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ABSTRACT

The general relativistic motion of arbitrarily charged
test particles is investigated, in the spherically symmetric
fields of a cﬁarged, static, incoherent matter with Tg = const.
The condition for existence of stable circular orbits is

established, inside and outside the diffused source. The null

geodesics are also investigated, as a limiting case.



1. INTRODUCTION

1-4, the Einstein-Maxwell's equations

As is widely known
predict that an electrically charged dust distribution can only
be mantained in static equilibrium when the densities of charge
and mass bear a uniform ratio (1, in relativistic units)aprovided
there 1s no singularity in the distribution. However, the shape
and the concentration of the distribution are not determined from
the field equations aloneS. Systems with spherical symmetry have
been studied by BonnorG, who expressed the concentration as a
function of the first and second radial derivatives of the
gravitational potentials. His expression then permits to obtain
physically plausible exact solutions, by appropriate choices of
the gravitational field7. However, it appears more natural to
start from physically acceptable sources of field, and obtain

the solution for the fields by integration of the field

equation58

In this paper we investigate the charged dust counter-
part of Schwarzschild's incompressible fluid sphere (T8=const),
and describe the motion of arbitrarily charged particles under
the relativistic fields. In Sec. 2 we describe some properties
of the exact solution of the field equations. In Sec. 3 we
consider the motion of particles and light rays under the combined
effects of the fieldé, and compare these motions with less general
results obtained by previous authors. In Sec. 4, the stability
of the circular orbits is studied, and is also compared with
-previous results. Finally, remarks concerning the mass of the
system are made in Sec. 5, together with some coﬁments concerning

the radial coordinate used throughout the paper.



2, ELECTRIC AND GRAVITATIONAL FIELDS

The energy momentum tensor corresponding to an electri-

cally charged dust distribution is

U u Wopa 1 po B on |
Tv puTuy + (Fa Fv 7 TB Fa Sv)/(4ﬂ) . (1)
where p is matter density with four-velocity uu, and Fuv is elec-

tromagnetic field. For static, spherically symmetric systems of

the form (1) we can writeS
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ds? = N g¢f - o721 (dr2'+ r? dQZ) , (2)

_ 210 (0.1
. Fuv = (Guév Guév) de/dr . (3)
The three quantities p, n and ¢ depend only on r. The independent

field equations then reduce to

(20" + 4n'/r - n'%) %M = 8yp + 012 | _ (4)

n‘zeZn = g2 , (5)

where a prime means d/dr.

The solution of (4) and (5) when p = 0 is already

known5’7:

n= - en(l+M1) , o=zx(1+r/ML . (6)

The parameter M is the mass of the system, and the electric charge

is M.

Inside the sphere of radius R the three functions n, &, p



have to satisfy only two equations, soO onc constraint is
necessary to obtain explicit solutions. A most reasonable phy-

sical assumption 1is
Tg = p + @'2/(8ﬁ) = const . (7)

We then obtain the exact internal solution

D R R urz/RZ:[ ; (8)
o= (1 -¢eM (9)
o= /v + 2w [} v -3 urz/Rz:l . (10)

where V = 4WR3/3 and 2u = M/R. The constants of integration were
adjusted to make the potentials n, 9, and their first radial
derivatives continuous through the‘boundary of the sphere.

We observe in (10) that the density p(r)‘is always po-
sitive and finite, and decreases monotonically outwards. When
M << R the sphere is nearly uniform, with density M/V. From (6),
(8) and (9) we also remark that both'potentials n and ¢ vary
monotonically from a finite value at the center of the sphere

to a zero value at infinity.

3. CIRCULAR ORBITS OF CHARGED PARTICLES AND LIGHT RAYS

We now consider the motion of a particle with mass
m << M and charge q (with lq| << M), under the combined effects

of gravitation and clectrostatic fiecld. The Lagrangian and



corresponding equations of motion are

- -1 MV - H 11
L 5 guvu u qu @u s ( .).

(m u, q F, ) u o, (12)
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where a semicolon denotes covariant derivative.
All motions are planar, and are taken on the equatorial
plane for simplicity. Two constants of motion are readily found,

corresponding to the conservation of energy and angular momentum:
| 3
u, , _ (13)

where o = (q/m) sign ¢. From its Hefinition, o is positive (ne-
gative) when q and the charge of the sphere have same (opposite)

sign. The component Uy satisfies the equation (12) for A = 1,

dul/ds = o [(ul)2 O e O oenu():l s rd? ) ae)
and can be calculated directly from the first integral uuuu = 1:

2 2 2 2
WhH? = p? - rPdH? - . (15)
The differential equation of the orbit is then obtained from

(13) and (15):

(dK/d¢)2 = B—ZG—ZH [}o + ae_n)2 - :] - Kz . k = 1/r . (16)

We are particularly interested in the circular orbits.
Setting ul ='0 and dul/ds = 0 in (13) to (15), we find that

the radius £ of a circular orbit is given implicitly by



. -1 -

o) < v2 1ot -oa - VYR (17)

2 _ 0 -1 . . £ 1
where the constant v- =1 - (u 0) gives the velocity of the

particleg—lz.

