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Abstract

We evaluate explicitly the quark-antiquark static potential on Quantum Chro-

modynamics Q.C.D. (SU(3)) by using the Dimensional Regularization scheme in

the context of the Mandelstam approximation for the Gluonic interaction. We ob-

tain its charge confining behavior in opposition to the expected result of a screnning

charge dynamics.
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1 Introduction

One of the still unsolved problem in the Gauge theory for strong interactions as given

by Quantum Chromodynamics with gauge group SU(3) is to produce arguments for the

ethernal color charge confinement of the related field excitations ([1]).

A long time ago ([2]), it was argued by S. Mandelstam through a somewhat intrincate

non-perturbative analysis of the Q.C.D. Schwinger-Dhyson equations the one should use

as a first approximation for the small momenta infrared regime non-abelian quantum

Yang-Mills path measure, including its non-perturbative aspects, an effective (somewhat

phenomenological) purely abelian Gluonic action but with a free effective propagator

already including the sum of a certain class of relevant Feynman diagrams for Gluons

color-charge exchange. It was conjectured that the use of this scheme would be suitable

if such an effective dynamics led directly to the color confinement.

It is the purpose of this paper to evaluate the static potential between two statics

charges with opposite signal on the above mentioned Mandelstam effective Gluon theory

and show exactly its envisaged color-charge confining property; a basic physical require-

ment to use directly continuum Q.C.D. with improved Mandelstam-Feynman diagramat-

ics, at least on the level of Dyhson-Schwinger equations as earlier proposed on ref [2] by

S. Mandelstam.

This study is presented on section 2.

In the section 3, we solve exactly by means of the chiral path integral bosonization

a two-dimensional version of the Mandelstam model (a Schwinger model with higher

derivative coupling). Finally on section 4 we study the charge screening phenomena in

presence of conducting plates on the Mandelstam model through a Wilson Loop evaluation

as done in section 2.



CBPF-NF-014/08 2

2 The Wilson Loop in the Mandelstam Model

We start our analysis by considering the (Euclidean) Effective Mandelstam Gluonic action

written in terms of a path-integral in a ν-dimensional space-time Rν

Z =

∫
DF [Aµ(x)] exp

{
−1

2

∫
dνx dνy Aµ(x)Dm(x− y)Aµ(y)

}
(1)

where the Mandelstam (free) propagator with logarithmic term is given explicitly by the

Fourier transform on the (Tempered) Schwartz distributional space

Dm(x− y) =
1

(2π)ν

∫
dνp eip(x−y) � g(|p|2α)

|p|4 (2)

with α a positive model resummation constant (including factor index groups, etc...). (see

ref [2])

The static potential between a quark and an anti-quark in the Feynman picture for

particle propagations in the space-time is given by the vacuum Gluonic energy as given

by eq.(1), but in presence of the above spatial-static charges. This vacuum energy of such

charges separated by a space-like distance R is computed by evaluating the temporal

(ergodic) limit ([1],[3]).

V (R) = lim
T→∞

− 1

T
�g

⎡
⎢⎣〈 exp i e

∮
C(R,T )

Aµdxµ

〉
A

⎤
⎥⎦ (3)

where the rectangle C(R,T ) is the Feynman trajectory of the neutral pair in the space-time

and the Mandelstam Gluonic normalized average as represented by the operation 〈 〉A is

given explicitly by the Gaussian path integral eq. (1).

In order to evaluate the static potential given by eq.(3) it is convenient to re-write the

Wilson loop inside eq.(3) by means of an external current Jµ(x;C(R,T )) circulating around

the pair finite-time propagation space-time trajectory C(C,R) = {xµ(s)}, namely ([3])

Jµ(x;C(R,T )) = i e

∮
C(R,T )

δ(ν)(xµ − xµ(s))dxµ(s) (4)

The Gaussian path integral eq.(3) can be exactly evaluated and yielding the following

result

V (R) = lim
T→∞

− 1

T
�g

[
exp

{
+

1

2

∫
dνxdνyJµ(x;C(R,T ))Dm(x− y)Jµ(y, C(R,T ))

}]
(5)
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The evaluation of eq.(5) can be accomplished by writing it in momentum space

