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Abstract

The Weyl representation is used to analyze Cli�ord algebras and Majorana condi-
tions in any spacetime. An index labeling inequivalent �-structures up to orthogonal
conjugations is introduced.
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considered. The hermiticity condition on free-spinors lagrangians is presented. The con-
straints put by the Majorana condition on the free-spinors dynamics are analyzed. Ta-
bles specifying which spacetimes admit lagrangians with non-vanishing kinetic, massive
or pseudomassive terms (for both charge-operators in even dimensions) are given. The
admissible free lagrangians for free Majorana-Weyl spinors are fully classi�ed.
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1 Introduction.

The theory of Cli�ord algebras is an old subject which has been extensively investigated
both in the mathematical and in the physicists' literature. For obvious reasons physicists
mainly dealt with the theory of spinors in Minkowskian or Euclidean spacetimes [1, 2].
Nevertheless in some papers [3{6] spinors in pseudoeuclidean spacetimes with arbitrary
signature (t; s), D = t+ s being the dimensionality of the spacetime, have been analyzed.
In particular [4] can be regarded as the reference work on the subject since it presents a
rather complete list of results in this topic.

The development of supergravities and superstring theories which emphasize the Kaluza-
Klein aspect of compacti�cation to lower dimensional space led investigating properties of
spinors (and supersymmetries) in arbitrary dimensional spaces. However, apart some spe-
cial papers as the ones previously recalled, the great majority of works were still devoted
to standard-signature spacetimes. The question of providing a physical interpretation for
the extra-times somehow masked the fact that from a strictly mathematical point of view
consistent superstring theories can be formulated in exotic signatures (like e.g. 5 + 5).
This negative attitude towards exotic signatures seems at present time changing and their
possible physical implications �nd increasing attentions (see e.g. [7]). Various reasons are
at the basis of this shift of attitude. Some recent works [8] for instance pointed out the
existence of dualities relating theories formulated in di�erent signatures. On the other
hand the still-mysterious M -theory suggests that we need investigating along all possi-
ble directions. A rather formal argument can also be invoked, a reasonable demand for
any possible theory which could claim to be a genuine \theory of everything" is that the
signature of the spacetime should be determined by the properties of the spacetime itself
rather than imposed a priori. The Minkowskian signature should therefore be selected
after confrontation with the other signatures.

Motivated by the above considerations in this paper we analyze the real Cli�ord struc-
tures and Majorana conditions in any signature spacetime with arbitrary dimensions. The
analysis here presented is based on the Weyl realizations of Cli�ord algebras. The tech-
nique employed allows to recover the results of [4] in a considerably simpli�ed manner.
Besides that, extra-informations, not presented in [4], are gained. As an example dis-
cussed in the text we mention the correct choice of the charge operator which preserves
the Majorana condition under a Wick rotation to the Euclidean.

A list of further topics here discussed, some of them we are not aware to be found
elsewhere, is the following. An index is introduced to label and discriminate among
classes of inequivalent Cli�ord algebras up to orthogonal conjugations. Such index could
in principle be relevant to physical applications whenever some kind of reality conditions
are imposed on the �elds.

Moreover the compatibility of the Majorana condition with the free massive equations
of motion is thoroughly investigated. The conditions upon free lagrangians for Majorana
spinors in order to be non-vanishing, hermitian and charge-conjugated are presented.
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Explicit and easy-to-consult tables of spacetimes supporting massive (or pseudomassive
in the even-dimensional case) Majorana spinors are provided. The list of results here
presented is more complete than the one given in reference [6].

The scheme the present work is as follows: the next section is devoted to notations and
preliminary results. In section 3 the Weyl representation is introduced. Even-dimensional
inequivalent charge operators, invariant under Wick rotations, are constructed. The index
labeling �-structures up to orthogonal conjugation is discussed in section 4. The hermitic-
ity condition on free-spinors lagrangians is discussed in section 5. Section 6 presents an
exhaustive list of the constraints put by the Majorana condition on the free-spinors dy-
namics, both at the level of the equations of motion and of the action. Tables specifying
which spacetimes admit lagrangians with non-vanishing kinetic, massive or pseudomassive
terms (for both charge-operators in even dimensions) are given. Finally in section 7 the
problem of determining the admissible free lagrangians (kind of terms, non-vanishing con-
ditions, type of coe�cients) for Majorana-Weyl spinors in even-dimensional spacetimes is
fully solved.

