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Abstract

In this paper we give a summary of basic de�nitions of Finsler geometry and a brief

account of symmetry imposition for Finsler metrics, as well as a possible extension of

General Relativity, in the vacuum case, for these spaces. We then make use of these re-

sults in order to generalise, for up to �rst order departures from the Riemannian setting,

the well known Birkho�'s theorem from General Relativity. This result has been fully

accomplished by means of computer algebra { actually, the very problem of explicitly

determining non-Riemannian solutions for some generalised theory of gravity has only

been made possible by computer algebra. The process is described in detail within the

paper.
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1 Introduction.

It is well known how crucial computer algebra has been in the development of

General Relativity and its applications, and, in the other way round, how important

General Relativity and tensorial calculus have been to motivate and direct developments

of computer algebra packages. Riemannian geometry, curved spaces and tensorial calculus

were already complicated enough for even more generalised frameworks for theories of

gravity to be attempted without strong motivation, either theoretical or experimental

(1). Regarding observations, General Relativity and its Riemannian model for space-time

surprised the scienti�c community of the time when it accurately predicted the advance

of the perihelium of Mercury, an age-old problem of Newtonian theory, which could never

be precisely dealt with in an Euclidean context. Also, its prediction for the bending

of light in the gravitational �eld, later con�rmed observationally, de�nitively settled the

acceptance of the new theory, and seemed to have established a new paradigm for the

geometry of the physical space.

But the advent of other geometries than Euclidean, and so the possibility of other

models for physical space, has been realised ever since Gauss himself. Riemann, in his

famous lecture [3], did not restrict himself to what became known as Riemannian geometry

when he pushed forward the very concept of space. So the freedom is there to explore

larger possibilities to model our reality and maybe �nd out new and yet unobserved natural

behaviour such as it has been with the bending of light. Paul Finsler [2] followed the steps

led by Riemann and Gauss, in the tradition of the G�ottingen school, and now computer

algebra came to make it possible to perform the prohibitively complex calculations that

taking his geometry as model for physical space-time and gravity makes necessary.

Apart from attempts at a theoretical uni�cation of gravitation and electromagnetic

phenomena in a single geometrical framework, Finsler spaces were also considered in a

purely gravitational context, either as formal propositions of new theoretical structures

and �eld equations [4, 5, 6, 7, 8, 9, 10], or more directly concerned with exploring possible

observational consequences, either in the cosmological [11] or local (solar system) setting

[12, 13, 14, 15, 16, 17], prior to a full theoretical proposition. In any case, the �rst deriva-

tion of an explicit solution (even if just in a perturbative sense) to a Finsler gravitational

�eld equation [18] was made possible only by means of computer algebra programming.

In this paper we present a review of an approach to Finsler gravity and also new results

regarding this theory. We start by presenting a summary of basic de�nitions of Finsler ge-

1At one time [1] the attempt to formulate an unifying theory for gravity and electromagnetism led to

unsuccessful attempts at Finsler [2] and other generalised geometrical modelling of natural phenomena.
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ometry, together with a treatment of symmetries in these spaces, a frequently sought after

technique used to model physical systems and at the same time simplifying the equations.

Next we go through an argument which, by means of an analogy between Newtonian the-

ory and General Relativity, extends Einstein's vacuum �eld equations to Finsler spaces.

Then we show how, by means of computer algebra, the well-known Birkho�'s theorem

from General Relativity [19], which establishes the unicity and time-independence of the

spherically symmetric family of solutions known as Schwarzschild metrics, naturally ex-

tends itself, up to �rst order perturbations, to the Finsler setting.

2 Finsler Spaces.

Finsler [2] spaces are n-dimensional manifolds where the in�nitesimal distance between

two neighbouring points P (xi), Q(xi + dxi) is given by

ds = F (xi; dxi); i = 1; : : : ; n; (1)

where F is required to satisfy some properties [20], the most important being that

F (xi; �dxi) = � F (xi; dxi); � > 0; (2)

i.e., F must be positively homogeneous of degree 1 in the dxi. A metric tensor is then

de�ned from (1) as

gij(x
k; _xk) =

1

2

@2F 2(xk; _xk)

@ _xi @ _xj
; (3)

where _xi = dxi=dt are the tangent vectors to a given curve xi = xi(t) in the manifold, or

elements of the tangent space Tn(P ) at P (xi). Due to (2), gij(xk; _xk) is homogeneous of

degree zero in the second set of variables and so we can write

ds2 = gij(x
k; dxk) dxidxj ; (4)

from where we can see that Riemannian spaces are special cases of Finsler spaces, where

(3) has no directional dependence, or F 2 is quadratic in the dxi.

The geodesics in a Finsler space can be given in a similar form to the Riemannian case

as
d2xi

ds2
+ ijk

dxj

ds

dxk

ds
= 0 (5)

where ijk are the Christo�el symbols of second kind

ijk = gihjhk = gih
�
1

2

�
@ghj
@xk

+
@ghk
@xj

� @gjk
@xh

��
; (6)
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the di�erence with the Riemannian case being that ijk now depend on the directional

coordinates _xi as well as xi. Here, gih is such that gij(xk; _xk) gih(xk; yk) = �hj , and

yi = gij(xk; _xk) _xj.

As in Riemannian geometry, there are many ways to de�ne a covariant derivative in

Finsler spaces, depending on the explicit expression chosen as the connection, and indeed,

at least four di�erent ones can be found in the literature [20], [21], [22], [23]. For instance,

H. Rund de�nes the �-derivative of a vector X i(xj) de�ned along a curve xi(t) as

�X i

�t
=

dX i

dt
+ �i

jk _xjXk (7)

with

�i
jk = ijk � C i

jl 
l
pk _x

p; C i
jl = gih Cjhl = gih

�
1

2

@gjl
@ _xh

�
:

Clearly, (7) reduces to the usual Riemannian covariant derivative if all the Cjhl are iden-

tically zero. The partial �-derivative of X i(xj) is then given by

X i
;j =

@X i

@xj
+ ��ihj X

h; (8)

where

��ihj = gik ��hkj = gik
�
hkj �

�
Cjki �

i
hl + Ckhi �

i
jl � Chji �

i
kl

�
_xl
�
:

The relationship between the processes (7) and (8) is best expressed by the relation

�X i

�t
= X i

;j _xj = X i
;j

dxj

dt
:

As in Riemannian geometry, the second covariant derivatives of the deviation vector �i

between two close geodesics issuing from the same point P represent an invariant measure

of the curvature of Fn in the neighbourhood of P , satisfying the so called geodesic deviation

equation
�2�i

�s2
+K i

jhk _x
j _xh�k = 0 (9)

where _xi = dxi=ds here denotes the tangent vectors along the geodesic, and

K i
jhk =

 
@��ijh
@xk

� @��ijh
@ _xl

@Gl

@ _xk

!
�
 
@��ijk
@xh

� @��ijk
@ _xl

@Gl

@ _xh

!
+ ��imk�

�m
jh � ��imh�

�m
jk (10)

is the curvature tensor of Fn, Gl being given by Gl = (1=2) (ljk _x
j _xk): It should be noted

that other choices of connections would lead to di�erent curvature tensors, but equation

(9) would remain valid and could be given in terms of them. We should also note that

K i
jhk actually reduces to the Riemann tensor when the space is Riemannian.
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Let us now consider small point transformations

�xi = xi + " �i(xj) (11)

together with the corresponding transformations in Tn(P )

d�xi = dxi + "
@�i

@xj
dxj (12)

which we will denote by �xi = �xi � xi = " �i(xj), � _xi = _�x
i � _xi = " @�i=@xj _xj. Here " is

a small parameter which will be considered only up to �rst order.

In general the distance F (xi; dxi) between P (xi), Q(xi + dxi) is not preserved under

(11), (12), that is, the distance F (�xi; d�xi) between the correspondent points �P (�xi), �Q(�xi+

d�xi) will generally be di�erent from F (xi; dxi). But, depending on the particular form

assumed by F , it may admit special types of transformations for which distances are

preserved, which are then called motions of the space onto itself.

