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Abs?ract. The exact solution of a one-dimensional problem, representing the
scatfering of a particle by ancther one which is bound to a fixed centre of
force, is given. All the interactions have zero range and are described by
boundary conditions. The possible processes are elastic scattering and break-
up of the bound system. The elastic scattering and bresk-up amplitudes are
explicitly determined, and the behaviour of the corresponding cross-sections
ig discussed. At high energies, the incident particle tends to transfer its
whole momentum to the bound one, giving rise to a strong pesk in the break-up
crogs~saction. The analytic behaviocur of the amplitudes is examined. The
Riemann surface of the elastic scattering amplitude has three sheets. The
break-up threshold gives rise to cubic-root branch points. The remaining
singularities are a finite number of poles. The exact amplitudes are compared
with those given by the impulse approximation (in first and second order) and

by Born's aspproximation. It is found that these spproximations are reliable
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only at high incident energies and within the width of the dominant peak of the

break-up crogs-section,

1o, INTRODUCTION

{a) Relation to previous work

The treatment of collision processes in which one of the
partners can break up into two particles (such as ionization,
(ny 2n) or (4, np) reactions and many others) encounters consider
able difficulties; because at least three~body problems are in-

volved.

The resonance theory of nuclear reactlons (Kapur & Peierls
1938, Wigner & Eisepbud 1947) deals only with two-body channels,
so that it does not apply to such processes. The dispersion formuy
lag employed in this theory cén be derived, at least in the
simplest cases, by means of a representation of the scattering
amplitudes in terms of their singularities (Humblet 1952, Peierls
1959). For this purpose, one must know the full analytic behaviour
of the amplitudes on the assoclated Riemann surfaces. It is not
sufficient to consider only the physical sheet, as is usnally done

in dispersion-theoretic technigues.

As has been remarked by Pelerls (1959}, it would be of interest
to extend these methods to high-energy physics. A preliminary
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study of this problem has been made by Hong-Mo (1960). One of the
main difficulties which arise is the lack of knowledge concerning
the analytic behaviour of the amplitudes in the case of many-body

channels.

Break-up processes are usually dealt with by approximation
methods, such as Born's approximation or the impulse approximation
(Chew 1950)., It has not been possible, so far, to ascertain the
accuracy of these approximations by comparison with an exact so-

lution.

It would be desirable, therefore, to find an exactly soluble
model of a break-up processs in which both the analytic behaviour
of the amplitudes and the domain of validity of the approximation

methods could bhe determined.

All attempts to find such a model have been confined to the |
simplest conceivable casé, in which the motion of the particles
is restricted to one space dimension and all the interactions have
zero range. Almost all the models which have been considered are

special cases of the problem characterized by the Hamiltonian

2 2 2
H(x,y) = - %E (f;—c—z- + :—yz> - A 8(x) ~ B 8(y) + C 8({x-y), (1)

where A, B and C are non-negative constants.

This Hamiltonian describes a pair of particles of equal mass
m, moving in one dimension and interacting with a fixed centre of
force at the origin (attractive interaction) as well as with each

other (repulsive interaction). The attractive delta~function
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interaction -B §(y) gives rise to a single bound state, of binding
energy -* mB/h®. It 1s assumed that particle y (i. e. the parti
cle with coordinate y) is bound to begin with, whereas particle x

comes in from X = cw. The incident wave is therefore
ginc(x,y) = exp(~ik _x - Aly|), (2)

where A= mB/hZ.

Wildermuth (1949) considered the special case in which A = Q.
The possible processes in this case are elastic scattering and
break~up. The break-up threshold is given by kg = Azo The first
and second Born approximations of the elastic scattering and break-
up amplitudes were compﬁted (the Born series is an expansion in
powers of C). The second Born approximation contains a term pro-
portional to (k§ - 2)1og [(k°4-2)/(k°-3)], which gives rise to
a logarithmie¢ branch point at the threshold. Wildermuth claimed
that such a branch point 1s still present in the éxact scattering
amplitude. He also conjectured that a break-up threshold always
corresponds to a logarithmie branch point; in contrast with the
case of a discrete excited state, in which the excitation thresh-
0ld corresponds to a square~-root branch point (Touschek 1949,
Peierls 1959). It will be shown in the present paper that this

conjecture is incorrect.

Jost (1955) analysed a limiting case of Wildermuth's problem,
in whiech C—o00. This corresponds to the boundary condition:

¥(x,y) =0 for x =y, so that the interaction between the parti
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eles is of the "hard-sphere" type. By an extension of the Wlener-
Hopf method, the problem was reduced to a difference equation,

which can be solved in principle {(Jost 1954). In practice, how-
ever, the construction of the solution by this procedure seems to

be very hard.

One can also consider a symmetrized version of the problem, in
which A =B and C—o . In this case, there ls an additional
process which can take place, namely, exchange scattering. It
turns out that this problem has a trivial solution: only elastic
and exchange scattering occurj there 15 no break-up. The solution
is

Y(xyy) = P(x)exp(= Alyl) - w(ylexp(- Alx]) (x>y), (3)

where

Y(x) exp(-ikox) + 11(k0-iA)'1 exp(ikox) for x 30,

(4)

|

-1
k (k~1A)"" exp(~ik x) for x<0,

is the solution of the scattering problem for the interaction
-B §(x).

To explain this result it is helpful to c&hsider the two-di-
mensional interpretation of the problem (Morse & Feshbach 1953, p.
1709). The wave function is a solution of the two-dimensional
Helmholtz wave eguation, except along the coordinate axes and the
first bisector. Along the first bisector is a perfectly reflect-
ing mirror, and along the x and y axes are semi-reflecting mirrors,

s

which can support surface waves, such as the incldent wave 2.

Elastic scattering corresponds to reflection of this wave on the
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y-axis, and exchange scattering corresponds to reflection on the

bisector. Break-up would correspond to the appearance of a circu-
lar wave going out radially from the origin; which might be called
a "diffracted" wave. That no such wave exists 1s due to the symme
try of the problem: the solution (3) can be constructed by the
method of images. It suffices to add to the incident wave 1its
image (with opposite sign) with respect to the bisector, which
gives rise to the last term of (3). |

Another problem having a trivial solution wasg analysed by
Danos (cf. Lieb & Koppe 1959). It corresponds to taking A =B-»-~00
in (1), and C < 0, so that the interaction between the particles
gives rise to a bound state. The incldent wave is a surface wave
travelling along the bisector, so that the particles are bound
together to begin with. There are now perfect mirrors along both
axesy giving rise to three images. Again there is no break-up:

only elastlic scattering takes place.

