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Abstract

A solid sphere is considered, with a uniformly distributed in�nity of points. Two points

being pseudorandomly chosen, the analytical probability density that their separation

have a given value is computed, for three types of the underlying geometry: E3;H3 and

S3. Figures, graphs and histograms to complement this short note are given.
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1 Introduction

The shape of the universe is presently under investigation, and cosmic crystallography

(CC) is one of the various methods proposed to determine it [1].

The idea which supports the CC method is that if the universe is multiply connected

then multiple images of a same cosmic object (a given quasar, say) may be observed in

the sky. The separations between pairs of these images are correlated by the geometry

and the topology of the spacetime; so if one selects a catalogue of observed images of

cosmic objects and performs a histogram of the separations l between the images, then

these correlations manifest either as spikes (associated with Cli�ord translations) or as

slight deformations of the histogram of the corresponding simply connected manifold [2].

A variant method was recently proposed by Fagundes and Gausmann [3] , of subtract-

ing from a histogram �(li) of a multiply connected space a histogram of the corresponding

simply connected space. The reported result was a plot with much oscillations in small

scales.

In the present paper we propose an alternative to Fagundes-Gausmann method: we

derive continuous probability density functions F(l) to be subtracted from the histogram

�(li) , and thereby obtain a histogram sensibly more suitable for analysis.

In section 2 we derive the functions F(a; l) for the Euclidean, hyperbolic and elliptic

geometries, and in section 3 we make a few comments.

2 Probability densities

We consider one of the simply connected spaces E3;H3 or S3. In that space, a spherical

solid ball Ba is taken , with radius a. The ball is assumed to contain an in�nite number

of pointlike objects, spatially distributed as uniformly as possible. We next select pseu-

dorandomly two points of Ba and ask for the probability F(a; l)dl that the separation

between the points lie between l and l + dl.
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a. Euclidean geometry

In the Euclidean three-space take a ball Ba centred at the origin O and select two

points P;Q in the ball; let r 2 [0; a] be the radial position of P and let l � 2a be the

distance from P to Q (see Figure 1).

Clearly the probability density FE(a; r; l) of this con�guration is proportional both to

the area SE(r) = 4�r2 of the locus of P well as to the area of the locus of Q. When

r + l < a this locus is a sphere S2 with area SE(l), while when r + l > a the locus is a

spherical disk D2 in E3 with area DE(a; r; l) = (�l=r)[a2� (l � r)2].

The probability density of the con�guration is then

FE(a; r; l) = kSE(r)fSE(l)��(a� l � r) +DE(a; r; l)��(l+ r � a)g; (2.1)

where k is a normalization constant and � is the Heaviside function.

We integrate eq. (2.1) for r 2 [0; a], and �nally obtain, for l 2 (0; 2a],

FE(a; l) = 3l2

16a6
(2a� l)2(l + 4a); (2.2)

where the value k = 9=(16�2a6) was set to satisfy the normalization condition

Z
2a

0

FE(a; l)dl = 1: (2.3)

One often encounters in the literature reference to the probability density P(s) that
the squared separation be s; since s = l2 and P(s)ds = F(l)dl, then

PE(a; s) = 3
p
s

32a6
(2a�ps)2(ps+ 4a); (2.4)

valid for s 2 (0; 4a2].

In Figure 2 we reproduce a typical mean pair separation histogram (MPSH) for pseu-

dorandomly distributed objects in an Euclidean solid sphere Ba with arbitrary radius,

together with the corresponding probability density FE(a; l). It should be stressed that,

di�erently from the hyperbolic and elliptical cases, the shape of the function FE(a; l) does
not depend on the value of the radius a.
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b. Hyperbolic geometry

To obtain the probability density FH(a; l) for the hyperbolic geometry we follow the

same lines as before. The area of a sphere with radius r is now SH(r) = 4�R2 sinh2 r=R,

whereR is the radius of curvature of the geometry; without loss of generality we henceforth

set R = 1. On the other hand, the area of a spherical disk D2 in H3 is (see Figure 1)

DH (a; r; l) = 2� sinhl[ sinhl � coshl cothr + cosha cschr]; (2.5)

to be considered whenever r + l > a.