De�ning

�F (�xi; d�xi) = F (xi; dxi) (13)

as a new `deformed' metric function from the original one under (11), (12), and also

considering that

�F (�xi; d�xi) = �F (xi + " �i; dxi + "d�i) (14)

= �F (xi; dxi) + " �i
@ �F

@xi
+ " d�i

@ �F

@(dxi)

up to �rst order in ", we can write the Lie di�erence

F (xi; dxi)� �F (xi; dxi) = "

�
�i

@F

@xi
+ d�i

@F

@(dxi)

�
; (15)

since, from (13), (15), " F (xi; dxi) = " �F (xi; dxi), up to �rst order in ". De�ning the

Lie derivative of the metric function F under (11), (12) as $�F = lim"!0

��
�F (xi; dxi)

�F (xi; dxi)]="g, we then have that the condition for (11), (12) to be a motion can be

simply expressed as $�F = 0 or

�i
@F

@xi
+

@�i

@xj
dxj

@F

@(dxi)
= 0: (16)

We may as well obtain a new `deformed' metric tensor under (11), (12)

�gjk(�x
i; _�x

i
) = grs(x

i; _xi)
@xr

@�xj
@xs

@�xk
: (17)
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The expression for the Lie derivative of the metric tensor has already been given by various

authors. For instance, Yano [24] obtains

$�gij = �k
@gij
@xk

+
@�k

@xl
_xl
@gij
@ _xk

+ gkj
@�k

@xi
+ gik

@�k

@xj
: (18)

Yano also presents a theorem [24, theorem 3.2], equivalent to its Riemannian counterpart,

in which it is assured that a necessary and su�cient condition for (11), (12) to be a motion

in a Finsler space is that

$�gij = 0; (19)

which is called the Killing equation in Finsler spaces.

Solving (19) is the usual method for imposition of symmetries (or invariance under a

chosen group of transformations) in Riemannian spaces. But, in the Finsler context, where

all geometrical objects depend on both xi and dxi and therefore ds not only transforms

as a scalar but actually is one, it is a much simpler, and yet equivalent, task to solve (16)

rather than (19). Conversely, if we have a Finsler metric which satis�es (16), it will also

satisfy (19), so this method applies when considering Finsler formalisms, such as Cartan's

[22], which takes the metric tensor gij , rather than the metric function F as starting point.

We de�ne, as in Riemannian geometry, spherical symmetry to be invariance under the

action of the group SO(3). In spherical coordinates, these transformations are given by

2
64
�r

��

��

3
75 =

2
64

0

0

�"

3
75 ;

2
64
�r

��

��

3
75 =

2
664

0

� sin�

�
cos�
tan �

3
775 ;

2
64

�r

��

��

3
75 =

2
664

0

�� cos�
�
sin�
tan �

3
775 : (20)

The corresponding transformations for tangent vectors are, for the parameter ", � _r =

� _� = � _� = 0, and, for the other parameters � and �, we �nd

2
64
� _r

� _�

� _�

3
75 =

2
664

0

� cos � _�

�� cos�
sin2 �

_� � �
sin�
tan �

_�

3
775 ;

2
64
� _r

� _�

� _�

3
75 =

2
664

0

� sin� _�

�� sin �
sin2 �

_� + �
cos�
tan �

_�

3
775 :
(21)

To determine the spherically symmetric metric in 4 dimensions, we consider a fourth

coordinate, say t, to remain invariant, �t = 0 for all three parameters ", �, �.

The coordinate system for _xi which best simpli�es the resulting invariance equations

(16) for these transformations may be obtained by �rst changing to coordinates X = r _�,
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Y = r sin � _�, Z = _r, T = _t, then to `spherical' coordinates

X = r _� = R sin� sin� sin  ;

Y = r sin � _� = R sin� sin� cos  ;

Z = _r = R sin� cos � ;

T = _t = R cos� ;

(22)

where 0 < R < 1; 0 < � < �; 0 < � < � and 0 <  < 2�, avoiding coordinate

singularities. Inversally, we have R =
p
X2 + Y 2 + Z2 + T 2, and

sin� =

p
X2 + Y 2 + Z2p

X2 + Y 2 + Z2 + T 2
; cos� = Tp

X2 + Y 2 + Z2 + T 2
;

sin� =

p
X2 + Y 2p

X2 + Y 2 + Z2
; cos � = Zp

X2 + Y 2 + Z2
;

sin  = Xp
X2 + Y 2

; cos  = Yp
X2 + Y 2

:

(23)

For those coordinates, we get, for the parameter ", �R = �� = �� = � = 0, and for

the parameters � and � we also �nd �R = �� = �� = 0 and, respectively,

� = �
cos�

sin �
; � = �

sin �

sin �
: (24)

The invariance equations for a function G = G(r; �; �; t; R; �; �; ) are, for each

parameter considered:
@G

@�
= 0; (25)

sin�
@G

@�
+

cos�

tan �

@G

@�
� cos �

sin �

@G

@
= 0; (26)

� cos�
@G

@�
+

sin�

tan �

@G

@�
� sin�

sin �

@G

@
= 0: (27)

The resulting invariant function is given byG = G(r; t; R; �; �), which, once required

to satisfy the homogeneity condition, becomes

F 2(xi; _xi) = R2 G(r; t; �; �): (28)

In paper [25] we also discuss coordinate freedom and re-obtain (28) in the more convenient

form for comparative purposes

ds2 = g11 dr
2 + g22 r

2d
2 + g44 dt
2 + 2 (g12 drrd
 + g14 drdt + g24 rd
dt) ; (29)

where

d
 =

q
d�2 + sin2 � d�2;

and the gij are symmetric in i and j, but otherwise arbitrary functions of r, t, �, �.
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3 Geometrical Extension of General Relativity.

Four-dimensional symmetric Finsler metrics are particularly well suited for geomet-

rical generalisations of theories of gravity such as General Relativity, based on (pseudo-)

Riemannian spaces with three `space-like' coordinates and a fourth `time-like' one. We

will briey expose here, as much as necessary, one such a generalisation, as proposed in

[18].

The vacuum �eld equation, for instance, is proposed from an analogy, �rst drawn

by Pirani [26], between Newton's and Einstein's theories of gravity. If we subtract, in

Newton's theory, the equations of motion of two neighbouring test particles subject only

to a gravitational potential �(xi)

d2xi

dt2
= ��ij @�

@xj
; (30)

d2xi

dt2
+
d2�i

dt2
= ��ij @�

@xj
� �k �ij

@2�

@xj@xk
;

(where �ij is the three dimensional Euclidean metric in Cartesian coordinates, the deriva-

tives of � are evaluated at xi and terms of second or higher order in �i are neglected), we

obtain a di�erential equation for the deviation vector �i

d2�i

dt2
+H i

k �
k = 0; H i

k = �ij
@2�

@xj
@xk: (31)

We note that Laplace's equation, r2� = �ij @2�=@xi@xj = 0, valid for the vacuum in

Newton's theory, implies that the tensor H i
k is traceless, H = H i

i = 0.

Now, in General Relativity, a similar situation is represented by the (Riemannian)

geodesic deviation equation

D2�i

Ds2
+H i

k �
k = 0; H i

k = Ri
jlk _xj _xl; (32)

where now _xi is the tangent vector to the geodesic xi(s), Ri
jlk is the curvature tensor and

D2�i=Ds2 is the second covariant derivative with respect to the element of arc ds of the

deviation vector �i between neighbouring geodesics, which represents in this theory the

trajectories of test particles (as well as light rays) subject only to gravity. Indices now run

from 1 to 4. Einstein's vacuum �eld equations, Rjl = Ri
jli = 0, also implies, as Laplace's

equation in the Newtonian case, that H = H i
i = 0.

If we take the Finsler geodesic deviation equation (9)

�2�i

�s2
+H i

k �
k = 0; H i

k = K i
jlk _xj _xl; (33)
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which is very similar to (33), just taking the ��derivative as covariant derivative and K i
jlk

as curvature tensor, we may analogously propose that there should be an equation, to

hold in the vacuum, requiring that the Finsler deviation tensor H i
k to be traceless

H = 0: (34)

We would like to note that the deviation tensor may be expressed also in terms of one of

Cartan's [22] curvature tensor, H i
k = Ri

ijlk
_xj _xl This tensor has been named so by Berwald,

who also presents it [27] explicitly in terms of the metric tensor and its derivatives as

H i
k = 2

@Gi

@xk
� @2Gi

@xj@ _xk
_xj + 2

@2Gi

@ _xj _xk
Gj � @Gi

@ _xj
@Gj

@ _xk
; (35)

where the Gi are given by Gi = 1=2 (ijk _xj _xk) and ijk are the usual Christo�el symbols

of the second kind.

