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The problem of obtaining the non relativistic equation for
particles with spin 1/2, correct to any desired order of approxima=
tion. has been properly solved only recently by Foldy and Wouthuy-
sen.i .
In this paper an appropriate extension of the Foldy=-

Wouthuysen (F.W.) method is developed in order to obtain the non
relativistic limit of the Proca'a equations for spin 1 particles in
interaction with the electromagnetic potentialse. The method is used
' to obtain the equation up to terms of the order -—2 in the expansion
in powers of -%—. The Hamiltonian obtained contalns, besides the
.usual terms of the case of spinless particles, only a magnetlc noment
interaction term -E- T.M where H is the magnetic field and M the
spin operator for sp1n 1 particles (so the gyromagnetic factor is 1) °
No terms of the order-—zr such as spin orbit coupling or gquadrupole
moment interaction exi®ts. We were not atle to find a physical justie
fication for the lack of these terms, in particular for that of the
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spin orbit coupling.,LL

Relativistic equations for spin 1 particles.,

The proca equations for spin 1 particlés in vacuum can be write
ten as.
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where A, and A form a quadrivector, E and H an antisymmetric tensor

of second rank, We use natural units: h = ¢ = 1.
Equations (la) and (1b) are really the fundamental ones, as

(1c) are immediate consequences of themo
If the particle interactswith the electromagnetic potentials

2 we have to substitute, in equations (la) and (1b) (but not in
9 9 Y e

(1c) ), the ordinary derivatives 56-9{- and ¥ by

V- {eA (2)

at, Qf-‘-“‘e}o» "



-

The new equations (le) must then be deduced from those. They
are not obtained from (lec) by the substitution (2).
The expressions for the density of energy W and the density

of charge S’ are given by5

i 7 y (3a)

The density of energy in the absence of an.electric field
1s everywhere positive, but the density of charge can be positive or

negative,
‘Hamiltonian Operator

If we'consider_equétions"(lb), which do not involve time
derivatives, as definition.equations and take them into (la) we ob-

tain the second order equations
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These equations can be written in matrix form:
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where ¥ is a six-component wave-function:
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13 being the 3 x 3 matrices whose r,s elements are

1 being the 3 x 3 unit matrix. T
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~ Finally the matrices Qi"j are defined by.

0 = P T £sd = 0FF

The matrices Tij and Qij commute with B and 0 .
" We note also the following properties.
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The last three operators in (6) take the form'
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We shall cal the hermitian operator H, the Hamiltonian oper-
ator for the spin 1 particle because its integral over all space is
equal to the énergy

J{/ H = jww/' 6:’”7/ (13)

In the proof of (13) the expression {3a) and (6) for W and
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H were used and integration by parts was performed assumiﬁg the
usual conditions at infinity.

Also we consider eB as the operator for the charge because
we have ’

_’—’h.'
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(charge density);

This is indeed the operator for the charge which appears, multiplied
by the electric potential ¥, in the expression (6) of the Hamilton-
ian, The equation for conservation of charge:
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can te obtained in the usual wéy from equation (5) and its adjoint.

Before proceeding further it is convenient'to make a unitéry
transformation in order to bring B into a diagonal form, This is
accomplished by a transformation

by — Ty
where
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In this new representation the Hamiltonian retains the
form (6) with the new definitions for the operators B-and 6:
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 If the newV/ is written
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we have the following expression for the density of charge:
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This representation is somewhat similar to the usual repre=
sentation of the Dirac equations In that case, the charge density
being positive, the upper and lower components of the wave function
represent respectively, states of positive and negative energy for
particles at rest. Here, the encrgy density being positive in vacue-
um, the upper and lower components of the wave function represent
respectively, states of positive and negative charge for particles
at rest.

Generalization of the Foldy-Wouthuysen Method

In the F. W. method for spin 1/2 particles a two component
equation is obtained from the U component Dirac equation by a con-
venient unitary transformation which eliminates the odd operators
so that one can impose the supplementary condition that two of the
components of the wave function vanish. The reason for the use of
unitary transformation is that we want to keep invariant the form
of the total probability, or of the total charge. |

In the case of spin 1 we wish to obtain from our 6 component
equation, a 3 component one by a similar procedure.*

' ~ However, as now we wish to keep invariant the form of the
expression for the total charge

eJWB{//dV-

the transfqrmation Ty
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%> Hdre.we doll’ ‘0dd” 4he ‘operators (Qwhich enticomaute with B, and even, those
& which commute with B.
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will not necessarily be unitary. For instamce, if S is an odd oper-
ator, then, as we neecd

B— (Y"1

Lt is necessary that
SB=RBST=-BS

Then S should be anti-hermitian:

8 MR o I =1
After we are able to eliminate the odd terms from the Hamile ‘

tonian we can impose the supplementary condition (for positively
charged particles): . |

BY =y | W

i.e., that the three lower components of { vanish (in the represen=
tation given by (14) ).

We consider separately the case of the free particle and
that of a particle in presence of an electromagnetic field, as in
the first case an exact transformation of the required type can be
found while in the second case only approximate transformations can
be found, |

~ | Free Particle

In this case equations (5), (6) reduce to
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If we call & the odd operator in (18) we find, from (12):
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Now we try a transformation

¢ = e‘-f?yf S = -2 Qo (20)

. wvhere w is a function of p/m;<&S, being an odd operator, has to be anti-
.hermitian, as we have shown, so W 1s a real function. We have
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Using the commutation properties of & we find
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The odd terms‘of‘H' vanish if we take:
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So we have obtained the square root equation: 
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Equation (2/) has solutions such that the 3 upper components of § re-
- present positively charged particles (if B is diagonal), and the lower
components represent negatively charged particles,

Positive garticleq in the presence of an electromagnetic field.
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In the general case equations (5) and (6) can be written:
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where dﬁ’

H is the magnetic field and m U 1s the spin operator for spin
1 particles:
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for 1,j,k a cytlic permutafion of 1,2,3.
Equdtion (25) can be put in the form
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where (0 is the odd part of H,
Consider, now, the canonical transformation generated by
the antihermitian operator _ _
2m
We find for the Hamiltonian in the new representation (similar to the
free particle case):
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If Q) is of no lower order in l/m than (1/m3 (as is the case for equa-
tion (25)), and if S can be considered small, then we can make an ex-
pansion in powers of 1/m of the Hamiltonian in the new representation:
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All terms in this development are hermitian. If we take instead of (28)

¥ = ‘£f£"(°dd terms in H of lowest order in 1/m)(31)
B ;

we find, as in the F.We method, that we may successively remove odd
terms from the Hamiltonian to any desired order.
. Here we want to obtain the non relativistic equation up
~ to,terms in 1/, :

Starting from equation (25), we first make the transfor-
mation generated by

S == (_Q. 0‘7 ¥ - (2)

obtaining the new Hamiltonian
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to terms of order (l/m)2 8;15 the electrlc field.
The last term of the order 1/m is odd and is eliminated
in the next transformation generated by
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' the resulting Hamiltonian correct to terms in 1/mZ being
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Now, as there are no odd operators in the equation
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we can impose the supplementary condition (17),for positive particles
and we.obtain after the transformation

Y=

- the non relativistic 3 component equation
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v'with the usual normalization dondition
' *
j¢ O dv =1

Equation (35) which is correct up to terms in l/m; is very
similar to the N.R. approximation of Dirac equation but has.no terms
in 1[m? such as a spin-orbit interaction
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which seems difficult to understand; also there is no quadrupole
moment interaction term
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" or even the divergence term -%—'dimf' as one hight éxpect,
: : m : ‘
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