Lieb and Koppe (1959) considered another problem, which corre-
sponds to taking A =B = 0 in (1), and replacing the $nteraction
term by -2C 6(x+y) 8(x~y) (C>0), where 6(x) =1 for x>0, 6(x)=
= 0 for x < 0. The incident wave is again a surface wave travel -
ing along the bisector, coming in from x = o0, y = 00+ Break-up
occurs if the total energy is positive. The problem can be solved
by the Wiener-Hopf method. It 1ls closely related to the problem
of diffraction by an imperfectly condueting half-plane, which was
solved by Senior (1952). The elastic scattering and break-up

cross-sections were explicitly determined, but the corresponding
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amplitudes and thelr analytic behaviour were not investigated. It

is doubtful, however, whether such an investigation would be worth
while, in view of the unphysical character of the interaction, which
depends on the sign of the coordinates of the particles.

(b) Formulation of the problem

In the present wofk, a modified version of Jost!s problem will
be considered. The interaction between the particles 1s still of
the hard-sphere type, and it is still assumed that the x particlg
does not interact with the centre of force. However, the inter-
action between the y particle and the pentre of force will be de-

scribed by the following boundary .condition:

§—§’-’ (x,0) = A¥(x,0). (5)

This boundary condition introduces a considerable simplifi-
cation as compared with a delta-function interaction, because it
restricts the motion of the y particle to a semi-axis (there is no
probability current across the x~axis). The interaction (5) still
gives rise to a single bound state, in which the y particle 1s
confined to the region y > 0 if A< 0, and to the region y< ©
if A > 0. In either case, the incident wave in one of these
regions is still given by (2).

If A< 0, the -motion is confined to the octant x > y > O.

The problem is then a trivial one, and break-up does not occur. To
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seé this, it suffices to continue the wave function symmetrically
about the x-axis: 1t then becomes identical to the solution of
Danos's problem (with a rotation of the axes by wn/4).

If A > 0, the motion is confined to the region: y € 0, x > ¥.
The problem J: ne longer trivial, and; as will be shown later,
break-up occurs when the total energy is positive. This 1s the
problem which will be dealt with in the present work. It has some
features in common with the (three-dimensional) problem of the
scattering of slow neutrons by molecularly bound protons (Fermi

1936).

The boundary condition (5) has already been employed by several
authors (cf. Eyges 1959 and the references quoted there). It ecan
be considered as a limiting case of an attractive short-range inter
action with a hard core. If we consider, for instance, the po-
tential: V(y)—o00 for y =03 V(y) = « % hZKZ/m for =a<y<0;
| V(y) =0 for y< =-a, where a = % g/K + Jl/KZ, it is readily seen
that the boundary condition on the logarithmic derivative of the
wave function at y = =5 goes over into (5) in the 1imit as K— o0.

The same boundary condition 1s employed In electromagnetic
diffraction thecry to describe an imperfect conductor of very large
conductivity; in this case; A is a complex parameter (Griinberg
194%, Jones & Pidduck 1950).

Applying the two-dimensional interpretation, the present problem
can be described as that of diffraction of a surface wave by a

wedge of exterior angle 2m/4. One of the wedge surfaces is
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perfectly reflecting, and boundary condition (5) is to be satis-

fied on the other surface.

The problem of diffraction of a plane electromagnetic wave by
an imperfectly conducting wedge of arbitrary angle, in the case
in which the electric field is parallel to the edge of the wedge,
has been solved by Williams (1959) (ef. also Malyughinetz 1960).
In this case; A 1is a complex parameter with negative real part.

In §2, the exact solution of the present problem will be
found by applying Williams'! method. The elastic scattering and
break-up amplitudes will be explicitly evaluated in terms of ele-

mentary functions.

The behaviour of the amplitudes will be discussed in §3.

The behaviour of the elastie scattering and break-up cross=-sections
as a function of the energy and of the momentum distribution be-

- tween the fragments will be described. The analytic behaviour of
the amplitudes will also be discussed. It will be shown that the
oenly branch polnts in the elastic scattering amplitude are those
assoclated with the break-up threshold, and they’are cubic-root
branch points; so¢ that the corresponding Riemann surface is three-

sheeted. This disproves Wildermuth's conjecture.

In 84, approximate expressions for the amplitudes, correspond
Ing to the first and second order impulse approximatioqs and to
Bornts approximation, will be derived and compared with the exact
ones. In the case of the elastic cross-section, the agreement is

not good. Good agreement is found for the break-up cross-section
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at high energies, within the width of the dominant peak, but not
outside of this domain. The approximate amplitudes do not repro-
duce the analytic behaviour of the exact solution: the break-up
threshold appears as a logarithmic branch point, of the same type
as that which was found by Wildermuth.

Thus, in the case of the present model, the questions which
were ralsed at the beginning of this § can be completely solved.
The extension of these results to the more realistic case of three-

dimensional scattering, however, still remains an open problem.

2 SOLUTION OF THE PROBLEM
- (a) The boundarz-vaige problem

We shall employ the polar co~ordinate system shown in figure 1.
The time factor exp(=iEt/h), where E = + h%kS/m is the total energy,
will be omitted throughout. The wave function ¥(p, ©) must fulfil
the fo.llowing conditions (ef. § 1b):

2,102 1 2 .2 =0 3.);
(1) (pr + T + 2 ae + k Yip ,Q) =0 (0<e<41r s (6)
1
(1) 2 3L (p,0) = = %(p,0) (A > 0) (7)
(111) ?/z(P»Z-Tr) = 0; (8)
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Fig. 1. OCo-ordinate system.
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(1v)  W(p,0) = [exp(~ik, p cos 8) + £(k,) exp(ik, p cos ©)].

) 2 \* ) e [,u: I\ £ 3

. exp(-Apsine)+(;£5) F(k,9) exp ( 9—4) or p—> 00}

(9)

(v) ¥(p,8) is bounded at the edge of the wedge (1. e. for p—0).

The relation between ko and k 1s

%
k = (koa - %) (F x >0). (10)

3
Below the break-up threshold, k = 1( A% - koa) , 50 that the last

term of (9) is exponentially damped. Above the threshold, this
term represents an outgoing circular wave. The elastic scattering

and break-up amplitudes are given by f(k,) and F(k,0)s respectively.

Above the threghold, the first two terms in (9) ean be omitted
for & # 0, since the asymptotic behaviour of ¥(p,0) for p—o 1is
then dominated by the last term. However, the first two terms pre

dominate for ©6 = 0.