4 Theorems of Birkho� Type.

Having the general expression of the 4-dimensional spherically symmetric Finsler metric

as well as a generalisation of Einstein's vacuum �eld equations to Finsler spaces strongly

motivates one to try to determine whether or not Birkho�'s theorem remains valid within

this generalised geometry. But any casual attempt to perform the necessary operations

in order to obtain the explicit expression of (34), even for the slightest departure from

the Riemannian framework, will show that the calculations soon get large enough to

be virtually impossible to be done by hand without inevitably introducing errors in the

process. Here it helps to get acquainted with computer algebra packages. We have made

use of REDUCE 3.4 [28] in order to construct the desired expression for H. We have written

a series of straightforward REDUCE programs that perform the operations in a sequence of

natural steps. The advantage of doing so is to avoid the overload of the memory space

available within the package.

It is tempting, especially when using a computer to perform the calculations, to go

for the most general case of interest, here given by the general spherically symmetric

4-dimensional Finsler metric [25]. But even computer algebra packages have their limita-

tions { particularly related to memory space (2) { and, also having in mind that we want

2Even dividing the process in its most elementary steps and also de�ning all components of each

tensor involved as scalars, we get very early in the process expressions of more than 1 Mbyte, for which it

becomes virtually impossible to make use of standard procedures within REDUCE, such as taking the great

common denominator (gcd, ezgcd switches), or factorising (factor switch) these expressions, even when

a super-computer (namely, the Convex from the University of London's Computer Centre) was used.
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to eventually obtain an equation for which it is feasible to actually �nd solutions, it is

convenient to begin with a rather simple �rst order departure from the Riemannian case,

such as the one considered in this section.

But, quite apart from these di�culties, we face yet another one, which has to do with

the very nature of Finsler spaces. Since, unlike Riemannian geometry, the coe�cients gij

in (4) depend themselves in the variables dxi, we can express a Finsler metric in many

di�erent ways. For instance, as pointed out in section 2 and discussed in more detail in

[25], we can have the alternative forms (28) and (29) for the 4-dimensional spherically

symmetric Finsler metric, and which one we decide to choose will determine the kind of

perturbation to be considered.

The most natural, and yet general, form of the 4-dimensional spherically symmetric

Finsler metric for the purpose of making comparisons with its Riemannian equivalent is

given by

ds2 = g11 dr
2 + g22 r

2d
2 + g44 dt
2 + 2 ( g12 dr rd
 + g14 drdt+ g24 rd
dt ); (36)

where d
 =
p
d�2 + sin2 � d�2, and gij = gij(r; t; �; �); i; j = 1; 2; 4, with � and � given

by (23). But the speci�c form by means of which the metric [25] function F depends on its

directional variables is also arbitrary, apart from the homogeneity condition (2). This very

condition, combined with the (physical) idea of directions at a point of space, naturally

suggests the algebraically simpler, even if less general [25] dependence on velocities

A = d
=dt; B = dr=dt; (37)

where we have maintained the combination d
 =
p
d�2 + sin2 �d�2 in order to preserve

spherical symmetry.

Having made choices (36), (37), let us now consider the subsequent metric in the �rst

order of approximation, by taking the coe�cients gij to be

gij(r; t; A;B) = gij(r; t) + "
@gij
@A

(r; t)A+ "
@gij
@B

(r; t)B; (38)

where we will consider the additional terms as small compared with the Riemannian ones,

i.e., disregard second or higher powers of the perturbation parameter ". Rearranging

terms, we get that

F 2 = f0 dr
2 + " f1 dr

2d


dt
+ " f2

dr3

dt
+ (39)

+g0 d

2 + " g1

d
3

dt
+ " g2

drd
2

dt
+

+h0 dt
2 + " h1 d
dt + " h2 drdt +
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+" k0 drd
 + " k1
drd
2

dt
+ " k2

dr2d


dt
+

+l0 drdt + " l1 drd
 + " l2 dr
2 +

+" n0 d
dt+ " n1 d

2 + " n2drd
;

= [f0 + "l2] dr
2 + ["f1 + "k2] dr

2d


dt
+ ["f2] dr

2dr

dt
+

+[g0 + "n1] d

2 + ["g1] d


2d


dt
+ ["g2 + "k1] d


2 dr

dt
+

+[h0] dt
2 + ["h1 + "n0] d
dt + ["h2 + l0] drdt +

+["k0 + "l1 + "n2] drd
:

Since all undetermined functions now depend only on (r; t), we can take advantage of

the same coordinate freedom as in Riemannian geometry [29], and choose r; t such that

(g0 + "n1) � r2, ("h2 + l0) � 0. Renaming functions accordingly, we get

ds2 = F0dr
2 + " F1Adr

2 + " F2Bdr
2 + (40)

+r2d
2 +G1Ad

2 + " G2Bd


2 +

+H0dt
2 + " H1Adt

2 + " H2ABdt
2;

as the most general expression of a �rst order departure from the Riemannian spherically

symmetric metric in 4 dimensions, with choices (36), (37). We have, therefore, 8 unknown

functions of (positional) coordinates r; t to determine in order to solve equation (34).

Using (40) as input into the series of programs in Reduce as already mentioned

[30], we get an expression of 1230 terms for H, consisting of a numerator of 1207 terms

and a denominator of 23 terms. These are all polynomial expressions in the variables

r; t; dr; d�; d�; dt and the unknown functions above, where second or higher order terms

in " have been disregarded.

First, we want to make sure that the denominator is not zero for any possible solution.

This is given by

Q = X + "Y; (41)

where

X = 8g0
3h0

3r3d
2dt5 (42)

and Y does involve all unknown functions. But even if Y were to be zero for some com-

binations of those, Q will not be zero as long as neither g0 nor h0 are zero. Furthermore,

all terms in B do involve g0 and/or h0, and we can verify, by direct substitution, that Q

will be made zero if either g0 or h0 are zero. So g0 and h0 cannot be zero, and that is

enough to make Q nonzero too.
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We can now concentrate in the numerator. Since we have expanded the functions

gij (xk; dxk) up to �rst order in dxk, we have made its dependence in these coordinates

explicit, and therefore, the remaining functions to be determined do not involve dxk.

We can then break this large polynomial expression into its coe�cients independent of

dxk, by successively making each coordinate dr, dt, d
 (3) to be zero, until we are left

with expressions free of those coordinates, which we then call successively eq1, eq2, etc.

Whenever we get an equation (that is, an expression independent of dxi) or otherwise

break into smaller parts a more complex expression, we subtract them from the original

one, and carry on this process with the remaining terms. This process can always be done

when perturbations of Riemannian metrics are being considered.

Explicitly in the case being dealt with here, let us �rst make dr = 0 (by making

let dr=0). We are left with an expression of 275 terms which do not involve dr, from

the 1207 terms in the numerator of H. Subtracting these from the original expression,

932 terms remain. This is our second break into full expression of H, after considering

its numerator and denominator separately. Call the numerator of H by NH, and NH1,

NH2, the expressions without and with dr in them, respectively. We can verify, by means

of the command factor, which factorises its input, that NH1, besides not containing dr,

has an overall factor dt2, which can be eliminated from the expression, thus simplifying

it. Of course, the simpli�ed expression still has 275 terms. Let us then make dt zero (let

dt=0) into expressions NH1 simpli�ed, NH2. Only 24 terms in NH1 do not involve dt,

and we can verify that it only has the remaining directional coordinates, namely d
, as

an overall factor, thus consisting on our �rst equation obtained from the full expression

for H:

eq1 = 4 f2 [2 (53g0 � 52) f1g0 � g1]h0 � (@f1=@r)g0h0r (43)

+106@g0=@rf1h0r � 108@h0=@rf1g0rg g0h0"r5;
where the overall factor of d
7 has been eliminated. The expression NH2 has 10 terms

which do not depend on dt, which we them call NH3. Subtracting eq1d
7 from NH1,

we get NH4, with 251 terms, and subtracting NH3 from NH2, we get NH5 with 922

terms. Expression NH3 has an overall factor of dr4; once we eliminate it, we can again

make dr zero (let dr=0) into it, thus getting

eq2 = �12(@g0=@t)2f1g03"r5; (44)

where an overall factor of d
5 has been eliminated. Subtracting eq2d
5 from NH3

simpli�ed, we get NH6, which has an overall factor dr which can be eliminated. Again

3We can verify that variables d�, d� remain combined into
p
d�2 + sin2 �d�2 in the �nal expression

for H.
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making dr zero (let dr=0) into NH6 simpli�ed, we get

eq3 = �12d
4(@g0=@t)
2f2g0

3"r5; (45)

where an overall factor of d
4 has been eliminated. Subtracting eq3d
4 from NH6

simpli�ed we get NH7, which again has an overall factor dr, thus leading to

eq4 = �12(@g0=@t)2g03g2"r3; (46)

which originally had d
3 as a factor, and, when subtracted from NH7 simpli�ed, leads

�nally to

eq5 = �12(@g0=@t)2g03g2"r3; (47)

from where factors d
4, dr have been eliminated. This way, by factorising, eliminating

overall factors on dxi and braking expressions by considering separately terms which do

and do not depend on some dxi, we have turned NH3, which is itself part of the whole

denominator of the expression H for the metric (40), into 4 equations, namely eq2, eq3,

eq4, eq5. It is completely equivalent to solving NH3 = 0 or the system of equations

eq2 = 0; : : : ; eq5 = 0, since eq2; : : : ; eq5 are coe�cients of NH3 with respect to variables

dxi.