V (R) = lim
T→∞

− 1

T

[∫
dνp

(2π)ν
fµ(pα, C(R.T ))× α�g(p2)

p4
× fµ(−pα, C(R,T ))

]
(6)

with the contour form factors

fµ(pα, C(R,T )) = ie

∫
C(R,T )

e−i pµxµ(s)dxµ(s) (7)

A simple evaluation of eq.(7) provides the solutions

f0(p, C(R,T )) = −4e

p0
sin

(
p0T

2

)
sin

(
p1R

2

)
(8)

and

f1(p, C(R,T )) = +
4e

p1
sin

(
p0T

2

)
sin

(
p1R

2

)
(9)

After inserting the contour form factors eq.(8), eq.(9) into eq.(6), we obtain as a result

V (R) = lim
T→∞

1

T

{
16e2α

∫ +∞

−∞

dp1

(2π)

sin2
(

p1R
2

)
p2

1

×
[∫ +∞

−∞

dν−2p̂

(2π)ν−2

(∫ +∞

−∞

dp0

(2π)

(p2
0 + p2

1)

p2
0

sin2

(
p0T

2

)
× �g(p2

0 + p2
1 + p̂2)

(p2
0 + p2

1 + p̂2)2

)]}
. (10)

Note that we have considered the pair spatial-static trajectory C(R,T ) contained is a

two-dimensional sub-space of the (Euclidean) space-time Rν in a such way that we can

decompose the vector �p ∈ Rν as �p = p0�e0 + p1�e1 + p̂, where p̂ denotes the projection

of p̂ over the sub-space perpendicular to the sub-space {�e0, �e1} containing the square

C(R,T ) = {(x0, x1);−T
2
≤ x0 ≤ +T

2
;−R

2
≤ x1 ≤ +R

2
}.

The ergodic limit of T →∞ and the p0-integration is easily evaluated through the use

of the Distributional limit

lim
T→∞

sin2
(

p0T
2

)
p2

0T
= 2π δ(p0) (11)

As a consequence we get the result

V (R) = 16e2α

[∫ +∞

−∞

dp1

(2π)
· sin

2
(

p1R
2

)
p2

1

×
∫

dν−2p̂

(2π)ν−2
· �g(p

2
1 + p̂2)

(p2
1 + p̂2)2

]
(12)

Let us analyze the (D − 2) − P̂ dimensional integration. In order to evaluate such

integral, we use the well-known formulae (from I.S. Gradshteyn & I.M. Ryzhik table of
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integrals – page 558 – eq.(14) – Academic Press – 1980.∫
dν−2p̂

(2π)ν−2
· �g(p

2
1 + p̂2)

(p2
1 + p̂2)2

= Π
ν−2
2

{
Γ
(

6−ν
2

)
Γ(2)

(|p1|)ν−6

}

× (ψ(2)− ψ(3− ν

2
) + 2 �n(|p1|) (13)

For the evaluation of the final p1-integration we use the well-known Gelfand results of

the Fourier Transform of Tempered (Finite-part) Distributions ([4]).

sin2

(
k1R

2

)
= −1

4
(ek1R + e−k1R − 2) (14)

and ∫ +∞

−∞
eip1R|p1|β dp1 = −2 sin

(
βπ

2

)
Γ(β + 1)|p|−β−1 (15)

with∫ +∞

−∞
eip1R|p1|β�n(|p1|)dp1

= i eiβ π
2

{[
Γ′(β + 1) +

iπ

2
Γ(β + 1)

]
(|R|+ iε)−β−1 − Γ(β + 1)(|R|+ iε)−β−1 · �n(|R|+ iε)

}

− i e−iβ π
2

{[
Γ′(β + 1)− iπ

2
Γ(β + 1)

]
(|R| − iε)−β−1 − Γ(β + 1)(|R| − iε)−β−1 · �n(|R| − iε)

}
(16)

By passing to the Physical limit of ν → 4 and noting that the pole of the Gamma

function canceals out either with the sinus zero for ν → 4, namely.

lim
ν→4

sin
(π

2
(ν − 6)

)
Γ(ν − 4− 1)

∼ − 1

(ν − 5)
Γ(ν − 4) · sin

(π
2
(ν − 4)

)
= +π (17)

We obtain, thus, the finite result for the static quark-antiquark potential in the Man-

delstam Gluonic effective theory on the physical space-time R4.