The probability density of the con�guration is then

FH(a; r; l) = kSH(r)[SH(l)��(a� l � r) +DH(a; r; l)��(l + r � a)]; (2.6)

which upon integration for r 2 [0; a] and normalization gives

FH(a; l) = 8 sinh2 l

(sinh 2a� 2a)2
[cosha sech(l=2) sinh(a� l=2) � (a� l=2)]; (2.7)

valid for l 2 (0; 2a].

In Figure 3 we reproduce graphs of FH(a; l) for three values of the radius a. For a << 1

the function tends to the Euclidean one given in Figure 2, as expected. For increasing

values of a the function shifts towards the large values of l, and for a >> 1 a strong

concentration of FH(a; l) is found near the extreme value l = 2a.

Figure 4 shows a typical MPSH in the hyperbolic three-space, together with the cor-

responding probability density FH(a; l).

c. Elliptic geometry

The basic strategy to obtain the probability density FS(a; l) is the same as before,

and the calculations are similar whenever the diameter 2a of the ball is less than the

separation �R between antipodal points in the three-sphere; we then �nd for FS(a; l) the
expression, valid for l 2 (0; 2a],

FS(a < �=2; l) =
8 sin2 l

(2a� sin 2a)2
[(a� l=2)� cosa sec(l=2) sin(a� l=2)]; (2.8)

where we have taken R = 1 without loss of generality.
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However, the cases where a > �=2 are considerably trickier to deal with, due to the

treacherous connectivity of the spherical space S3 and the new requirement that l must

not exceed �. A much larger quantity of trivial integrations now comes into scene, before

the following expression is eventually obtained:

FS(a; l) =
8 sin2 l

[2a� sin 2a]2
f[2a� sin 2a� �] + (2.9)

�(2� � 2a� l)� [ sin2a+ � � a� l=2 � cosa sec(l=2) sin(a� l=2)]g;

valid for all a 2 (0; �] and l 2 (0;min(2a; �)].

In Figure 5 four graphs of FS(a; l) are shown, for di�erent values of the radius a of

the ball. For a increasing from 0 to � the function continuously shifts towards the smaller

values of l. In particular, when a = �=2 we have

FS(�=2; l) = 4

�
(1 � l=�) sin2l ; (2.10)

while when a = � we have the harmonic, symmetric probability density

FS(�; l) = 2

�
sin2l : (2.11)

In Figure 6 a sample MPSH in the spherical space is reproduced, together with the

corresponding probability density FS(a; l).

3 Comments

It is perhaps worth clarifying the meaning of the functions F(a; r; l): if we pseudorandomly

choose two points P and Q in a solid sphere with radius a (see Figure 1) then F(a; r; l)drdl
is the probability that P lies between the radial positions r and r+dr, times the probability

that the separation from Q to P lies between the values l and l+dl. The form of F(a; r; l)
clearly depends on the geometry one is concerned with.

Each histogram in Figures 2, 4, and 6 has m = 100 subintervals and is a MPSH { a

mean pair separation histogram comprising K = 10 comparable catalogues with N = 50

objects each [2]. All computer-generated histograms assume a homogeneous distribution,

as described by Lehoucq, Luminet and Uzan [4].
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A close inspection of Figure 2 shows that the most probable separation between two

arbitrarily chosen points in an Euclidean solid ball is slightly greater than the radius of the

ball; also the maximum of PE(a; s) in eq.(2.4) occurs when s=4a2 = 0:134, in agreement

with plots of Fagundes and Gausmann [5].

A characteristic feature of the hyperbolic geometries is that at large distances there

is more space than in the Euclidean geometries; this fact is clearly exhibited in Figure 3,

which shows a strong predominance of large separations l when the radius a of the solid

sphere is large. It is worth noting that Fagundes and Gausmann [3] obtained histograms

with a = 2:34 which closely resemble ours with a = 2 in Figure 4. In contrast, the

hyperbolic histograms given by Lehoucq et al. [4] use radius a nearly 0:6, so they are

similar to our Euclidean one.

Oppositely to the hyperbolic case, in distant places endowed with the elliptic geometry

there is less space than in the Euclidean geometry; this is nicely illustrated in Figure 5.

Indeed, with increasing a ( increasing solid ball) the probability of �nding small distances

l (in comparison with a) also increases. We further note that when a increases from �=2

to � the ratio lmax=2a recedes from 1 to 1=2.
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