eq. (23)
in powers of � to �nd (This and other calculations in this section were performed using
the computer algebra program MACSYMA.)

� =
3
p
3

4
� 3

p
3

4
�2 +

1

4
�3 +

3
p
3

16
�4 � 1

16
�5 � 11

p
3

480
�6 + � � � : (52)

Let �01 = �=3 + �1 and �02 = �=3 + �2. Assume a power series expansion for �2 in terms of
�1. Next we equate the right-hand-side of Eq. (52) with � = �1 to that with � = �2 and
iteratively solve for the coe�cients in the expansion of �2. The result is

�2 = ��1 +
p
3

3
�21 �

1

27
�31 +

35
p
3

972
�41 �

97

2916
�51 + � � � : (53)
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Our next task is to use this expansion to compute the integrands in Eqs. (30) and
(32). First rewrite these expressions as

h'2ipr = � 1

8�2a2

Z �0

��0

d �1
1

[cos(�
3
+ �1)� cos(�

3
+ �1)]2

=
1

16�2a2

Z �0

��0

d �1 ln �1
2 d2

d�21

�
�21

[cos(�
3
+ �1)� cos(�

3
+ �1)]2

�
; (54)

and

hE2ipr =
3

4�2a4

Z �0

��0

d �1
1

[cos(�
3
+ �1)� cos(�

3
+ �1)]4

= � 3

48�2a4

Z �0

��0

d �1 ln �1
2 d4

d�41

�
�41

[cos(�3 + �1)� cos(�3 + �1)]4

�
: (55)

Note that we have introduced a factor of 1
2
to compensate for overcounting of pairs of

re
ected rays, and then used the integrations by parts procedure discussed in the previous
section. Next we use Eq. (53) to write

�21
[cos(�

3
+ �1)� cos(�

3
+ �2)]2

= A0 +A1�1 +A2�
2
1 + � � � ; (56)

and
�41

[cos(�3 + �1)� cos(�3 + �2)]4
= B0 +B1�1 +B2�

2
1 +B3�

3
1 +B4�

4
1 + � � � : (57)

We see, that to leading order in �0, the dominant contribution to h'2i comes from the
coe�cient A2, which is given by

A2 =
23

324
: (58)

This leads to our �nal result

h'2ipr � � 23

648�2a2
�0(1 � ln �0) +O(�20 ln �0) : (59)

Similarly, the leading contribution to hE2ipr comes from

B4 =
4051

24385
; (60)

and is

hE2ipr � 4051

22375�2a4
�0(1 � ln �0) +O(�20 ln �0) �

9:38 � 10�3

a4
�0(1 � ln �0) : (61)

First we note that the leading contributions to both quantites diverge as a ! 0,
that is, as one approaches the focus. This provides the justi�cation of the geometric
optics approximation. The modes which give the dominant contribution are those whose
wavelengths are of order a, small enough that geometric optics is valid. Next we note
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that h'2ipr diverges negatively, but hE2ipr and the energy density for the scalar and
electromagnetic �elds diverge positively.

The above results apply in the case of a parabola of revolution; for the case of a
parabolic cylinder we have

h'2ipc � � 23

972�3a2
�0(1� ln �0) ; (62)

and

hE2ipc � 8102

3852�3a4
�0(1� ln �0) � 1:59� 10�3

a4
�0(1 � ln �0) : (63)

Note that all of the results in this section depend upon what is happening in a thin
band centered on �0 = �=3. The remainder of the mirror, that that for which �0 < �=3��),
does not even have to be present.

6 Observable Consequences?

Now we face the question of whether the ampli�ed vacuum 
uctuations are actually
observable. The calculations given above indicate that the energy density and squared
�elds are singular at the focus of a perfectly re
ecting parabolic mirror. However, the
approximation of perfect re
ectivity must break down at frequencies higher than the
plasma frequency of the material in question . So long as the plasma wavelength �P
is short compared to the size of the mirror, there is an intermediate regime in which
geometric optics is valid. We simply must restrict the use of the geometric optics results
to values of a larger than �P .

The quantity which is most easily observable is hE2i, as it is linked to the Casimir force
on an atom or a macroscopic particle. If the atom or particle has a static polarizability
�, then the interaction energy with a boundary is

V = �1

2
� hE2i : (64)