Condition (v) is ealled the "edge condition® in electromagnetic
diffraction theory, where it corresponds to the physical re-
quirement that the electromagnetic energy density in the neighbour
hood of the edge be inteérable.(Meixner 1948). In the case of
perfect conductors, this condition 1s a necessary }equirement for
the uniqueness of the golution, for it is possible teo construet
unphysiecal solutions'with singularities‘at the edge which do not
fulfil it (Bouwkamp 1946). Although it is not known a priori
- whether the same is true in the present problem, it can be assumed

that the solution satisfies condition (v) la It will be shown in
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§2a that Y(p,0) = 0(p%3) for p —>o0.

(b) The difference equation

It will be convenient in the derivation of the solution to
assume that E >0, so that k is real. The method of solution is
similar to that employed in Williams! paper (1959), where ad-
ditional details can be found. The starting point is the follow-
ing integral representation of the solution, which is an extension
of Sommerfeld's well-known diffraction integral (Frank-von Mises
1935):

Yp,0) = JC f(w,0)exp(-ik p cos w) dw. (11)

The domains of the complex w-plane where GQ (~ikcos w)< 0 are
shaded in figure 2. The path of integration C must begin at in-
finity in one of these domains and go over to infinity in another
one. It will be assumed to lie entirely in the strip -m®R w<2r.

The function f(w,8) must be sufficiently well behaved to
Justify the manipulations that will follow. The correctness of
this assumption can be verified in the solution. It will be
assumed that f(w,8) 1s a regular analytic function of w, apart
from poles, which will be requlred to produce the incildent and
elastically scattered waves. The poles wlll be assumed to lie
all above a strailght line parallel to the real axis, and the
contour C must lile éntirely below this straight line, so that it

cannot be crossed by the poles for any value of 6,
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In accordance with condition (v), it will be assumed that £(w,0)
is bounded for all values of 6 as w tends to infinitjr along C 2,
and similarly for its first two derivatives with respect to 0.

In order to fulfil condition (i), we must have

202 dw-

This follows from (6) and (11) by differentiation under the inte-

2 2
PZ(/_\. + ¥2)Y = JC (M - 9.2) exp(-ik p cos w) dw = 0. (12

gral sign and partial integration. The integrated part vanishes
for p # 0, according to the assumptions.

Equation (12) is satlsfied if
f(wy0) = gl(w+e) + gz(w-e)g (13)

where g1 and g, are arbitrary functions. Again by partial inte-
gration, it follows that

| "';':- Z—g (p,0) = -ich[gl(w+6) - ga(w-e)] exp(-ik pcosw ) sin w dw.

. Thus, condition (ii) will be fulfilled if
(sin w + cos a:)gl(w) = (sin v - cos rx)gz(w), (14)
where we have introduced the notation
cos &« = ir/k. (15)
For E >0, we shall take

co=F-1p (B> 0 (16)
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Condition (1ii) gives

gZ(w)‘ = -gi (w-!- % 11') . (17)

We concluds that

sin(w=8) + cos«

G(w-6 )] exp(-ik p cos w)dw

(p,0) = G(w+0) +
vip Jc [ N sin(w=6) - cos«x (18)

satisfies conditions (i), (1i) and (iii), provided that G(w) fulfils

the difference equation

G(w) cosd - sin w
= . (19)
G(w+%1r) cosx+ sin w

This equation can be rewritten as follows:

G{w) cos o~ cos(w +-3~ T) cos o+ sin(w+gv) (20)
— T . — 20
G(w+g-1r) cos ot + sin w COS O = CcOS W

so that its general solution is of the form

6(w) = K(w) Go(w), (21)

where 1
Gy(w) = (22)
(cosel+ sin w)(coso= cos w)

and K(w) is the general solution of
RK(w) = K(w + g‘ﬂ'). ' (23)

Equation (18) now becomes
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K(w+6)

¥(p,0) =J

c [cos o+ sin(w+6)] [cos o = cos(w+6)] )

K(w-6)

_ exp(-ik pcos w) dw. (24)
[cos o= sin(w—e)] [cos od= cos(w=0 )] } P

c) The solution

In order to see the effect of condition (iv), we have to
discuss the aymptotic behaviour of (24) for ¢ —o00. For this
purpose, we can apply the saddle-point method. The saddle points
are w = 0 and w = 7, and the corresponding steepest descent curves
are represented by the arcs AB and DE in figure 2 (only the neigh-
bourhood of the saddle points 1is important for-p-—»oo).

In order to apply the saddle-point method, the contour C must
be deformed in such a way as to incorporate these arcs. In this
process, it has to sweep across poles of the integrand, which are
required to produce the incident and elastically scattered waves.
As we have seen above, the residues at these poles will contribute
to the asymptotic behaviour of ¥ only for 6 = 0. According to
(9), the poles which are required for © = O are given by: cosw=ko/k,
i, €0 W= & - 32: (incident wave) and cos w = -k /k, i. e.

w = o+ % (elastically scattered wave). '.l‘hése points are marked

by circles in figure 2.

It is readily seen that all the zeros of the denominator of
(24) in the lower half of the w-plane lie on the straight line
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Fw= -B 5 where ﬁ is given by  16). The pole at w = o = % for
@ = 0 is supplied by the factor [cob-t + sin(w+e)]“l and the pole

at w = ¢+ % is supplied by the factor zaﬂs(x - sin(Wme)]glo The
contour C must lie entirely below the straisht line ‘9’w = «f3 (cf.

figure 2).

The integrand of (24) must have no poles in the iower half-
plane within the strip o<.92 w<m. In facty; the residaves at such
poles would give rise to exponentially increasing terms fov F—>00o
The factors [cos o - cos(w 9)]”1 in (24); however, give ris: to
poles within this strip; at w = <% ©6. We conclude that the

numerators of (24) must have zeros at these points:

K{et) = 0, (25)

Since K(w ¥ ©) must have no poles in the forbidden strip, we can
also conclude from {23) that K(w) has no poles in the lower half-

-plane.,

The saddle points at w = O and w = 7 contribute terms pro-

portional to pmﬁ exp(=ik p ) and pmﬁ exp{ik p ), respectively. The

former would correspond to an incoming circular wave s and must

therefore be excluded. Thus, the expression within curly brackets

in (24) must vanish for w = O, so that
K(@) = K{-0), (26)

It follows that K(w) must be an even function of wy so that,

according to the above; it can have no poles in the upper half-

plane either.
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Thus, K(w) must be an entire even periodic function with period
g'n'. On the other hand, in order that condition (v) shall be ful-
filled, £(w,6) 1n (11) ought to be bounded for |J w|-—oco0. Accord-
ing to (24), this implies 3: K(w) = Q_[exp(ZlS’wl)] for | w|—.