In a completely similar way NH4 leads to a system of 6 equations, eq6; : : : ; eq11, and

NH5 to another 29 equations, after some breaks like that which led to NH1 and NH2

in the �rst place. Whenever we get two overall factors, say dr and dt, we can break the

simpli�ed expression into three parts, namely, terms which involve dr, terms which involve

dt and the remaining ones. The complete system of equations consisting of coe�cients of

the numerator of the expression (34) for the metric (40), can be found at the appendix.

So we have 40 non-linear di�erential equations for 8 unknown functions of the two

variables r; t. This system is overdetermined exactly in the sense described by Wolf and

Brand [31], who developed the computer algebra package CRACK which solves overdeter-

mined systems of (non-linear) di�erential equations. But even for the purpose of using

CRACK 40 equations are far too many; we can start by considering the smaller, simpler

ones and then substituting the solutions into the remaining ones, in the hope of getting

them simpli�ed before taking them into account. If we use equations eq1 to eq6, eq12,

eq13, eq19 to eq25, eq34 and eq40 into CRACK, we get 2 possible solutions:

f1 = 0; f2 = 0; g1 = 0; g2 = 0; g0; h0; h1; h2 free; (48)

and

g0; h0; f1; h1; h2 free;
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f2 satisfying

�
2

�
@f2
@t

�
h0 + 2

�
@h0
@t

�
f2

�
= 0; (49)

g1 =

�
106

�
@g0
@r

�
f1h0r �

�
@f1
@r

�
g0h0r + 212g0

2f1h0 � 208g0f1h0�

�108
�
@h0
@r

�
g0f1r

�
;

g2 =

�
108

�
@g0
@r

�
f2h0r � 3f2h0r � 113

�
@h0
@r

�
g0f2r + 212g0

2f2h0 � 203g0f2h0

�
;

which we must then substitute into the remaining 23 equations. But, even substituting

the simplest solution (48) into these, which leads to just 10 equations (13 are made zero),

once we input those into CRACK the resulting system is complex enough for the process not

to converge to a solution. CRACK keeps on dealing with ever more complex expressions,

until the computer (a Sun Sparc station 10 with 90 Mbytes of RAM memory) halts on

some step, possibly due to memory limitations.

We must then turn to a simpler case, at least as a �rst step. We know that, in order

that the denominator not to be zero, g0 and h0 must not be zero, i.e., we must have the

full Riemannian part of the metric in our solutions. We also know (by the very theorem

we would like to generalise to Finsler spaces, Birkho�'s theorem) that the Schwarzschild

family of solutions, with a single parameter m, is the only solution, apart from coordinate

transformations, of Einstein's vacuum �eld equations (which equation 34 generalises to

Finsler spaces). Therefore, it is natural that we �rst try to simplify our equations by

taking

g0 =

�
1� 2m

r

�
�1

; h0 = �
�
1 � 2m

r

�
; (50)

and therefore consider only solutions which are �rst order perturbations of this Rieman-

nian metric. Once we are considering terms just up to �rst order in the perturbation

parameter ", the resulting equations will be linear di�erential equations on the remaining

6 undetermined functions. Once we substitute (50) into our 40 equations, we are left with

just 27 equations. In particular,

eq6 = �12 (@f2=@t) "r6;

which already implies that (@f2=@t) = 0, and we can thus further simplify the remaining

equations. We then get that

eq8 = 24(2m � r)2 (@g2=@t) "r
2;
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and so that, once we already have from the Schwarzschild metric being perturbed that

r 6= 2m, (@g2=@t) = 0. This simpli�es even further the other equations, now just 20 to

be considered. Of those, 3 have just g1(r; t) as unknown function, namely, eq32, eq35

and eq36. Applying CRACK on those leads to g1 = 0 as only solution. But 5 equations

(eq1, eq7, eq14, eq26 and eq28) had only f1 and g1 as undetermined functions, so, once

considering g1 = 0 and applying CRACK on them too, we get that f1 = 0 is the only

solution, too. We can also apply CRACK to equations eq13, eq15, eq17, eq34 and eq37,

which have f2 and g2 as undetermined functions, to get that they too can only be zero as

well, g2 = f2 = 0. Of the remaining 4 equations (eq33 had only g2 as unknown function

and is already automatically solved), 3 (eq11, eq18, eq30) had g1, h1 and h2 as unknown

functions (now just h1 and h2) and eq38 only h1. These, once put into CRACK �nally lead

us to

h1 = "

�
1 � 2m

r

�
; h2 = 0; (51)

which leads us to the perturbative solution

ds2 =

�
1 � 2m

r

�
�1

dr2 + r2d
2 �
�
1� 2m

r

��
1 + "

d


dt

�
dt2: (52)

This solution has already been found to be unique, as well as time-independent, for

two other di�erent, less general, starting expressions for the �rst order perturbation of

the Riemannian spherically symmetric metric [18, 32], in both cases the Riemannian

functions having been obtained rather than imposed. These are all restricted versions of a

�rst order, perturbative, generalisation of Birkho�'s theorem to Finsler spaces, and they

do suggest that, in these generalised spaces, the solution to the generalised vacuum �led

equation in the spherically symmetric case4 is unique (up to coordinate transformations)

and time-independent, as in the Riemannian framework.

5 Conclusion.

In this paper we have established a perturbative version of Birkho�'s theorem fromGen-

eral Relativity for Finsler spaces, considering �rst order departures from the Riemannian

4-dimensional spherically symmetric metric which preserve its symmetry. As arbitrary

choices in this process, we took the form of the Finsler 4-dimensional spherically sym-

metric metric closest to its Riemannian counterpart; the directional dependence of such

metric to be given in terms of velocities (dr=dt), (d
=dt), where d
 =
p
d�2 + sin2 �d�2;

4Which leads to the simplest model for the gravitational �eld of a star, and thus to observational

predictions to orbits of planets or paths of light rays within the solar system [18].
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and �nally, the Riemannian part of the metric to be given by the Schwarzschild solution

to Einstein's vacuum �eld equations.

Computer algebra played an essential role all along the process (described in detail

within the paper), �rstly by determining the expression of the generalised �eld equation

for the chosen metric, then to break this equation into a system of di�erential equations,

and �nally in solving this system to �nd the unique time-independent solution which

con�gures the extension of Birkho�'s theorem to the Finsler setting.

Of course, Finsler geometry does have many other �elds of applications [33] besides

geometrical extensions of theories of gravity, and, in the hope that computer algebra can

be as helpful as it has been here, the programs developed to give Finslerian expressions

from a chosen metric or connection are being made into a package, soon to be released.
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A The Equations.

eq1 := 4�sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(2�(2�(53�g0 - 52)�f1�g0 - g1)�h0 - df(f1,r)�g0�h0�

r + 106�df(g0,r)�f1�h0�r - 108�df(h0,r)�f1�g0�r)�(sin(theta)��2�dphi��2 + dtheta��2)��3�g0�h0�epsilon

�r��5$

eq2 := - 12�sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(sin(theta)��2�dphi��2 + dtheta��2)��2�df(g0,t)

��2�f1�g0��3�epsilon�r��5$

eq3 := - 12�(sin(theta)��2�dphi��2 + dtheta��2)��2�df(g0,t)��2�f2�g0��3�epsilon�r��5$

eq4 := - 12�sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(sin(theta)��2�dphi��2 + dtheta��2)�df(g0,t)��2

�g0��3�g1�epsilon�r��3$

eq5 := - 12�(sin(theta)��2�dphi��2 + dtheta��2)�df(g0,t)��2�g0��3�g2�epsilon�dr�r��3$

eq6 := - 2�(6�df(f2,t)�g0�h0 - 5�df(g0,t)�f2�h0 + 3�df(h0,t)�f2�g0)�(sin(theta)��2�dphi��2 + dtheta

��2)��3�g0�h0�epsilon�r��6$

eq7 := 2�sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(2�(2�(239�f1�g0 + 52�g1)�h0 + 53�df(h0,r)�f1�g0�r)