2 Notations and preliminary results.

Let ��� be the (pseudo)-euclidean metric associated to an M t;s generalized Minkowski
space-time with t time-directions and s space-directions. The space-time dimension being
D = t + s. In the following we will denote as time (space) directions those which are
related to the + (and respectively �) sign in ��� .

A �-structure associated to the M t;s spacetime is a matrix-representation of the Clif-
ford algebra generators �� (� = 1; :::;D) satisfying the anticommutation relations

���� + ���� = 2��� � 1� (1)

The representation is realized by 2[
D

2
] � 2[

D

2
] matrices ([D2 ] denoting the integral part of

D

2 ) which can be further assumed to satisfy the unitarity requirement

��y = ���1 (2)

A tracelessness condition holds

tr�� = 0 (3)

for any �.
According to the fundamental Pauli theorem [9] the above matrix-representation is

uniquely realized up to unitary conjugation.
Notice that choosing the (+) sign in the r.h.s. of (1) is a matter of convention. The

opposite choice (i.e. r.h.s. � �2���) is admissible. However it is just su�cient to look
at results and tables obtained for an (s; t)-signature within the + convention since the
results for the � convention-case are immediately recovered by interchanging t and s:
t$ s. It should be therefore clear that the complete set of solutions for (s; t) spacetimes
are recovered from the tables produced below only after such (t; s)-\dualization" has been
taken into account.
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The introduction of lagrangians and charge conjugations for the spinor �elds require
the presence of three (only two of them mutually independent) unitary matrices, denoted
in the literature as A;B;C, associated to each one of the three conjugations (hermitian,
complex-conjugation and transposition respectively) acting on the ��-matrices, according
to

A��Ay = (�1)t+1��y

B��By = ����

C��Cy = �(�1)t+1��T (4)

As discussed later �, as well as " introduced below, is a sign (�1) specifying the assignment
of a f��; A;B;Cg structure up to unitary transformations. � and " will be explicitly
computed in the next section. The introduction of � as de�ned in (4) corresponds to the
standard convention in the literature.

The equation relating A;B and C can be expressed through

C = BTA (5)

with the transposed matrix BT satisfying

BT = "B (6)

An useful form of restating the above equation is

B�B = " � 1 (7)

The A-matrix can be expressed through the position

A =
Y

i=1;:::;t

�i (8)

where the product (the order is irrelevant since A;B;C can always be determined up to

an arbitrary phase) is restricted to time-like �-matrices, i.e. those satisfying the �i2 = +1
equation (conversely the spacelike �-matrices are those belonging to the complementary

set satisfying �j2 = �1).
The A-matrix allows constructing in generic 
at spacetimes M t;s the conjugated  

spinor as  =  yA, and generalizes the �0-matrix of the standard Minkowskian spacetime.
The matrix C corresponds to the charge-conjugation matrix, while B is employed in

introducing the charge-conjugated spinors  c according to

 c = By � (9)

Quantum mechanical states are rays in a Hilbert space. A physical spinorial state can be
equally well described by a spinor transformed via an unitary matrix U ,  7! U .

It is easily proven that under such a unitary transformation ��; A;B;C are mapped
as follows

�� 7! U��Uy

A 7! UAUy

B 7! U�BUy

C 7! U�CUy (10)
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Notice that the unitary transformations acting upon B;C do not coincide with their
unitary conjugations.

If we introduce the notion of a f��; A;B;Cg-structure assignment associated to a given
spacetime M t;s and we look for inequivalent classes of such assignments under the (10)
transformations, we easily realize that the �; " signs introduced above label inequivalent
classes of assignments. Indeed �; " can be equivalently introduced in a unitary-invariant
trace form as

tr(B�B) = " � tr1

tr(B��By��
�) = �D � tr1 (11)

where the convention on the repeated indices is understood.
With a slight abuse of language we can say that �; " label inequivalent choices of

charge-conjugations.
In an even-dimensional spacetime (D = 2n) we can introduce a timelike generalized

�5 matrix (i.e. the matrix generalizing the one associated to the ordinary Minkowskian
spacetime), through the position

�5 = (�1)
s�t

4

Y

�=1;:::;D

�� (12)

The sign is chosen in order to guarantee �52 = 1.
Let us conclude this section by presenting some further useful identities