Therefore, K(w) must be of the form

K(w) = A, *+ Ay cos (% W),

where A, and A, are constants. According to (28), A,= -Alcos(§<¥),
so that
- 4 ay. 4
K(w) = & [cos (§ )~ cos($ W)}, (27)

where A 1s g normalization factor.

Substituting (27) in (24), we finally get the solution of our

problem:
%(p,8) =J‘C[H(9 + w) - H(6 = w)] exp(~ik p cos w) dw, (28)

where

Alcos(% o) - cos(% w)
H(w) = [coscs costd ) . (29)
(cosa+ sin w)(cosa - cos w)

The location of the poles of the integrand of (28) for all

values of © 1s shown in figure 2. LIt is convenient to deform the

]

contour C in such a way as to sweep only across the poles at w
= -6 -1ip (incident wave) and w =7 + 6 - 1ip (elastically scattered
wave). For this purpose, as shown in figure 2, we deform it into

Gt + C", where the vertical parts of the paths C' and C" are taken

along the straight lines Rw = = 2 Ty 2 T and % r. Furthermore,
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since C!' can be taken to be symmecrical about the orlgin, and the
integrand of (28) is an odd function ~f w, the integral along C°'
identically vanishes, so that

Y(p,0) = 2rilires +JC" ’

where Y. res denotes the sum of the residues of the .ntsgrand of

(28) at the poles w = -€ -ip and w = 7+ 6 -1ip .

The asymptotic behaviour of ¥%(p,0) for p —> o0 follows from
this equation by applying the saddle-point method:

Y(pys0) = 2m1 [res H(w)| exp(-ikopcos 8) -

w=-ip
- Tres H(W)|w=-1r+ip exp(ikopcosae)]exp(wlp sin @) +

+(§%>&[H(e+1r) -~ H(® -Tl')] exp[i(kP - %)] . (30}

By comparing this with (9), we finally get

\ = ko (k,-12) (31)
’\/—5 ,n_ka[(g ei’ﬂ')Z/B -(Z eiTT)"Z/B] ? 3
_ ko -iA ;2/3 - g"'Z/B
o . (g ei’ﬂ')Z/3 - (é ei‘ﬂ')"Z/B
ko(ky = 14) sin($ o)
F(k,e) = ) (33)

[(é ei™)%3 _ (¢ ei”)‘2/3](ksin 8 -1A)(kcos 6 +iA)
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where X -2

. (34)

The exact elastic scattering and bresk-up amplitudes are given by

(32) and (33), respectively.

(4) Behaviour near the edge

The behaviour of the solution near the edge of the wedge can

be determined by means of an expansion in a series of Bessel
functions. This expansion can be derived in the same way as the
corresponding expansion of Sommerfeld's branched wave functions

(Frank-von Mises 1935).

Let B be a constant such that the contour C lies entirely
below the line & w = =B (B >P). The constant B can be chosen
arbitrarily large. For sufficiently large B, the integrand of

(28) can be expanded as follows:

H(® +w) -~ H(G ~w) = 4iA[cos(% 0)exp( - %m) + Zs/zcosacos(%9+ g).

.exp(-%iw)- Zcos(% cﬂcoé(2‘55')&-::1)(-a-ZiW) - 4coszacsin(%9)exp(-—%iw)+...]

(35)

Substituting this in (28), and employing Sommerfeld!s integral

representation of the Bessel functions

Jp(z) = g;ljcexp{-iz cos w -ip{w - %)]dw, (36)



282
we get the convergent expansion

Y(p,0) = 81riA[exp( -iw/3)cos(§ G)Ja(kp) - 23/2 exp(im/6)cosa

.cos(% e + E) J%(kp) + ZCOS(% a)eos(20) Ja(ky) + 4dexp(-ir/3).

.cosaotsin(% 9) J&(kp) + ] (37)

3

In particular, for kp « 1, (37) becomes

¥ (p,y0) = ‘8‘_{%’%—) [exp(-iw/B)cos(% e)(¥ 1:1'.5'.’)2/3 - :g ZB/Z,exp(i‘n'/6)cos oL,
3 .

ccos(§ 6 + DX(F k)3 + [(Brcos(§ icos(20)(Bup? + ...].  (38)

Thus, ¥(p,6) = Q(pZ/B) at the edge, whereas grad ¥ has a
singularity in p'l/ 3, a singularity of the same order appears Iin
the case of electromagnetiec diffraction by a totally reflecting
rectangular wedge (Nussenzveig 1959, p. 12). It is clear by
comparing (35) with (38) that the behaviour of f(w,8) at infinity
in (11) is determined by the behaviour of %(p,0) near the edge.

All the assumptions which have been made in the derivation can be

verified in the above results.
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3. BEHAVIOUR OF THE AMPLITUDES

{3) The elastic scattering and break-up cross—sections

It follows from (9) that the elastic scattering cross-section 4
is given by
- 2
o (k) = |£(k )]~ (39)
Below the break-up threshold, we take, according to (10),
k,-A=(A- k,) exp(ir). It can readily be verified that, with
the corresponding replacement: & —|g| exp(im), (32) remains
valid below the threshold, and gives, as ought to be expected,
o (k) =1 (k< 2). (40)
Above the threshold, according to (32) and (39),
| 3243
o (k) =1 = (kg > ). (41)
14243 . 8/3
The behaviour of 0, as a function of the dimensionless parame-
ter K = kO/A., which is the square root of the ratio of the inecl-
dent energy to the binding energy, is shown in figure 3. The
elastic cross—-section decreases quite rapidly as the incident
energy increases. In particular, for K> 1, (41) becomes
o n 88 x2 (kK »1). (42)

e ™ 27

Thus, at high energles, the elastie-cross-section 1s inversely

proportional to the incldent energy.
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Fig. 3. The elastic scattering cross-section: exact solutiony- - - impulse
approximation; =,=.=.- iterated impulse approximation.
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The amplitude F(k46) corresponds to a break=-up process in

which particles x and ¥ come out with momenta hkx = hk cos ©® and
hky = -hk sin ® , respectively. It follows from (9) that the proba
bility for such an event to take place in the interval (©,0+d6)
is o(k46)39, where |

4x 5
o(k,0) = — |F(k,9)| (43)

wko

is the break-up cross-section expressed as a function of k and 6.
It is also possible to express 1t as a functlion of other palrs of
variables: for instance, the probability for break-up to take place
in the interval (kx,kxi-dkx) is o(k,kx)dkx, where

olk k) = |k |™ o(k,0)  (ky =k cos@). (44)