�df(g0,r)�h0��2�r + 2�(3�(318�g0 - 317)�f1�g0 + 212�g0�g1 - 209�g1)�g0�h0��3 + (df(g0,r)�h0�r - 4�df

(h0,r)�g0�r - 9�g0�h0)�df(f1,r)�g0�h0��2�r - (2�df(g0,t)�h0 + 3�df(h0,t)�g0)�df(f1,t)�g0��2�h0�r��2

- 27�(51�f1�g0 + 8�g1)�df(h0,r)�g0�h0��2�r - 2�df(f1,r,2)�g0��2�h0��3�r��2 - 6�df(f1,t,2)�g0��3�h0��

2�r��2 - 212�df(g0,t,2)�f1�g0��2�h0��2�r��2 + 106�df(g0,t)��2�f1�g0�h0��2�r��2 + 105�df(g0,t)�df(h0,

t)�f1�g0��2�h0�r��2 + 2�df(g1,r)�g0�h0��3�r - 212�df(h0,r,2)�f1�g0��2�h0��2�r��2 + 102�df(h0,r)��2�

f1�g0��2�h0�r��2 - 3�df(h0,t,2)�f1�g0��3�h0�r��2 + 3�df(h0,t)��2�f1�g0��3�r��2)�(sin(theta)��2�dphi

��2 + dtheta��2)��2�epsilon�r��3$

eq8 := - (2�(df(g0,r)�h0 + 4�df(h0,r)�g0)�df(f2,t)�g0�h0�epsilon�r��2 - (5�df(h0,r)�f2�g0�r + 16�f2

�g0�h0 + 36�g2�h0)�df(g0,t)�h0�epsilon�r + 2�(df(h0,t)�f2�epsilon�r + 2�h0)�df(h0,r)�g0��2�r + (df(

h0,t)�f2�epsilon�r - 4�h0)�df(g0,r)�g0�h0�r - 4�df(f2,r,t)�g0��2�h0��2�epsilon�r��2 - 2�df(f2,r)�df(

h0,t)�g0��2�h0�epsilon�r��2 + 24�df(g2,t)�g0�h0��2�epsilon�r + 2�df(h0,r,t)�f2�g0��2�h0�epsilon�r��2

+ 12�df(h0,t)�g0�g2�h0�epsilon�r - 8�g0��3�h0��2 + 8�g0��2�h0��2)�(sin(theta)��2�dphi��2 + dtheta��2

)��2�h0�r��3$

eq9 := sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(2�((477�f1�g0 + 104�g1)�df(h0,r)�r + df(h1,r)�g0�r -

df(h2,t)�g0�r + 106�g0�h1)�df(g0,r)�h0��2�r + 2�(53�(9�f1�g0 + 2�g1)�df(h0,t)�r + 2�df(g1,t)�h0�r +

2�h0�h2)�df(g0,t)�g0�h0�r - 12�(df(g0,t,2) + df(h0,r,2))�(159�f1�g0 + 35�g1)�g0�h0��2�r��2 - (df(h0,

t,2)�h0 - df(h0,t)��2)�(9�f1�g0 + 2�g1)�g0��2�r��2 + 2�(df(h1,r)�g0�r - df(h2,t)�g0�r - 1899�f1�g0�

h0 - 109�g0�h1 - 420�g1�h0)�df(h0,r)�g0�h0�r + (945�f1�g0 + 206�g1)�df(h0,r)��2�g0�h0�r��2 + 2�(477�

f1�g0 + 104�g1)�df(g0,t)��2�h0��2�r��2 + 424�(g0 - 1)�g0��2�h0��2�h1 - 9�df(f1,r)�df(h0,r)�g0��2�h0

��2�r��2 - 18�df(f1,t,2)�g0��3�h0��2�r��2 - 9�df(f1,t)�df(h0,t)�g0��3�h0�r��2 + 2�df(g1,r)�df(h0,r)�

g0�h0��2�r��2 - 4�df(g1,t,2)�g0��2�h0��2�r��2 - 2�df(g1,t)�df(h0,t)�g0��2�h0�r��2 - 4�df(h1,r,2)�g0

��2�h0��2�r��2 - 2�df(h1,r)�g0��2�h0��2�r + 4�df(h2,r,t)�g0��2�h0��2�r��2 + 4�df(h2,t)�g0��2�h0��2�r

)�(sin(theta)��2�dphi��2 + dtheta��2)�h0�epsilon�r$

eq10 := 2�(((4�f2�g0 + 9�g2)�df(h0,r)�h0�epsilon + df(h0,t)�g0��2)�df(g0,t)�r - (2�f2�g0 + 3�g2)�df(

h0,r,t)�g0�h0�epsilon�r - 4�df(f2,t)�df(h0,r)�g0��2�h0�epsilon�r + df(g0,r)�df(h0,r)�g0�h0�r - 2�df(

g0,t,2)�g0��2�h0�r + df(g0,t)��2�g0�h0�r - 6�df(g2,t)�df(h0,r)�g0�h0�epsilon�r - 2�df(h0,r,2)�g0��2�

h0�r + df(h0,r)��2�g0��2�r - 4�df(h0,r)�g0��2�h0)�(sin(theta)��2�dphi��2 + dtheta��2)�h0��2�r��2$

eq11 := sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(106�df(g0,r)�df(h0,r)�h0��2�h1�r - 212�df(g0,t,2)�
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g0�h0��2�h1�r + 106�df(g0,t)��2�h0��2�h1�r + 2�df(g0,t)�df(h0,r)�h0��2�h2�r + 106�df(g0,t)�df(h0,t)�

g0�h0�h1�r - df(h0,r,t)�g0�h0��2�h2�r - 212�df(h0,r,2)�g0�h0��2�h1�r + 107�df(h0,r)��2�g0�h0�h1�r -

df(h0,r)��2�g1�h0��2�r + df(h0,r)�df(h0,t)�g0�h0�h2�r - df(h0,r)�df(h1,r)�g0�h0��2�r - 2�df(h0,r)�df

(h2,t)�g0�h0��2�r - 424�df(h0,r)�g0�h0��2�h1 + df(h0,t,2)�g0��2�h0�h1�r - 2�df(h0,t)��2�g0��2�h1�r +

3�df(h0,t)�df(h1,t)�g0��2�h0�r - 2�df(h1,t,2)�g0��2�h0��2�r)�ct�g0�h0�epsilon$

eq12 := 12�sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(sin(theta)��2�dphi��2 + dtheta��2)��3�df(g0,t)�

f1�g0��2�h0�epsilon�r��6$

eq13 := 4�((212�g0 - 203)�f2�g0�h0 - 3�df(f2,r)�g0�h0�r + 108�df(g0,r)�f2�h0�r - 113�df(h0,r)�f2�g0�

r - 6�g2�h0)�(sin(theta)��2�dphi��2 + dtheta��2)��3�g0�h0�epsilon�r��5$

eq14 := 2�sqrt(sin(theta)��2�dphi��2 + dtheta��2)�((5�(169�f1�g0 + 4�g1)�h0 + 9�df(h0,r)�f1�g0�r)�df

(g0,t)�h0 + 3�(df(g0,t)�h0 - df(h0,t)�g0)�df(f1,r)�g0�h0�r - 12�(df(h0,r)�r - 2�h0)�df(f1,t)�g0��2�

h0 + 6�(2�f1�g0 - g1)�df(h0,t)�g0�h0 - 6�df(f1,r,t)�g0��2�h0��2�r - 12�df(g1,t)�g0�h0��2 - 9�df(h0,r

,t)�f1�g0��2�h0�r + 3�df(h0,r)�df(h0,t)�f1�g0��2�r)�(sin(theta)��2�dphi��2 + dtheta��2)��2�g0�epsilon

�r��4$

eq15 := 2�(3�(2�df(g0,t)�h0 - df(h0,t)�g0)�df(f2,t)�g0��2�h0�r��2 + (107�df(h0,r)�f2�g0�r + 436�f2�

g0�h0 + 642�g2�h0)�df(g0,r)�h0��2�r - 3�(df(h0,r)�r + 4�h0)�df(f2,r)�g0��2�h0��2�r - 6�(141�f2�g0 +

110�g2)�df(h0,r)�g0�h0��2�r + 4�(212�g0 - 215)�f2�g0��2�h0��3 - 6�df(f2,t,2)�g0��3�h0��2�r��2 - 208�

df(g0,t,2)�f2�g0��2�h0��2�r��2 + 101�df(g0,t)��2�f2�g0�h0��2�r��2 + 107�df(g0,t)�df(h0,t)�f2�g0��2�

h0�r��2 - 6�df(g2,r)�g0�h0��3�r - 211�df(h0,r,2)�f2�g0��2�h0��2�r��2 + 98�df(h0,r)��2�f2�g0��2�h0�r