Ay = (�1)
t

2
(t�1)A

A� = �tBABy

AT = �t(�1)
t

2
(t�1)CACy (13)

and

CT = "�t(�1)
t

2
(t�1)C (14)

3 Cli�ord algebras and the Majorana condition.

The allowed values for the signs �; " labelling inequivalent f��; A;B;Cg-structures as-
sociated to any given spacetime have been computed in [4]. A very e�cient and much
simpler method of computing �; " is at disposal by explicitly using a �-structure in a Weyl
representation. The choice of working within a Weyl representation can always be done
and, due to the fundamental property that �-structures are all equivalent up to unitary
conjugation [9], by no means a�ects the generality of the results so obtained. More than
just reproducing previous results the computation through a Weyl representation encodes
further information. Indeed we will show that Weyl-represented C charge-conjugation op-
erators are left unchanged under a Wick rotation. When inequivalent charge-conjugation
operators are present the tables provided below inform which charge-conjugations should
be correctly chosen in performing analytical continuation to let's say the Euclidean space.
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A Weyl representation of an even-dimensional (D = 2n) �-structure is de�ned by the
property that the �� matrices are all symmetric or antisymmetric under transposition
(�� = ���T ). Moreover the number of symmetric equal the number of antisymmetric ��

matrices (= n).
In odd dimensional spacetimes a further symmetric matrix, the �5 introduced in (12)

is presents.
A Wick rotation of a timelike � direction into a spacelike direction is represented on

�-matrices by the rescaling �� 7! i��, while the remaining �-matrices are left unchanged.
Clearly the symmetric or antisymmetric character of the �� matrix is not a�ected by a
Wick rotation.

In a Weyl-represented even-dimensional �-structure we can introduce two inequivalent
charge operators (i.e. realizing inequivalent f��; A;B;Cg assignments, see the discussion
in the previous section) CS and CA de�ned as follows

CS =
Y

iS=1;:::;n

�iS

CA =
Y

iA=1;:::;n

�iA (15)

the products being restricted to symmetric (and respectively antisymmetric) �-matrices.
As in the de�nition of the matrix A (8), the ordering of the products is irrelevant. Please
notice that the index (S or A) labeling C re
ects the construction, via symmetric or
antisymmetric matrices, of the corresponding charge-conjugation operator and not its
(anti)-symmetry property which is expressed by formula (14). >From (8) and (15) we
obtain the relation CA � CS�5.

Clearly CS and CA are left invariant by Wick rotations up to an arbitrary phase,
implying the convenience of the Weyl basis in discussing such an issue.

In odd-dimensional spacetimes a charge operator C can be introduced by using both
formulas in (15). Due to the presence in this case of the extra �5 among the symmetric
matrices, the two de�nitions indeed collapse into a single one (modulo an arbitrary phase),
recovering the well-known result that there exists a unique f��; A;B;Cg-assignment, up
to unitary transformations, in odd dimensions.

We recall that the A matrix is de�ned in (8), while BS;A are introduced from (5) as

BS;A = A � CS;A
T (16)

If we take into account the fact that timelike �-matrices are hermitian, it is just a matter of
tedious but straightforward computations to check for both (S;A)-cases, which (�1)-signs
correspond to �S , �A, as well as "S, "A, introduced in the formulas (4) and (6).

In an (s; t) even-dimensional spacetime we obtain the following table

� 0 2 4 6
�S + � + �

�A � + � +
"S + + � �
"A + � � +
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(17)

where the even values characterizing the columns correspond to

X = s� t mod 8 (18)

A similar table can be produced for odd-dimensional spacetimes. In this case no splitting
between the S;A-cases is produced

� 1 3 5 7
� � + � +
" + � � +

(19)

As above the columns are marked by X given by (18).
Another sign, denoted by � and important for later considerations, is introduced

through the position

B�5By = ��5 (20)

where �5 is the timelike extra-� matrix given in (12). We obtain

� 0 2 4 6
� + � + �

(21)

Here as well columns correspond to X given in (18).
The Majorana reality condition on spinors is a constraint on the charge-conjugated

spinor  c introduced in (9), imposed to satisfy

 c =  (22)

Such a constraint can be consistently set only when " = +1 (due to the combined result
of applying the complex conjugation on (9) and the formula (7)).