It follows from (43), (32) and (33) that
K(KZ+ 1)s1n%(2 o)
[(k2-1)2 sin26 cosZ© +K2] )

o(k,8) = -3%7- [1 - o (k)]

(45)
The unitarity condition above the break-up threshold takes the

form

3r/4
o-e(ko) +J0 o(k,0) @8 = 1. (46)

To verify that (45) satisfies this condition, it suffices to
employ the following result, which can be derived by the method
of residues: ,
sr/4  sin®(% e) a6 RIG sin®(20) de _
J 0  [(K2-1)Zsin6 cos26 +K°] ZL, [(KB-1)2sin?(30) +4KZ]
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B
S —— e, (47)

4K(K“~1)

The behaviour of o(K,0) as a functiown of 6, for several values
of K, is shown in figure 4. It vanishes botkh for € = 0 and for
© = 37/4. For incident energies slightly above threshold, the
total break-up cross-section is small and o(K,0) is a slowly-vary-
ing funetion of 6. The curve has a rather flat peak a% € = 3n/8.
The totél break-up cross-section increases with the incident energy,
and the peak is shifted towards © = % . This peak gets narrcwer
and more pronounced as the energy increases. For K> 1, (45) be-~
comes |
4K sin“(% o)

o(K46) = — 1
’ sr [1+2 K%sin%(20))

(X »"1), (48)

which gives rise to a peak of height K/wv and width A€~ 2/K at

e =12’1 . In the 1limit K—>o00, we find

1lim o(K8) = 6(% - 0). (49)
K— o ‘

Thesg results have‘:a sihgle physical interpretation: 1f the
incident energy is much larger than the binding energy, there tends
to be a complete momentum transfer from the incident particle to
the bound one. Under such circumstances; one would expect that the
behaviour of the bound particle would approach that of a free one,
and it is well known that a complete momentum exchange takes place
in a collision between two free particles with a "hard-sphere®

interaction (head~on collision between two billiard balls).
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Fig. 4. The break-up crosg~gection as a function of 6 for several values of K:

srsse e K=105; —_——-- K=2; -o—o“oﬂ'K:s; K=10a
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(b) Analytic behaviour

The wvariables in terms of which on: expresses the scattering
amplitudes in order to study their analyti~ behaviour can be chosen
in various ways. For the elastic scattering -mplitude,; a convenient

variable is ko, the incident wave number.

According to (32) and (34), f(k,) 1s an algebraic function of
k, having second-order S pranch points at k, = + A (brezk-up
threshold). This disproves Wildermuth's conjecture, according to
which these points would be logarithmic branch points (ef. $1s).

The Riemann surface of f(k,) has three sheets, which are joined
together at the two branch points. We shall take the branch cut
along the real axls, from k, = =2 to ko = A ., The sheets will be
numbered according to the range of values taken by arg £: sheet I:
-m < arg £< wj sheet Il: 7 < arg s ¢ 3m; sheet III: 3r<arg < 5.
Sheet I 1s the physical sheet, where f(ko) still represents the
elastic scattering amplitude below the break-up threshold (on the
upper edge of the cut).

The only singularities of f(k, ), besides the two branch points,
are the following poles (the roman index denotes the sheet on which
the pole is located) : k, = (wiA)I: simple polej k, = (oo)II:snmﬂe

pole; k = (O)III: simple pole; k ==(-iA)III: double pole.

O
It is noteworthy that the only branch points are those to be

expected on kinematic grounds. It is not immediately clear, how-

ever, whether the nature of these branch points can be predicted

on kinematic grounds alone. As will become apparent in $4a, there
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exists a close relationship between the three-~sheeted -character of

f(ko) and the three-sheeted character of the wave function in
configuration space. The latter, according to (37), is connected
with the behaviour of the solution near the edge of the wedge

{(p — 0). Thus, the nature of the branch points is determined

essentially by three-=body colligions, and it may depend to some

extent on the nature of the interactions.

An interesting question has been raised by Pelerls (1959) in
connection with the well-known redundamt singularities of non-rels.
tivistic scattering amplitudes, which are found in the case of
potentials having exponential or Yukawa tails. The question is
whether such singularitles still occur in local field theory, where
the basic interactions have zero range, but the colliding objects

may have appreciable size because of the fields surrounding them.

In the present examp;e, all the interactions have zeroc range,
but the exponential tail of the bound state corresponds to a "size"
of the compound system. The situation is of course quite different
from that of field theory, but it may be worth while to note that
the redundant singularities characteristic of an exponential po- -
tential do not appear in the present case. The argument 1s not
quite conclusive, however, because the wave function is conflned to
the region y < O, and a "one-sided" exponential potential in one

dimension does not give rise to redundant singularitles.

The analytic behaviour of the break-up amplitude can be dis-

cussed, for instance, in terms of the variables (ko, 0).
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According to (33), F(k, ,0) i-; for fixed 6, an algebralc functior

of ko having fifth-order branch poiunts at ko = *A, The assoclated
Riemann surface has six sheets; which cem be obtained by combining
the three sheets of the Riemann surface of f(ko) with the two sheets
of the Riemann surface of the factor k = (kéa- Aa)% in the denomi-
nator of (33). Besldes the two branch points, there are a small
number of poles; which can easily be obtained from (33). Some of

them are independent of €.

For a fixed value of k,» F(k ;0) is a periodic function cf ©
with period 6w, whose only singularities are poles. The location

df these poles follows at once from (33).

4. APPROXTIMATION METHODS

In this §, we shall investigate the accuracy of some approxi-
mation methods usually employed in the solution of problems of
this kind. These methods are based upon the replacement of the
exaqp wave function by an approximate expression in an otherwlse
exac% representation of the scattering amplitudes. As a preliminary
step, we shall now derive this representation for the present

problem.

d
{a) Integral representation of the amplitudes

The scattered wave ¥, (x5¥) = ¥(xyy) = exp(~ik x +Ay) fulfils
the following conditionss; which are equivalent to conditions (i) to

(v}, $2: (1) (6412 ¥ =0 (x> 35 y< 0 (11) 38 (x,0) =
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= Atps(x,O)(x>0); (111D Z.l/s(x,x) = -exp(-ik _x + Ax) 7(x<0); (iv)¢s
contains only outgolng waves at in_finity‘; (v) t}'s is bounded at the
edge of the wedge.

‘Let G(xy]x'y') be the Green's function satlsfying the follow-
ing conditions: (1) (o + k%) 6 =0 (x'>y'; y'<0)3
(1i1) by,

(x +y2) —~00; {iv') G is bounded at the edge of the wedge.

lel
(xy|x'0) = AG(xy|x'0); (iii') G is purely outgoing for

The scattered wave can be expressed as follows in terms of G:

g.