��2 - 3�df(h0,t,2)�f2�g0��3�h0�r��2 + 3�df(h0,t)��2�f2�g0��3�r��2 + 1272�g0��2�g2�h0��3 - 1242�g0�g2

�h0��3)�(sin(theta)��2�dphi��2 + dtheta��2)��2�epsilon�r��3$

eq16 := sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(((27�f1�g0 + 28�g1)�df(h0,r)�r - 2�df(h1,r)�g0�r +

2�df(h2,t)�g0�r + 7596�f1�g0�h0 + 2�g0�h1 + 1680�g1�h0)�df(g0,t)�h0�r + 18�(df(g0,t)�h0 - df(h0,t)�

g0)�df(f1,r)�g0�h0�r��2 - 4�(5�df(h0,r)�r - 6�h0)�df(g1,t)�g0�h0�r - 18�(df(h0,r)�r - 2�h0)�df(f1,t)

�g0��2�h0�r + 18�(df(h0,t)�f1�g0�r - 12�h0�h2)�df(h0,r)�g0�r - 2�(df(h1,r)�g0�r - df(h2,t)�g0�r - 9�

f1�g0�h0 - 2�g0�h1 - 6�g1�h0)�df(h0,t)�g0�r - (27�f1�g0 + 10�g1)�df(h0,r,t)�g0�h0�r��2 + 2�(212�g0 -

215)�g0�h0��2�h2 - 36�df(f1,r,t)�g0��2�h0��2�r��2 + 220�df(g0,r)�h0��2�h2�r + 4�df(h1,r,t)�g0��2�h0�

r��2 - 8�df(h1,t)�g0��2�h0�r - 6�df(h2,r)�g0�h0��2�r - 4�df(h2,t,2)�g0��2�h0�r��2)�(sin(theta)��2�dphi

��2 + dtheta��2)�g0�h0�epsilon�r$

eq17 := 2�((107�(2�f2�g0 + 3�g2)�df(h0,t)�epsilon�r + 18�df(g2,t)�h0�epsilon�r + 8�g0�h0)�df(g0,t)�

g0�h0 + 2�(4�df(g0,t)�h0 - df(h0,t)�g0)�df(f2,t)�g0��2�h0�epsilon�r - (df(h0,t,2)�h0 - df(h0,t)��2)�

(2�f2�g0 + 3�g2)�g0��2�epsilon�r - 3�(142�f2�g0 + 211�g2)�df(h0,r,2)�g0�h0��2�epsilon�r + 3�(72�f2�

g0 + 107�g2)�df(g0,r)�df(h0,r)�h0��2�epsilon�r - 12�(71�f2�g0 + 105�g2)�df(h0,r)�g0�h0��2�epsilon +

3�(70�f2�g0 + 103�g2)�df(h0,r)��2�g0�h0�epsilon�r - 12�(35�f2�g0 + 52�g2)�df(g0,t,2)�g0�h0��2�epsilon

�r + 6�(34�f2�g0 + 49�g2)�df(g0,t)��2�h0��2�epsilon�r - 6�df(f2,r)�df(h0,r)�g0��2�h0��2�epsilon�r -

4�df(f2,t,2)�g0��3�h0��2�epsilon�r - 3�df(g2,r)�df(h0,r)�g0�h0��2�epsilon�r - 6�df(g2,t,2)�g0��2�h0

��2�epsilon�r - 3�df(g2,t)�df(h0,t)�g0��2�h0�epsilon�r)�(sin(theta)��2�dphi��2 + dtheta��2)�h0�r��2$

eq18 := - sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(((3�g0�h1 - 8�g1�h0)�df(h0,r)�r - 105�df(h0,t)�

g0�h2�r - 2�df(h1,r)�g0�h0�r - 4�df(h2,t)�g0�h0�r - 848�g0�h0�h1)�df(g0,t)�h0 + 3�(2�df(h0,t)�g0�h1�

r - 2�df(h1,t)�g0�h0�r + df(h2,r)�h0��2�r + 142�h0��2�h2)�df(h0,r)�g0 - (2�df(h1,r)�r + df(h2,t)�r +

2�h1)�df(h0,t)�g0��2�h0 - (3�g0�h1 - 2�g1�h0)�df(h0,r,t)�g0�h0�r - 108�df(g0,r)�df(h0,r)�h0��2�h2�r

+ 210�df(g0,t,2)�g0�h0��2�h2�r - 102�df(g0,t)��2�h0��2�h2�r + 4�df(g1,t)�df(h0,r)�g0�h0��2�r + 213�

df(h0,r,2)�g0�h0��2�h2�r - 108�df(h0,r)��2�g0�h0�h2�r + 4�df(h1,r,t)�g0��2�h0��2�r + 4�df(h1,t)�g0��

2�h0��2 + 2�df(h2,t,2)�g0��2�h0��2�r)�g0�h0�epsilon$
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eq19 := 12�sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(sin(theta)��2�dphi��2 + dtheta��2)��3�df(g0,t)�

f1�g0��2�h0�epsilon�r��6$

eq20 := 24�(sin(theta)��2�dphi��2 + dtheta��2)��3�df(g0,t)�f2�g0��2�h0�epsilon�r��6$

eq21 := - 6�sqrt(sin(theta)��2�dphi��2 + dtheta��2)�((2�(4�f1�g0 - 3�g1)�h0 - 5�df(h0,r)�f1�g0�r)�

df(g0,t) - 2�df(f1,r)�df(g0,t)�g0�h0�r - df(g0,r,t)�f1�g0�h0�r + df(g0,r)�df(g0,t)�f1�h0�r)�(sin(theta

)��2�dphi��2 + dtheta��2)��2�g0��2�epsilon�r��4$

eq22 := 6�((2�df(f2,r)�df(g0,t)�g0 + df(g0,r,t)�f2�g0 - 2�df(g0,r)�df(g0,t)�f2)�h0�r + (5�df(h0,r)�

f2�g0�r - 4�f2�g0�h0 + 8�g2�h0)�df(g0,t))�(sin(theta)��2�dphi��2 + dtheta��2)��2�g0��2�epsilon�r��4$

eq23 := 6�sqrt(sin(theta)��2�dphi��2 + dtheta��2)�((2�df(g1,r)�h0�r + 5�df(h0,r)�g1�r - 4�g1�h0)�df(

g0,t)�g0 + df(g0,r,t)�g0�g1�h0�r - 3�df(g0,r)�df(g0,t)�g1�h0�r)�(sin(theta)��2�dphi��2 + dtheta��2)�

g0��2�epsilon�r��2$

eq24 := 6�(df(g0,r,t)�g0�g2�h0 - 4�df(g0,r)�df(g0,t)�g2�h0 + 2�df(g0,t)�df(g2,r)�g0�h0 + 5�df(g0,t)�

df(h0,r)�g0�g2)�(sin(theta)��2�dphi��2 + dtheta��2)�g0��2�epsilon�dr�r��3$

eq25 := - 12�sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(sin(theta)��2�dphi��2 + dtheta��2)��3�df(g0,t

)�f1�g0��2�h0�epsilon�r��6$

eq26 := 2�sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(4�(7�(15�f1�g0 + 8�g1)�h0 + 27�df(h0,r)�f1�g0�r)�

df(g0,r)�h0�r + (4�(10�f1�g0 - 59�g1)�df(h0,r)�h0�r - 8�(5�f1�g0 - 53�g0�g1 + 49�g1)�h0��2 - 2�df(f1

,r,2)�g0�h0��2�r��2 + 7�df(f1,t)�df(g0,t)�g0�h0�r��2 - 207�df(g0,t,2)�f1�g0�h0�r��2 + 99�df(g0,t)��2

�f1�h0�r��2 + 107�df(g0,t)�df(h0,t)�f1�g0�r��2 - 10�df(g1,r)�h0��2�r - 216�df(h0,r,2)�f1�g0�h0�r��2

+ 98�df(h0,r)��2�f1�g0�r��2)�g0 + (df(g0,r)�h0�r - 10�df(h0,r)�g0�r + 16�g0�h0)�df(f1,r)�g0�h0�r)�(

sin(theta)��2�dphi��2 + dtheta��2)��2�g0�epsilon�r��3$

eq27 := (6�((2�f2�g0 - 3�g2)�df(h0,t)�h0 - 2�df(f2,r,t)�g0�h0��2�r + df(g0,r,t)�f2�h0��2�r - 6�df(g2