V (R) = (e2α) · c · |R|(1 + �n(|R|)) (18)

Here c denotes a positive constant which depends on the Fourier Transform normal-

ization factors, etc...
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We see, thus, that the Effective Gluonic Mandelstam theory leads in a very natural way

to a quark-antiquark confining potential and not to a dynamics of change color screening

as it would be expected in a first analysis ([1]). This is the main result of this section.

At this point, it is worth remark that if one has added to the logarithmic propagator

eq.(2) a pure quartic term of the following form

D̃m(x− y) =
1

(2π)ν

∫
dνp eip(x−y) · 1

|p|4 (19)

one obtains the same result as given by eq.(18) without the logarithmic term.

Another important point to be called the reader´s atention is that if one tries to

evaluate the self-energy of the guark propagator with the effective Mandelstam propagator

eq.(2), namely

Σ(p) ∼ e2
∫

dνk

(2π)ν

(
γµ( � p− � k)γµ

(p− k)2

)
�g(k2)

k4

= 3

∫ 1

0

dx(1− x)
{∫

dνk

(2π)ν

[
((1− x) � p− � k)�g((k + xp)2)

{k2 + x(1− x)p2}3
]}

(20)

with the power series expansion for the logarithmic term in eq.(20) as given below

�g(k2 + x2p2 + 2(x · p)x) = �g(k2) +
∞∑

n=1

(−1)n+1

n

[
(2x(k · p) + x2p2)

(k)2

]n

(21)

one should arrives at the standard Mandelstam behavior after tedious calculations.

Σ(p) ∼� p
[
A+B�g(p2)

p4

]
(22)

with A and B constant p-independent, (including possible divergences at ν → 4 !).

As a consequence one see that the quark-antiquark propagator should have a behavior

of the form (in the Euclidean world)

Gµν
ij (x− y) =

〈
0
∣∣∣T (ψµ

i (x)ψ
ν

j (y))
∣∣∣0〉

Eucl.

∼

∫
d4p

(p2) � peip(x−y)

p4 +B�g(p2) + A
(23)

signaling again that at p2 → 0+ (the L.S.Z´s asymptotic limit) we find branch-cuts instead

of mass-physical poles. This indicates again that it is a completely ill-defined process to

apply L.S.Z´s framework to Quarks and Gluons since the quark field excitations are not

physically-quantum mechanical observable. This leads one to consider only composite

operators from the very beginning, as Mandelstam did in ref. [2], in order to apply

correctly the L.S.Z’ Quantum Field Methods, even at the small momenta region.
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3 The Two-dimensional Mandelstam-Schwinger model:

its Chiral path-integral bosonization

It is well-known that two-dimensional models has proved to be a useful theoretical labora-

tory to understand difficult dynamical features expected to be present in four-dimensional

quantum chromodynamics. It is the purpose of this section to complement the analysis

of confining of four-dimensional dynamical fermions in the infrared leading approximate

Mandelstam model of Section 2 by means of a higher-derivative exactly soluble two-

dimensional model.

Let us start this section by writing the (Euclidean) Hermitian Lagrangean of our

proposed higher-derivative two-dimensional model

Lµ(ψ, ψ,Aµ) = (ψ, ψ)

⎧⎨
⎩ 0 (�DA �D∗

A)µ �DA

�D∗
A( �D∗

A �DA)µ 0

⎫⎬
⎭
⎛
⎝ψ
ψ

⎞
⎠

+
1

2
F 2

µν(A) + (ψ, ψ)

⎛
⎝η
η

⎞
⎠ (24)

where (ψ, ψ) denotes the (independent Euclidean fermion fields two-dimensional) quarks;

Aµ the usual (confining) two-dimensional eletromagnetic field with a quartic propagator

on the Landau Gauge (see below) and �DA is the (Euclidean) Dirac operator in the presence

of this 2D quantum Gauge field. The Dirac γ matrices algebra we are using satisfy the

relations

{γµ, γν} = 2δµν , γµγ5 = iεµνγν ; γ5 = iγ0γ1 (25)

Note that this γ-matrices algebra is choosen in a such way that the Dirac opera-

tor �DA may by written in the chiral-phase form when one consider the general Hodge

decomposition of the two-dimensional eletromagnetic field.