0 d
CPs(x,y) = J-oo exp(=ik x '+ Ax' )[(bx’ -5?;-) Gr(xylx':,r')]x,:= - dxt+
+J‘0 G(xylx'x')[(-—%— - -bi,-) P (xts y')]x,z , axt . (50)
oo y y
0 o
Note that (5%;--— B-Y-—,-) xt= y! dx! = = 3=y ds', where n' is the

direction of the normal to the first bisector (x! = y!), pointing
out of the region x'>» y!'s and ds' is the line element along the

bisector.

The Green's function can be constructed by expansion 1in
elgenfunctions. The complete orthonormal set of elgenfunctions in

the y varlable is given by

x () = (20F expry), (51)
x(kys 3) = (2/m)° stnliegy + 1) (% 0), (52)
where y < 0 and é
k=i

exp(2ip) = - E?'T'i'i' . (53)
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It will be convenient from now on to assume .that k“'2 has an
infinitesimal positive imaginary part; thus, according to (iv), aps
must be bounded at infinity. The Green's function is then given
by '
+@0 o1k (x=x1)

1
Glxy|xtyr) = -—-J dk_ -
2 | o X kOZ_ ka

xo(y) xo(y') +

-yt
g [t ® odx(x-% )x(kv,y) x(k,> y')
-+ 3 dkx dk —— . . (54)
Ly Ko

Performing the integrations with respect to kx’ and substituting

the result in (50), we get 7

- co
(ZA)% Eps(x,y) = ¢°(x) x (y) + J'O ‘P(ky,x) X(ky, y) dky,
(55)
where
@ (x) = 2 J eikolx-xll?!- Ax! {[ik e(x=xt)+A] R
) o } —oo 0.
) [ (S’:Pc‘f - 57) Hx y')]xm Y’} ax! (56)
and

- 0 | t t '
¥k, x) = 10/m)7 k;}J otexl x| {e"iko" * A% i cos(ixt + ) +

-00
+ ikxe(x-x')sin(kyx"i-'?)] - sin(kyx'+ 7)[(53':-7_- ;;—,-)aﬁs(x',y')}xhy,}dx'.

(57)
In these equations, €(x) =1 for x > 0, €(x) = =1 for x < O,
ahd
k, = (ka-kya)% (R, %05 Ik, > 0). (58)
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According to (55), the probability amplitudes assoclated with

elastic scattering and with break-up leading to the elgenstate
x(ky,y) of particle y are ¥, (x) and ‘P(ky, x), respectively. Thus,

q%(x)'*> f(ko) exp(ik x) for x -0, (59)

where f(koj is the elastic scattering amplitude. Similarly, let

‘P(ky,x)~+-f+ (k,ky) exp(¥ik x) for x—>% o0, (60)

where the upper (lower) signs go together. Then, the probability
for break-up in the Interval (ky,ky+dky), with the x-particle
coming out in the positive (negative) x~-direction, is o;(k,ky)dky,

‘where
0'(kk)=5£if(kk)|2 (61)
+5%y7 Tk ey

The asymptotic behaviour of ¥ for (x2-+y2)&-—+oo can be
obtained by inserting (59) and {(60) in (55} and by applying the
method of stationary phase (Erdélyi 1956). By comparing the

result with (9), one finds

F(k,8) = % (TT/A)% exp[-1p (_E;)]E;.fi(k,ﬁ;'), (62)

where E; = k|cos 8], ﬁ; =k sin © is the stationary phase point,
and £, or f_1is to be employed according as to whether 6<1% or

e > %, respectively. It is readily seen that (61) and (62) agree
with (43) and (44).

By letting |x| — o0 in (56) and (57), and by comparing the
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results with (59) and (60), one finally gets the following exact

representation of the scattering amplitudes:

0 I
£(k) = - %:AJ ¢ 1T !+ Ax [(31- i 5,—3—,-) Y(xr, y')}x,.. g1-Gx (63)

t
o J =00 X

0 mrp oy
£k, k) = -'ﬁg‘(a/n)%l[ o Fikxk! sin(k x1+9).

X ~00

These expressions correspond to the well-known representation
of transition amplitudes which was introduced by Lippmann and
Schwinger (1950). To show this, let ¢, = exp(ik x) X% (y), ¢ =
=texp(iikxx)'x(ky, ¥) denote the final-state wave functions in the
absence of interaction corresponding to elastic scattering and to
break-up, respectively. Let kxb = ko in the former case, and kxb =
= k. in the latter one. Let ‘Pa(+)(x,y) = (223% ¥(x,y) denote the
total wave function corresponding to the incident wave exp(-ik x).

« x,(y). Then, (63) and (64) can be rewritten in the form

= (21, )", 08 ) = (21k )" J%bcs,'zm('a)‘l'( )¢ a8 ar,

(65)
where & = x-y, 7= x+y, and the integration is extended over the

whole range of values of § and % . The effective interaction U(E)
between the particles x and y is given by

U(E) = 8(5) 3 = = 5i(8). (66)

Note that we consider only functions defined in the domain E> 0,
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o0
so that Jo §(¢) ag = 1.

The interaction (66) is a sort of "pseudopotential' associated
with the one-dimensional "hard-sphere" boundary condition (Fermi
19%6). The factor (Zikxb)'l in (65) is a characteristic factor
which appears in one~dimensional scattering amplitudes (ef. Morse

& Feshbach 1953, p. 1071).

The representations (63) and (64) establish a connection
between the analytic behaviour of the amplitudes and the analytie
continuation of the wave function for complex energies. In particu-
lar, as was mentioned in $3b, it is clear that the threshold branch
points are closely related to the branched character of the wave

function (37) in configuration space.

() The impulse approximation

The impﬁlse approximation was introduced by Chew (1950). It
amounts, in the present problem, to the replacement of the exact
wave function in (63) and (64) by an approximate wave function
¢(0)(x,y), which represents the scattering of an x-particle of
momentumlhko by a wave packet of free y-particles having the same
momentum distribution as the bound-state wave function 6(-ylexp(Ay)
(0 denoteg the Heaviside step function). This corresponds to the
éssumption that the interaction between the y-particle and the
centre of force can be neglected during the collision, its only
effect being the generation of the momentum distribution of the

y~particle.
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The usual criteria for the validity of this approximation (Chew
1950, Chew & Wick 1951), as adapted to thke present problem, would
be the following: (I) the range of the interactions must be much
smaller than the "radius" of the bound state; (II) the incident
energy must be much largér than the binding energy. In the present
example, condition I is obviously fulfilled (in a particularly
favourable way) and c¢ondition fI is equivalent to the requirement:
'k o > A. Thus, according to these criteria, the impulse approxima~

tion should be a very good approximation for K = ko/A » 1.