,t)�h0��2 - 3�df(h0,r,t)�f2�g0�h0�r + df(h0,r)�df(h0,t)�f2�g0�r)�g0 + 6�(df(g0,r)�h0�r - 4�df(h0,r)�

g0�r + 4�g0�h0)�df(f2,t)�g0�h0 - 3�(4�df(g0,t)�h0 - df(h0,t)�g0)�df(g0,r)�f2�h0�r + 6�(2�df(g0,t)�h0

- df(h0,t)�g0)�df(f2,r)�g0�h0�r + (39�df(h0,r)�f2�g0�r + 1676�f2�g0�h0 + 102�g2�h0)�df(g0,t)�h0)�(sin

(theta)��2�dphi��2 + dtheta��2)��2�g0�epsilon�r��4$

eq28 := sqrt(sin(theta)��2�dphi��2 + dtheta��2)�((2�(1899�f1�g0 + 530�g1)�h0 + (963�f1�g0 + 436�g1)�

df(h0,r)�r)�df(g0,r)�h0��2�r + 2�((477�f1�g0 + 215�g1)�df(h0,t) + 15�df(g1,t)�h0)�df(g0,t)�g0�h0�r��

2 + 9�(df(g0,r)�h0�r - 4�df(h0,r)�g0�r + 4�g0�h0)�df(f1,r)�g0�h0��2�r - 6�(2�df(h0,r)�r - h0)�df(g1,

r)�g0�h0��2�r - (1899�f1�g0 + 830�g1)�df(g0,t,2)�g0�h0��2�r��2 - 2�(963�f1�g0 + 424�g1)�df(h0,r,2)�

g0�h0��2�r��2 + 2�(477�f1�g0 + 200�g1)�df(h0,r)��2�g0�h0�r��2 + 4�(234�f1�g0 + 97�g1)�df(g0,t)��2�h0

��2�r��2 + 2�(18�f1�g0 - 509�g1)�df(h0,r)�g0�h0��2�r - 4�(9�f1�g0 - 106�g0�g1 + 115�g1)�g0�h0��3 -

18�df(f1,r,2)�g0��2�h0��3�r��2 + 9�df(f1,t)�df(g0,t)�g0��2�h0��2�r��2 - 12�df(g1,t,2)�g0��2�h0��2�r

��2 - 6�df(g1,t)�df(h0,t)�g0��2�h0�r��2 - 6�df(h0,t,2)�g0��2�g1�h0�r��2 + 6�df(h0,t)��2�g0��2�g1�r��

2)�(sin(theta)��2�dphi��2 + dtheta��2)�g0�epsilon�r$

eq29 := (((20�f2�g0 + 81�g2)�df(h0,r)�h0�epsilon�r + 24�df(g2,r)�h0��2�epsilon�r + 2�df(h0,t)�g0��2�

r + 3408�f2�g0�h0��2�epsilon + 5040�g2�h0��2�epsilon)�df(g0,t)�g0 - (6�(4�f2�g0 + 9�g2)�df(g0,t)�h0�

epsilon�r - (4�f2�g0 + 9�g2)�df(h0,t)�g0�epsilon�r - 18�df(g2,t)�g0�h0�epsilon�r - 2�df(h0,r)�g0��2�

r - 8�g0��2�h0)�df(g0,r)�h0 + 8�(df(g0,r)�h0�r - df(h0,r)�g0�r - 2�g0�h0)�df(f2,t)�g0��2�h0�epsilon

+ 8�(3�df(g0,t)�h0 - df(h0,t)�g0)�df(f2,r)�g0��2�h0�epsilon�r - 12�(3�df(h0,r)�r - 2�h0)�df(g2,t)�g0

��2�h0�epsilon + 2�(4�f2�g0 + 3�g2)�df(h0,r)�df(h0,t)�g0��2�epsilon�r + 6�(2�f2�g0 + 3�g2)�df(g0,r,t

)�g0�h0��2�epsilon�r - 4�(2�f2�g0 - 3�g2)�df(h0,t)�g0��2�h0�epsilon - 12�(f2�g0 + 2�g2)�df(h0,r,t)�
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g0��2�h0�epsilon�r - 16�df(f2,r,t)�g0��3�h0��2�epsilon�r - 4�df(g0,t,2)�g0��3�h0�r + 2�df(g0,t)��2�

g0��2�h0�r - 12�df(g2,r,t)�g0��2�h0��2�epsilon�r - 6�df(g2,r)�df(h0,t)�g0��2�h0�epsilon�r - 4�df(h0,

r,2)�g0��3�h0�r + 2�df(h0,r)��2�g0��3�r)�(sin(theta)��2�dphi��2 + dtheta��2)�h0�r��2$

eq30 := sqrt(sin(theta)��2�dphi��2 + dtheta��2)�((7�(15�g0�h1 + 16�g1�h0)�df(h0,r)�r - 6�df(g0,t)�h0

�h2�r + df(h1,r)�g0�h0�r + 2�df(h2,t)�g0�h0�r + 424�g0�h0�h1)�df(g0,r)�h0 + (108�(g0�h1 + g1�h0)�df(

h0,t)�r + 8�df(g1,t)�h0��2�r - 3�df(h0,r)�h0�h2�r - 3�df(h1,t)�g0�h0�r + 6�df(h2,r)�h0��2�r + 852�h0

��2�h2)�df(g0,t)�g0 + 2�(2�df(h1,r)�g0�r + df(h2,t)�g0�r + 2�g0�h1 - 214�g1�h0)�df(h0,r)�g0�h0 - (213

�g0�h1 + 208�g1�h0)�df(g0,t,2)�g0�h0�r - 2�(105�g0�h1 + 107�g1�h0)�df(h0,r,2)�g0�h0�r + 2�(54�g0�h1

+ 47�g1�h0)�df(g0,t)��2�h0�r + 3�(34�g0�h1 + 35�g1�h0)�df(h0,r)��2�g0�r + 3�df(g0,r,t)�g0�h0��2�h2�r

- 5�df(g1,r)�df(h0,r)�g0�h0��2�r - 2�df(g1,t,2)�g0��2�h0��2�r - df(g1,t)�df(h0,t)�g0��2�h0�r - df(h0

,t,2)�g0��2�g1�h0�r + df(h0,t)��2�g0��2�g1�r - 2�df(h1,r,2)�g0��2�h0��2�r - 4�df(h1,r)�g0��2�h0��2

- 4�df(h2,r,t)�g0��2�h0��2�r - 4�df(h2,t)�g0��2�h0��2)�g0�h0�epsilon$

eq31 := - 2�(2�df(f2,r,2)�g0��2�h0��2�r��2 - 3�df(f2,r)�df(g0,r)�g0�h0��2�r��2 + 10�df(f2,r)�df(h0,

r)�g0��2�h0�r��2 - 8�df(f2,r)�g0��2�h0��2�r - 7�df(f2,t)�df(g0,t)�g0��2�h0�r��2 - df(g0,r,2)�f2�g0�

h0��2�r��2 + 2�df(g0,r)��2�f2�h0��2�r��2 - 113�df(g0,r)�df(h0,r)�f2�g0�h0�r��2 - 418�df(g0,r)�f2�g0�

h0��2�r - 236�df(g0,r)�g2�h0��2�r + 207�df(g0,t,2)�f2�g0��2�h0�r��2 - 94�df(g0,t)��2�f2�g0�h0�r��2 -

107�df(g0,t)�df(h0,t)�f2�g0��2�r��2 + 14�df(g2,r)�g0�h0��2�r + 216�df(h0,r,2)�f2�g0��2�h0�r��2 - 98�

df(h0,r)��2�f2�g0��2�r��2 - 20�df(h0,r)�f2�g0��2�h0�r + 246�df(h0,r)�g0�g2�h0�r + 12�f2�g0��2�h0��2

- 424�g0��2�g2�h0��2 + 406�g0�g2�h0��2)�(sin(theta)��2�dphi��2 + dtheta��2)��2�g0�epsilon�r��3$

eq32 := sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(2�(5�df(g1,r)�h0�r + 118�df(h0,r)�g1�r + 414�g1�h0)

�df(g0,r)�g0�h0�r + 2�(7�df(g1,t)�h0 + 107�df(h0,t)�g1)�df(g0,t)�g0��2�r��2 - 4�(5�df(h0,r)�r - 4�h0

)�df(g1,r)�g0��2�h0�r - (9�f1�g0 - 176�g1)�df(g0,t)��2�g0�h0�r��2 + 4�df(g0,r,2)�g0�g1�h0��2�r��2 -