Aµ = εµν ∂ν ϕ + ∂µ ρ (26)

�DA = eigρ eigγsϕ · ( �∂)e−igρ eigγsϕ (27)

Here µ is a free-parameter ranging on the interval [1,∞).

Let us consider the associated path-integral expression for the 2D-quantum higher

derivative model eq.(30) in the fermion sector.

Z[η, η] =
1

Z(0, 0)

∫
DFψDFψ DAµ × exp

(
−
∫
d2xLµ(ψ, ψ,Aµ)(x)

)
(28)
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In order to solve exactly the two-dimensional path-integral eq.(28) by means of the

Gauge invariant Bosonization technique, we consider the change of variable on the field

dynamics

Aµ(x) = (εµν ∂ν)ϕ(x) (29)

ψ(x) = e−igγ5ϕ(x)(−∆)−µ
x χ(x) (30)

ψ(x) = χ(x) e−igγ5ϕ(x) (31)

It is worth call the reader attention that in the Euclidean world ψ(x) is an independent

field of ψ(x), opposite in Minkowisky space where ψ(x) = (ψ∗(x))Tγ0. That is the reason

about the difference between eq.(30) and eq.(31).

At the quantum level of the path measures we have the non-trivial jacobians (see ref

[5]) physically related to the dynamical breaking of the models axial (chiral) symmetry,

namely

DF [Aµ(x)] = det(−∆) ·DF [ϕ(x)] (32)

DF [ψ(x)]DF [ψ(x)] =
det[( �DA· �D∗

A)µ �DA]

det[�∂] DF [χ(x)]DF [χ(x)]

=
det[( �DA �D∗

A)µ( �DA �D∗
A)1/2]

det( �∂) DF [χ(x)]DF [χ(x)]

=

{
det[( �DA �D∗

A)µ+ 1
2 ]

det[�∂ �∂∗]µ+ 1
2

× det(�∂ �∂∗)µ

}
DF [χ(x)]DF [χ(x)]

=

{(
det

[ �DA �D∗
A

�∂ �∂∗
])µ+ 1

2

× (det(−∆))µ

}
DF [χ(x)]DF [χ(x)] (33)

After implementing equations (29) - (33) on the fermionic generating functional eq.(28),

we obtain the Bosonized associated model, where one can evaluate exactly all the models

correlation field functions.

Z[η, η] =
1

Z(0, 0)

∫
D[ϕ(x)]DF [χ(x)]DF [χ(x)]

× exp

{
−g

2

π
(µ+

1

2
)

∫
d2x

(
1

2
(∂ϕ)2

)
(x)

}

× exp

{
−1

2

∫
d2x((∂2ϕ)2)(x)

}

× exp

⎧⎨
⎩−1

2

∫
d2x

⎛
⎝(χ, χ)

⎡
⎣ 0 �∂
←−
∂ ∗ 0

⎤
⎦
⎛
⎝χ
χ

⎞
⎠
⎞
⎠ (x)

⎫⎬
⎭

× exp

{∫
d2x
[(
η e−igγ5ϕ(−∆)−µχ

)
(x) + (χe−igγ5ϕη)(x)

]}
(34)
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It is important to remark that we have used the basic identity below to arrive at

eq.(34) with α a real positive parameter and used throughout on the formulae

( �DA �D∗
A)α �DA = eigγ5ϕ[( �∂ �∂∗)α �∂]eigγ5ϕ

= eigγ5ϕ((−∆)αφ)eigγ5ϕ (35)

It is important point out that the part of the Lagrangean with Fermions sources in

the new field parametrization are not symmetric in its form as that of eq.(24) in the

old field parametrization as a consequence of our asymmetric change of variable in the

(independent in the Euclidean world!) two-dimensional quarks fields.