Here we are assuming that the modes which give the dominant contribution to hE2i have
frequencies below that at which a dynamic polarizability must be used. For a perfectly
conducting parallel plate,

hE2iplate = 3

16�2 z4
� 1:90 � 10�2

z4
; (65)

where z is the distance to the plate. If we insert this expression into Eq. (64), then the
result is the Casimir-Polder potential [9] for the interaction of an atom in its ground state
with the plate. It is a good approximation when z is large compared to the wavelength
associated with the transition between the ground state and the �rst excited state. The
1=z4 distance dependence of the Casimir-Polder potential was experimentally con�rmed
by Sukenik et al [10]. If we compare Eq. (65) with Eq. (61) or Eq. (63), we see that
the mean squared electric �eld near the focus of a parabolic mirror is only slightly less
than that at the same distance from a 
at plate. Given that the latter has actually been
observed, it is possible that the inhanced 
uctuations near the focus are also observable
by techniques similar to those by Sukenik et al.
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The basic method used in the Sukenik et al experiment is to look for the e�ects of the
de
ection of a beam of atoms as it passes near a pair of plates. We can give a general
estimate of the size of this type of de
ection which applies whenever there is a mean
squared electric �eld which varies as the inverse fourth power of a length scale. Let

hE2i = �

a4
; (66)

where a is the length scale and � is a dimensionless constant. We assume that an atom
has an interaction of the form of Eq. (64). The resulting force, F = �@V=@a, will cause
a de
ection �a in the atom's position in a time t, where

�a

a
= 0:25

�
�

10�3

� �
�

�Na

� �mNa

m

� �1�m
a

�6 �
t

10�3s

�
: (67)

Here mNa = 3:8� 10�23gm and �Na = 3:0� 10�22cm3 denote the mass and polarizability
of the sodium atom, respectively. (Note that polarizability in the Lorentz-Heaviside which
we use is 4� times that in Gaussian units.) If t is of order 10�3s (the time needed for an
atom with a kinetic energy of order 300K to travel a few centimeters), and z is of order
1�m, the fractional de
ection is signi�cant. Recall that in our case

� =

�
9:38 � 10�3 �0(1� ln �0) ; parabola of revolution
1:59 � 10�3 �0(1� ln �0) ; parabolic cylinder:

(68)

Thus it may be possible to observe the force on atoms near the focus.
Another possible way to observe this force might be to levitate the atoms in the Earth's

gravitational �eld. (A rather di�erent form of levitation by Casimir forces was proposed
in Ref. [2].) If one equates the force on atom at a distance a from the focus to its weight,
the result can be expressed as

a =

�
2��

mg

�1

5

= 0:55�m

��
�

10�3

� �
�

�Na

� �mNa

m

�� 1

5

: (69)

Given that this formula applies for a > �P and that �P � 0:1�m for many metals, it seems
possible that levitation near the focus is possible. Of course, atoms will only be trapped
if their temperature is su�ciently low. The required temperature can be estimated by
setting the thermal energy 3

2kT equal to the magnitude of the potential energy V . The
result is

T = 2 � 10�5K

�
�

10�3

� �
�

�Na

� �
0:1�m

a

�4

: (70)

Thus for a of the order of a few times 0:1�m, the required temperature is larger than the
temperatures of the order of 10�7K which have already been achieved for laser cooled
atoms [11, 12].

Another possibility might be the use of atom interferometry. Atoms traveling for a
time t parallel to and near the focus of a parabolic cylinder will acquire a phase shift of

�� =
t

2
� hE2ipc = 7:2� 10�2

�
�

�Na

� �
1�m

a

�4 �
t

10�3s

�
�0(1� ln �0) : (71)

If it is possible to localize the atoms to within a few �m of the focus, then the accumulated
phase shift for reasonable 
ight times would seem to be within the currently attainable
sensitivities of the order of 10�4 radians [12].
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7 Discussion and Conclusions

In this paper we have argued that a parabolic mirror is capable of focusing the vacuum
modes of the quantized electromagnetic �eld and creating large physical e�ects near the
mirror's focus. Just as the mirror can focus a beam of light, it can focus something even in
the absence of incoming light. This might be dubbed \focusing a beam of dark" [13]. The
manifestation of this focusing is a growth in the energy density and mean squared electric
�eld as the focus is approached. In the idealized case of a perfectly re
ecting mirror,
these quantities diverge as the inverse fourth power of the distance from the focus. For
a real mirror, the growth is expected to saturate at distances of the order of the plasma
wavelength of the mirror.

The most readily observable consequence of the focused vacuum 
uctuations is en-
hanced Casimir forces on atoms or other particles near the focus. The sign of the force is
such as to draw particles into the vicinity of the focus. Estimates given in the previous
section indicate that the magnitude of this e�ect may be large enough to be observable.

The calculations presented in this paper were based on the geometric optics approx-
imation in which only short wavelenth modes are considered. The justi�cation of this
approximation is self-consistency: the large e�ects near the focus can only come from the
short wavelength modes for which the approximation should be a good one.

In order to simplify the calculations, we made two restrictions on the geometry. The
�rst is that we have assumed that the point at which the mean squared �eld quantites
are measured lies on the symmetry axis of the parabola (the x-axis). The second is that
the mirror be only slightly larger than the critical angle of �=3 at which vacuum focusing
begins. (This is the assumption that �0 � 1, made in Sect. 5.) It is of interest to remove
both of these restiction, which we hope to do in a future work.
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