10�df(g0,r)��2�g1�h0��2�r��2 - 414�df(g0,t,2)�g0��2�g1�h0�r��2 - 4�df(g1,r,2)�g0��2�h0��2�r��2 - 432

�df(h0,r,2)�g0��2�g1�h0�r��2 + 196�df(h0,r)��2�g0��2�g1�r��2 + 40�df(h0,r)�g0��2�g1�h0�r - 24�g0��2�

g1�h0��2)�(sin(theta)��2�dphi��2 + dtheta��2)�g0�epsilon�r$

eq33 := 2�((7�df(g2,r)�h0�r + 123�df(h0,r)�g2�r + 424�g2�h0)�df(g0,r)�g0�h0 + (7�df(g2,t)�h0 + 107�

df(h0,t)�g2)�df(g0,t)�g0��2�r - (2�f2�g0 - 81�g2)�df(g0,t)��2�g0�h0�r + 3�df(g0,r,2)�g0�g2�h0��2�r -

9�df(g0,r)��2�g2�h0��2�r - 207�df(g0,t,2)�g0��2�g2�h0�r - 2�df(g2,r,2)�g0��2�h0��2�r - 10�df(g2,r)�

df(h0,r)�g0��2�h0�r - 216�df(h0,r,2)�g0��2�g2�h0�r + 98�df(h0,r)��2�g0��2�g2�r)�(sin(theta)��2�dphi

��2 + dtheta��2)�g0�epsilon�r��2$

eq34 := - sqrt(sin(theta)��2�dphi��2 + dtheta��2)�df(g0,t)��2�g0��3�g1�h0�epsilon�dr�r$

eq35 := sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(2�((9�f1�g0 + 32�g1)�df(h0,r)�r - (9�f1�g0 - 821�g1

)�h0 + 11�df(g1,r)�h0�r)�df(g0,t)�g0�h0 + ((9�f1�g0 + 14�g1)�df(g0,r,t)�h0��2�r + 18�df(f1,r)�df(g0,

t)�g0�h0��2�r - 12�df(g1,r,t)�g0�h0��2�r - 6�df(g1,r)�df(h0,t)�g0�h0�r - 18�df(h0,r,t)�g0�g1�h0�r +

6�df(h0,r)�df(h0,t)�g0�g1�r + 12�df(h0,t)�g0�g1�h0)�g0 - 3�(3�(f1�g0 + 4�g1)�df(g0,t)�h0 - 4�df(g1,t

)�g0�h0 - 2�df(h0,t)�g0�g1)�df(g0,r)�h0�r - 24�(df(h0,r)�r - h0)�df(g1,t)�g0��2�h0)�(sin(theta)��2�

dphi��2 + dtheta��2)�g0�epsilon�r��2$

eq36 := sqrt(sin(theta)��2�dphi��2 + dtheta��2)�((5�df(g1,r)�h0�r + 111�df(h0,r)�g1�r + 428�g1�h0)�

df(g0,r)�g0�h0 + (df(g1,t)�h0 + 106�df(h0,t)�g1)�df(g0,t)�g0��2�r - 4�(df(h0,r)�r + h0)�df(g1,r)�g0

��2�h0 + 2�df(g0,r,2)�g0�g1�h0��2�r - 5�df(g0,r)��2�g1�h0��2�r - 211�df(g0,t,2)�g0��2�g1�h0�r + 102�

df(g0,t)��2�g0�g1�h0�r - 2�df(g1,r,2)�g0��2�h0��2�r - 214�df(h0,r,2)�g0��2�g1�h0�r + 106�df(h0,r)��2

�g0��2�g1�r - 4�df(h0,r)�g0��2�g1�h0)�ct�g0�h0�epsilon�dr$

eq37 := - 2�(((428�f2�g0 + 851�g2)�df(h0,r,2)�g0��2�h0�r + (422�f2�g0 + 833�g2)�df(g0,t,2)�g0��2�h0
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�r - 2�(103�f2�g0 + 191�g2)�df(g0,t)��2�g0�h0�r - 4�(53�f2�g0 + 102�g2)�df(h0,r)��2�g0��2�r + (4�f2�

g0 + 9�g2)�df(g0,r)��2�h0��2�r + 4�(2�f2�g0 + 103�g2)�df(h0,r)�g0��2�h0 - (2�f2�g0 + 3�g2)�df(g0,r,2

)�g0�h0��2�r)�h0 - ((218�f2�g0 + 445�g2)�df(h0,r)�r + 12�(71�f2�g0 + 105�g2)�h0 + 7�df(g2,r)�h0�r)�

df(g0,r)�g0�h0��2 - ((212�f2�g0 + 429�g2)�df(h0,t) + 25�df(g2,t)�h0)�df(g0,t)�g0��2�h0�r + (4�df(f2,

r,2)�g0�h0��3 - 2�df(f2,t)�df(g0,t)�g0�h0��2 + 2�df(g2,r,2)�h0��3 + 6�df(g2,t,2)�g0�h0��2 + 3�df(g2,

t)�df(h0,t)�g0�h0 + 3�df(h0,t,2)�g0�g2�h0 - 3�df(h0,t)��2�g0�g2)�g0��2�r - 2�(3�df(g0,r)�h0�r - 4�df

(h0,r)�g0�r - 4�g0�h0)�df(f2,r)�g0��2�h0��2 + (13�df(h0,r)�r - 8�h0)�df(g2,r)�g0��2�h0��2)�(sin(theta

)��2�dphi��2 + dtheta��2)�epsilon�r��2$

eq38 := sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(((2�g0�h1 + 7�g1�h0)�df(h0,r)�r + 10�df(g1,r)�h0��2

�r + 106�df(h0,t)�g0�h2�r - 2�df(h1,r)�g0�h0�r - df(h2,t)�g0�h0�r - 2�g0�h0�h1 + 856�g1�h0��2)�df(g0

,t)�g0 + ((g0�h1 - 16�g1�h0)�df(g0,t)�r + 4�df(g1,t)�g0�h0�r + 106�df(h0,r)�g0�h2�r + 2�df(h0,t)�g0�

g1�r + 3�df(h2,r)�g0�h0�r + 426�g0�h0�h2)�df(g0,r)�h0 - 2�(df(h0,r)�r + 2�h0)�df(g1,t)�g0��2�h0 - (g0

�h1 - 6�g1�h0)�df(g0,r,t)�g0�h0�r + df(g0,r,2)�g0�h0��2�h2�r - 2�df(g0,r)��2�h0��2�h2�r - 212�df(g0,

t,2)�g0��2�h0�h2�r + 107�df(g0,t)��2�g0�h0�h2�r - 4�df(g1,r,t)�g0��2�h0��2�r - 2�df(g1,r)�df(h0,t)�

g0��2�h0�r - 3�df(h0,r,t)�g0��2�g1�h0�r - 212�df(h0,r,2)�g0��2�h0�h2�r + 106�df(h0,r)��2�g0��2�h2�r

+ 2�df(h0,r)�df(h0,t)�g0��2�g1�r - 2�df(h0,t)�g0��2�g1�h0 - 2�df(h2,r,2)�g0��2�h0��2�r - 4�df(h2,r)�

g0��2�h0��2)�ct�g0�h0�epsilon$

eq39 := ((9�(2�df(g2,t)�h0 + df(h0,t)�g2)�g0 - 2�(4�f2�g0 + 39�g2)�df(g0,t)�h0)�df(g0,r)�h0�r + ((8�

f2�g0 + 93�g2)�df(h0,r)�r + 36�df(g2,r)�h0�r + 8�f2�g0�h0 + 1684�g2�h0)�df(g0,t)�g0�h0 + 2�(4�df(f2,

r)�df(g0,t)�h0��2 - 6�df(g2,r,t)�h0��2 - 3�df(g2,r)�df(h0,t)�h0 - 12�df(g2,t)�df(h0,r)�h0 - 9�df(h0,

r,t)�g2�h0 + 3�df(h0,r)�df(h0,t)�g2)�g0��2�r + 4�(f2�g0 + 6�g2)�df(g0,r,t)�g0�h0��2�r)�(sin(theta)��

2�dphi��2 + dtheta��2)�g0�epsilon�r��2$

eq40 := sqrt(sin(theta)��2�dphi��2 + dtheta��2)�(2�(df(g1,r)�h0�r + df(h0,r)�g1�r + g1�h0)�df(g0,t)�

g0 + df(g0,r,t)�g0�g1�h0�r - 3�df(g0,r)�df(g0,t)�g1�h0�r)�g0��2�h0�epsilon�dr$