Finally we have the explicitly expression for our Fermion propagator in terms of the

free-propagators of the Bosonized theory〈
ψ(x)ψ(y)

〉
= (−∆)µ

x

{〈
χ(x)χ(y)

〉(0)

×

exp

{
−1

2
g2

[
π

g2(µ+ 1
2
)

(
(−∂2)−1(x.y)− (−∂2 +

g2

π
(µ+

1

2
))−1(x, y)

)]}
(36)

Here 〈
χα(x)χβ(y)

〉(0)

=
1

2π
(γµ)αβ

(xµ − yµ)

|x− y|2 (37)

and

(−∂2)−1(x, y) = − 1

2π
�g|x− y| (38)

(−∂2 +
g2

π
(µ+

1

2
))−1(x.y) =

1

2π
K0

(√
g2

π
(µ+

1

2
)|x− y|

)
(39)

Note that we have used the general decomposition in eq.(41)

(a(−∂2)2 + b(−∂2))−1(x, y) =
1

b

{
− 1

2π
�g|x− y| − 1

2π
K0

(√
b

a
|x− y|

)}
(40)

The short-distance behavior of the fermion propagator is strong than the usual free

case by a µ-power derivative (strong asymptotic freedom).

lim
|x−y|→0

〈
ψ(x)ψ(y)

〉
∼ (−∆)µ

x

〈
χα(x)χβ(y)

〉
(41)

The long-distance behavior by its turn is exactly given by

lim
|x−y|→∞

〈ψ(x)ψ(y)〉 ∼

lim
|x−y|→∞

{
(−∆)µ

x

[〈
χ(x)χ(y)

〉(0)

× |x− y||4µ+2|
]}

(42)
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which shows an anomalous behavior in the infra-red limit and signaling the impossibility

to use L.S.Z interpolating fields for the 2D fermion fields as similar phenomenon in the

Mandelstam model of section 2.

Anyway it is a straightforward procedure the exactly computation of all fermionic

correlation function of the higher derivative model eq.(34) as in last references of ref. [5].

4 Color Charge Screening on the Mandelstam Model

Sometimes it is argued that it is important to realize that the absence of coulored states

in the expected nuclear strong force theory of Quantum Chromodynamics may not be

equivalent to the ethernal quark-qluon confinement as showed by us in the Effective

Abelian Gluon Mandelstam model analyzed in section 1 by an explicitly Wilson Loop

evaluation.

The absence of color charged states can still be a result of these color quantum numbers

just screened by the quark-antiquark pairs creation on the presence of the Gluon field and

leading, thus, to the physical picture that the test charges (a static pair!) are surrounded

by a cloud of quark-antiquark pairs playing the role of plasmons. It is, thus, expected

that the resulting Wilson loop colorless object of section 1 no longer leads to a rising

linear confining potential as showed on that section, but rather to an exponentially falling

potential characterizing the short range screened strong interactions like similiar screening

phenomena in two-dimensional Q.E.D. (see section 2 for the case of µ = 0).

In this section we intend to show such screening phenomena by an explicitly calcu-

lation in the above mentioned four-dimensional Effective Gluon Mandelstam model by

considering the existence of totally reflecting walls on the point z = 0 and z = a of the

space-time which turns out to be of the cylindrical form Rν−1× [0, a]. We further impose

Dirichlet boundary conditions on the “effective” abelian Gluonic Mandelstam field at the

walls z = 0 and z = a. Its propagator, thus, posseses the following analytical expression

on momentum space by taking into account explicitly the above pointed out Boundary
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condition

G((�r, z, t); (�r′, z′, t′)) =
∞∑

m=0

{∫ +∞

−∞

dν−2�p

(2π)ν−2
· dp0

(2π)
e−i�p(�r−�r ′)e+ip0(t−t′)

× sin
(mπ
a
z
)

sin
(mπ
a
z′
)
× [p2

0 + p2 +
(mπ
a

)2

]2
}

(43)

The static-potential of such a screened pair separated by a space-like distance R on

the sub-space perpendicular to the plane z (and with a coordinate z = z) is given by the

temporal (ergodic) limit result (see Wilson Loop´s discussions on section 1) namely