Since the interaction between particles x and y is of the

"hard sphere" type,; the wave function V’(O)(:&,y} is given by
?P(O)(x,y) = 6(~y) exp(-ik x+2y) = &(~x) exp(ix=- ik .y). (67)

Substituting this result in (63) and (64) and taking into
account (62), we find the expressions for the amplitudes in the °

impulse approximation:
k =14
(Q) Yy e o A [ o 7

k(ko = 31A) sin@
(k ¢in @ -1A)Nk cos ©® + 1A)

FO)(x.,0) = . (69)

Ng},ﬂe

The corresponding cross-sections follow from (39) and (43):

o, Ok, = k72, (70)

(0) _ 1 (0) K(XZ+ 1) sinS 6 .
0 (k,0) == |1 - ¢ {k ) e e s, (71)
’ T [ © © ] {(sz 1)23121‘26 cos® 0+ KE} 7
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Notice the similarity between (71) and (43).
(0)

The behaviour of T as a function of K is shown by the

curve in dashed line in figure 3. Although its qualitative be«
haviour agrees with that of the exact solution, the gquantitative
agreement is far from good. Even at high incident energies, ac~-
cording to (42), there is a discrepancy by more than a factor of

two.

o

The behaviour of 0(0)(k,6) as a function of @ for K = 1.5 and
for K = 5 is shown by the curves in dashed line in figures 5 and 6,

respectively. The curves in full line represent the exact solution.

For K = 1.5, which is still close to the threshold, the agree-
ment is good for @ £ 3m/8, but becomes very bad beyond this value.
For K = 5, the agreement is reasonably good within the width of
the peak centred at 6 X n/2, but becomes gquite poor outside of it.
The situation is similar for larger values of K. it is readily
seen that the result (49) is also valid for ot 0) in the limit as

K—00.

Thus, in the present example, the impulse approximation for
the elastlc crossg-sectlon is not a good approximation, even at
high incldent energies. It gives good results for the break-up
croés-section at high energies within the width of the dominant
peak of the cross=gectlon, but nét outside of it.
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The break-up cross-section for X = 1.5:

exact solution; - - - —~impulse
approximation; .-.-.-. iterated impulse approximation; ..., Born approximstion



299

Bl

B2
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The bresk-up cross-gection for K = 5:

Fig. 6.

Born approximg

approximation; -.-.-. iterated impulse approximation; c..ce..

tion.
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{c) The iterated impulse approximation

According to (67), the scattered wave in the impulse approxima-

(0) _
Y

tion is given by: = = B(-x) exp{Ax - ikoy). If we replace

¥ (1), substituting ¥ by 1) = e(-y) exp(~ikgx+ Ay) + (1) in
(63) and (64), we get the iterated impulse approximation.

in the r. h. s. of (50), we obtain a new approximation

In order to compute ¢s(l), it is convenient to express the
Green's function (54) as an integral over kx’ by performing first

the integration with respect to ky. This leads to

, 1 +00
G(xylx'yt) = y J-oo exp[ikx'(x-x')]{exp(iksrly-yq) +
k! +1ix ket
+ <k-Y——§_n) exp[-ik:;,(w')]} ==, (72)
y
where
ke = g2t Ry > 05 Sk > 0), (7%)

Substituting Y, by ¢s(0) and G by (72) in (50), and carry-
ing out the integration over x', we obtain
(ky = 12) J+oo exp[i(li;gx-ks',y)]

¥, Dixyy) = 3
8 ! >ri -00 (k;t-!-il)(k&-il) dkx

(74)

Replacing ¢ by (b(l) in (63) and (64), and performing the inte-

gration with respect to xt', we get

Alk, =-1A)
£ = 2200 ) - —— 1, (75)

)

(1) _ 1400 b (Eo =10
£k ) = 3 £y (eskey) + 1A /m)* —2—— exp[-19(x)] 7, (76)

X
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(and similarly for fgl)),where

+00 (k;k}) dk !
1= 1 (- L] A _l ] ? (77)
«00 (kx*l-il)(ky-i )(kx-ky-ko-i A)

;= roo (ki-ik:,)

-00 ( ki+i k)(k;,-i A)

1 (ky- n) 1 , ]
+ dk!.
k_+1ix x*
k;:"kjlr-kx'ky Yy k;c'kfr”kx"'k

y
(78}

The integrals I and J will be computed in the Appendix. Substi-
tuting the results, given by (A4) and (A7), in (75) and (76), and
taking into account (62), (68) and (69), we finally get the Iiterated

impulse approximation:

(®8 - 2By Kk +Ay 1A
f(l)(k ) = [1 + 2 }log(ko_z) + }f(o)(ko), (79).
N . PR o 4k

' kK +A\ © cot 8 1A
P (k,8) = [1- 1og<-k° _A>+' — + I ]F(o)(kse), (80)
avk, o Vo g o
(k2 - 1) K*l) ]2 1
(1) _ (0)
(k.) =4{1 + 1 e +  — (k.) 81
%e ) {[ ankK o8 K-1 16 K° % o’ (1)

2
_ 1 K+21° @ cot © 1
o1k 0) = [1 - 1°g( >+ __i?_._l + Z}G(o)(k,e).
ark o \K-1 2 16 K
(82)

The behaviour of O'él) as a function of K is shown in figure 3

by the dash-and-dotted curve. This curve begins a little to the



302

right of K = 1, because (81) cannot be applied in a small neighboug
hood of this point, where it violates the condition: oes,l. Beyond
this neighbourhood, cél) 1s a better approximation than oéo), but

the deviations from the exact solution are still quite large.

Similar remarks apply to the behaviour of oil)(k,e) as a
function of ©, whieh is shown, for K = 1.5 and X = 5, by the dash-
-and-dotted curves in figures 5 and 6. It gives better results
than the impulse approximation, but it is gtill a poor approxima-

tion in the same regions as the former one.

Let us now consider the analytic behaviour of the iterated
impulse approximation. The most interesting feature is the ap-
pearance of branch poiﬁ£s at the break-up threshold, on account
of the logarithmic terms im (79) and (80). These terms have
precisely the same form as those found by Wildermuth (1949) in the
second Born approximation of his problem (ef. §1a). The substi-
tution of an algebraic branch point by a logarithmic one in an
approximate solution obtained by iteration is a not unfamiliar
phenomenon (ef. Nussenzvelg 1959, pp. 26 and 40), which shows that
it may be misleading to draw inferences about the analytie be-

haviour from such an approximation.