In the external region we obtain, from (17) and (6),

~ 2 _ _L241/2 13
foe = OVD[1 - 0t - VOV ] a9

provided this value is greater than R. The expression (18) tends
‘ 2

to its nonrelativistic analogue, M(1 - 0)/v2, when v~ << 1. For

uncharged test particle we set o = 0 in (18) and obtain

Eext'= M/VZ, which exactly coincides with the nonrelativistic

result. Since vz < 1, the circular orbits of uncharged particles
satisfy gext > M, as alréady pointed out by Armentils.

In the internal region we obtain, from (17) and (8),

-1
ggnt = R2v2(1/2 + R/M) (1 + vZ/2 - o(1 - v? 1/2:] , (19)

provided this value is less than RZ. This expreséion tends to its

nonrelativistic analogue, R3V2M—1(l - 0)~1

-

, wWhen v2 << 1 and
M << R. |

The circular orbits for a photon are obtained simply
by setting v = 1 in the preceding equations. From (18) we find
an external, unstab1¢ orbit of radius M, as is already knownls.
As a new result, a circular photon orbit inside the incoherent
matter is predicted by (19), with radius R[_%(1+2R/M):}1/2. The
intercsting feature of this photon orbit is-its stability, as

is proved in the next Section. It should be remarked that both

cxternal and internal circular photon orbits only exist when



M > R. In the case where M = R, the two orbits coalesce on the

boundary of the sphere, & = R.

4. STABILITY OF THE CIRCULAR ORBITS

To investigate the stability of the circular orbits
. . 1
we follow the standard method described by Armenti and Havas 4,

using the Lagrangian of the motion (11). We write the Routhian

R =1L - uOBL/auO - uSGL/Su3

n
3
1
«

(20)
and find that

T = ‘12 m eZn(ul)Z . 20/m = -(o + ae"™% + gir7Ze2N | (21)

We next evaluate 8U = U(g #+ €) - U(§), where £ is the radius
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corresponding to a circular orbit, and where e° << 52. The cir-

cular orbit is stable when 68U is a positive quadratic form ing.
Calculations involving (21), (17), (15), (13) and u1 = (0 then

give the following condition for stability:

vi< 34 EMm + n/n) - En')2 (22)

with the derivatives n' and n'" calculated on the radius é.

In the internal region we find, from (8), that both
n' and n'" are positive definite. Then the right hand side of
(22) is always greater than 1, showing that all circular orbits
of charged test particles and lighf rays inside the incoherent

matter are stable.

In the external region we use (22) and (6), and find



£ > M/(1 - vE) (23)

ext

as condition for stability. Taken together, the relations (18)

> 3M, obtained for uncharged

test particles by Armenti13 and by Dadhich and Kalels. These

and (23) generalize the result gext

relations dlso give an upper bound for the specific charge of a

particle in a stable, circular orbit with velocity v:

o< (1-3whHa-vhHr oo, LY

This expression corrects the constraint ¢ < 1 obtained in nonre-

lativistic physics.

5. COMMENTS

The internal solution (8) - (10) contains only two in-
dependent parameters: the mass M and the radius R of fhe sphere.
Differently from the internal Schwarzschild solution, these
parameters can assume arbitrary finite values without producing
metrical singularity. -

The mass parameter M is related to the matter density

p according to6

M= Jp (-g3)1/2‘ dx -, (25)

where g7 = det gij (i,j = 1,2,3) and dsx = dr d6 d¢. As shown by
Tolman16, it is also related to the total source of gravitation,

which includes the electrostatic energy:



X = = - 3 .
where g4 det guv (v,v =.0-3)
In the literaturc of static, spherically symmetric
systems, we generally find the line element written as
2,2

ds? = e2Mge? - o209, Zdo? , | (27)

with n and o functions of the radial coordinate A . A disconti-
nuity in the derivative of the radial gravitational potential,
da/dx, is usually encountered on the boundary of systems contai-

17,18

ning diffuse distribution of matter The absence of such

discontinuity in the line element (2) is a possibility affordedv

19’20, together with

by electrically charged, incoherent matter
our choice of the radial coordinate. Our coordinate T is
related to A according to r = X exp n, which takes the simple

form r = X -M in the region external to the incoherent matter.
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