V (R) = e2
∞∑

m=1

[(
1− cos

(
2πm

a
z

))
Vm(R)

]
(44)

with p = (p̂, p1) ∈ Rν−2

Vm(R) =

{∫ +∞

−∞

dν−3p̂

(2π)ν−3

dp1

(2π)

sin2
(

p1R
2

)
p2

1

× lim
T→∞

{∫ +∞

−∞

dk0

(2π)

sin2
(

p0T
2

)
T

(
1 +

p2
1

p2
0

)
× 1

(p̂2 + p2
1 + p2

0 +
(

mπ
a

)2
)2

}
(45)

The evaluation of the ergodic limit on eq.(45 ) is similar to those analyzed in section

1 and leading to the result

Vm(R) =

∫ +∞

−∞

dp1

(2π)
· sin2

(
p1R

2

)[∫
dν−3p̂

(2π)ν−3

1

(p̂2 + p2
1 +
(

mπ
a

)2
)2

]

= c(ν)

∫ +∞

−∞

dp1

(2π)
sin2

(
p1R

2

)(
p2

1 +
(mπ
a

)2
) ν−7

2

(46)

with c(ν) a positive constant, finite for ν → 4 and depending on the Fourier integral

definition normalization factors geometrical sizes of the loop C(R,T ), etc... which exact

value will not be of our interest here, since it is convergent for ν → 4 as a function of

the space-time dimensionality ν. The evaluation of the integral on eq.(46 ) can be easily

accomplished through the useful formula∫ +∞

−∞
dx

sin2(ax)

(x2 + b2)µ
=

∫ ∞

0

dx
1

(x2 + b2)µ
−
∫ ∞

0

dx
cos(2ax)

(x2 + b2)µ

=

(
b−2µ+1

2

)
Γ(1

2
)Γ(µ− 1

2
)

Γ(µ)
− 1√

π

(
b

a

)µ+ 1
2

cos

(
π(µ+

1

2
)

)
Γ(µ+ 1)K−(µ+ 1

2
)(2ab) (47)
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and leading to the envisaged result for the harmonic m-potential contributing to the

Fourier expansion eq.(46)

Vm(R) = c(ν)

{[(mπ
2a

)ν−6 Γ(1
2
)Γ(6−ν

2
)

Γ(D−ν
2

)

]

−
[

1√
π

(
2mπ

aR

) 8−ν
2

cos

(
π

(
8− ν

2

))
Γ

(
9− ν

2

)
×K( ν−8

2
)(
mπ

a
R)

]}
(48)

Now its straightforward to see directly from eq.(48 ) the Casimir vacuum-energy con-

tent of the Abelian Gluonic Mandelstam Field as given by the convergent Fourier series

below

E Casimir (z) = e2c(ν)
∞∑

m=1

[(
1− cos

(
2mπ

a
z

))]
×
[(mπ

2a

)ν−6 Γ(1
2
)Γ(6−ν

2
)

Γ(7−ν
2

)

]
(49)

The expected exponential falling at large distance R of the static potential, signaling

screening of color charges for our Mandelstam Gluonic Abelian field with pure quartic

propagator, is given by the second term on eq.(48 )

V (R) ∼

R→∞
(−e2)

∞∑
m=1

[(
1− cos

(
2πm

a
z

))]

×
[

1√
π

(
2mπ

a

) 8−ν
2

cos

(
π

(
8− ν

2

))
Γ

(
9− ν

2

)
e−

mπ
a

R

]
(50)

∼ e−
π
a

R(−e2)
{ ∞∑

m=1

[(
1− cos

(
2πm

a
z

))]

×
[

1√
π

(
2mπ

a

) 8−ν
2

cos

(
π

(
8− ν

2

))
Γ

(
9− ν

2

)
e−

(m−1)π
a

R

}

∼ (−e2)(e−π
a

R)W (R) (51)

where the harmonic sum on the integers m is convergent due to the Bessel function

argument (see eq.(48)).

Finally, we call the reader attention that similiar result is obtained for a propagator

with a logarithmic term as that one considered on section 1.

Detailed calculations taking into account quantum corrections, finite temperature ef-

fects, etc... will appear in other paper.
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