(4) The Born approximation

The Born approximation in the usual sense would be obtained by
replacing %(x', y') by the incident wave in (63) and (64). It is

readily seen that the result would differ from the impulse approxi-
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mation only by a factor of 1/2. The same relation exists between
the second Born approximation, defined in this way, and the lterated
impulse approximation. Thus, Born's first and second order approxl
mations, in the usual sense, are very bad approximations, as ought

t0o be expected for a "hard-sphere" interaction.

However, there is a different definition of the Born approxi=-
mation which leads to more accurate results in the presentlproblem.
Instead of expressing the scattered wave in terms of its normal
derivative on the bisector, as in (50), one can express it in terms
of its‘value on the x-axis. It suffices to employ the Green's
function Go(xylx'y') which fulfils the condition: G (xy[x'x') = 0,
instead of condition (ii'), 84a. This function is given by (Morse
& Feshbach 1953, p. 813)

Go(xylx'y') = j% [Hgl)(k VE;-x')Z+(y-y*)a)- Hgl)Ck (x-y')z+(y-x;52)],
(83)
" where Hgl)(z) is Hankel's function of the first kind of order zero.

In the place of (50), we get

‘ 0 2 2 . : :
ﬂg(x,y) = J_ooexp(-ikox'+;lx')[Q;ET--3§7> Go(xylx'y')]x'= y'dxl +
+:[°° [ =8 (xy]x10) - AG (xylx‘O)]ﬁf(X‘ 0) ax!'. (84)
0 dy ! 0 178 ’

For K» 1, 1t is to be expected that the amplitude of the
scattered wave on the x-axis will be very small, as compared with

that of the incident wave . We shall therefore define the Born
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approx*mation as that which is obtained by taking ?ps(x',O) =0 in
(84).

If we then let p-—+o00 along the direction €, we find, replacing
Hankel's functions by their asymptotic expansions in (84), the
following expression for the asymptotic behaviour of the scattered

wave in the Born approximation:

3
@;B)(X:Y)w - (,‘;1%;) exp[i(kp - E)] -ka- (sin©®+ cos6) .

0
J exp[—i(ko-'-ik)x'-l-ik(sine.- cose)x'] dx* (for p—).
o)

There 1s no elastically scattered wave in this approximation. Com-
parison with (9) shows that the break~up amplitude in the Born ap-
proximation is given by

ik(sin @ + cos 6_)

(B) =
F**/(k,0) =
’ 2[k(sin 0~ cos @) - k, - 1A] '

(85)

and the corresponding cross-sectlion is

(K- 1)[1+ sin(2e)
o'Bl(x,e) = L+ sin(zo)] - (86)

ZHK[KZ— K(KZ—I)%( 8in® - cos8)- (Kz-l)sin © cos 6]

The behaviour of o(B)(k,0) as a function of 6 for K = 1.5 and
for K = 5 1s shown by the dotted curves in figures 5 and 6. For
small values of ©, the deviation from the exact solution is lai'ger
than that of the previously considered approximations (note that
ofB) #0 for © =0). Then, up to & ~ 37/8 or w/2, the accuracy
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is about the same as that of these approximations. Finally, for
@ > /2, in contrast with the former approximations, there 1is good
agreement with the exact solution. 1In particular, OKB) =0 for
€@ = 37/4., For K— 00, U(B) also tends to the correct limit (49).
Thus, on the whole, the Born approximation gives better results

than the previous ones.
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APPENDIX - COMPUTATION OF THE INTEGRALS 1 AND J

The integral I defined in (77) can be rewritten as follows:

T =

- ——

Ay — r— G“
-oo'k;iz-% 2 2 ). (kx"?‘**' AZ)‘(kﬁz-kg)

1 j'+oo dk ia [too (21~:33:+k0+17«)&1:;c
2

1 > +00 dké 2 +¢0 dki
- [k OIS + A = . (A1)
2(ko+ iA) -0 (ki+ X )ky ~00 (ki -ko)k§
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The first two integrals can be computed by residues; note that

jko > 0. On the other hand, according to (73),

g S W NG (Eg&) A S S (koﬂ),
| ~o0 (k;czmz)ky, Rk ARY) | o AR, XK, Y
(a2)
[+ dk?i N l:tan-l (kzzi)]ﬂ)o = -%_ log (z +A) .(A3)
2 2 Ak ! A
J=oo (k1= ko)ky} ) ¥ 0
Substituting these results in (Al), we finally get
i k A k +A ix

The integral J defined in (78) can be rewritten as follows:

2
! '+ik k

e e PR =

(ky+i‘/\) -00 (k;:-kx)(k2;+i?l) -0 (k1~ -k )(k' k)

1 +00 dk +c0 dk!

2
kM [" J-m T +k§(p-[-ob (k'a-ia)k'}} S
X o’y X vy

Note that & k, > 0 according to (58), but ky is real (ef. (55) and
(60)) so that the second and fourth integrals in (A5) are Cauchy
principal values. We have:

+00 dk! t -k k!
g)f x_ . [:mg Ay~ Bk

s ]

00 (k;c ky)k§ 2kk yk§+kxk;c -00
ke
k

Xy
= - 'E-—- tan™1 ( . (AE)
Ly X
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Substituting (A3) and (A6) 1in (A5), and computing the first two

integrals by the method of residues, we get

4.

5.

6.

7

2rik k +A k k
L [ - 1og(° )-i-% —;’-c-tan'l(—-‘z)+ﬂ-].
(et A) (=1 2) 2k, k= K, K/ 2k,
(A7)
* * %
FOOINOTES

In the case of the Schr8dinger egquation, the physiecal require-
ment is that the flux of the probability current through a
ecircle of radius p centred at the origin shall vanish as p—0
(Pauli 1933). This would still allow a singularity ¥(p, ©) =
= 0(p™7) at the edge, with 9 < 3.

According to the previous footnote, one might have: f(w,0) =

= 0[exp(i? w)] (o< %) for |w|— o along C.

According to the preceding footnotes, one might have K(w) =
= o{exp[(2+ M| ¥ wl]} (9<%), but this would not affect the

conclusion (27).

The “ecross-~section' of an event in one-dimensional scattering

is the probability for this event to take placs.

According to the usual terminology, a branch point such as

that of zl/p is of order p -~ 1.
Since y £ 0, the phase shift in the usual sense is = ?(ky).

The factor (235% in (55) is due to the normalization of the

ineident wave.
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8. Notice, however, that this ls not true on the bisector, on

account of the boundary condition %(x,x) = 0. The natural
approximation in this case is not the Born approximation, but
the impulse approximation, given by (67).
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