One of the consequences read from the table (17) is the well-known result that Majo-
rana spinors do not exist in the euclidean 4-dimensional space.1

The table (17) is useful for another purpose. It allows reading which choice of the
CS , CA charge-conjugation operators should be adopted to mantain a Majorana reality
condition if a Wick analytical continuation is performed. Indeed in the 0-column both
the CS and CA charge-conjugation operators are consistent with the Majorana condition.
Therefore e.g. the (2; 2) spacetime supports inequivalent Majorana spinors, based either
on CS or on CA; conversely for the standard (3; 1)-Minkowskian spacetime the Majorana
condition is only de�ned w.r.t. CS. Recalling the property that CS, CA are left unchanged

1Enlarged reality conditions which are applicable when " = �1, like the SU (2)-reality condition
proposed be Wetterich [3], will not be discussed in the present paper.
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by Wick rotation, it turns out that only the (2; 2) CS-Majorana spinors are Wick related
to the (3; 1) Majorana spinors.

An euclidean space which supports Majorana spinors is the 10-dimensional one. We
obtain the two following chains of Wick-related Majorana spinors:

CS : (10; 0)! (9; 1) ! (6; 4) ! (5; 5) ! (2; 8) ! (1; 9)

CA : (0; 10)! (1; 9) ! (4; 6) ! (5; 5) ! (8; 2) ! (9; 1) (23)

The three potentially ambiguous cases are (9; 1), (5; 5) and (1; 9) which present both kinds
of Majorana spinors.

4 Inequivalent real Cli�ord-Weyl structures.

Let a Cli�ord �-structure in a Weyl basis be denoted a Cli�ord-Weyl structure. In this
section we provide an answer to the question: how many inequivalent real Cli�ord-Weyl
structures do exist? To provide a solution we introduce an appropriate index labeling
inequivalent structures.

The mathematical formulation of the problem is better phrased as �nding the classes
of equivalence of �-matrices up to orthogonal conjugation

8�; �� 7! O��OT (24)

with O 2[
D

2
] � 2[

D

2
] real-valued, orthogonal (OOT = OTO = 1) matrices.

We already mentioned that the fundamental Pauli theorem guarantees that �-matrices
are uniquely represented up to unitary conjugation; they however �t into di�erent classes
when just orthogonality is concerned.

One could ask whether this well-posed mathematical problem has sensible physical
consequences. Indeed, as far as quantum mechanics is concerned, equivalent descriptions
are provided by unitary-transformed states in a given Hilbert space. However, if some re-
ality condition has to be imposed, it may well restrict the class of allowed transformations
to be the orthogonal ones. Indeed this happens when e.g. the Majorana reality condition
is imposed on spinors. Later we comment more on that.

The above mathematical problem �nds the following solution.
Let an index I be de�ned for a D-dimensional (s; t)-spacetime (D = s + t) through

the position

I =
1

2([
D

2
]+1)

� tr(����
�) (25)

The sum over repeated indices is understood. The normalization is chosen for a matter
of convenience and as before [D2 ] denotes the integral part of

D

2 .
I is clearly left invariant by orthogonal transformations (24) while it is a�ected by

unitary conjugations of �-matrices. It can be therefore used to label inequivalent classes
of �-matrices up to orthogonal conjugation.

In a Weyl basis I can be easily computed. Indeed, as previously recalled, in such a
basis �-matrices are either symmetric or antisymmetric. ��� coincides with �� up to a
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sign which is determined by both the time-like or space-like character of the � direction, as
well as the (anti)-symmetry nature of ��. It is a matter of straightforward computations
to check the following results.

i) Let us consider at �rst an even (D = 2n) dimensional spacetime. We denote
as tA (sA) the number of time-like (space-like) directions associated to antisymmetric
�-matrices. The number of symmetric timelike (spacelike) matrices is therefore t � tA
(s� sA). In a Weyl basis the equality tA + sA = n holds. For a Weyl assignment with tA
antisymmetric timelike matrices the index I takes the value

I = t� 2tA (26)

Let us introduce m given by m = min(s; t). We are free to choose among m+ 1 di�erent
Weyl assignments, tA = 0; :::;m, each one leading to a di�erent value for I and therefore
inequivalent under orthogonal conjugations. Indeed we obtain m + 1 possible values for
I,

�m+ 2j ; j = 0; :::;m (27)

in the even-dimensional case.
ii) Let D = 2n+1 (s+ t = 2n+1) be an odd-dimensional spacetime (s+ t = 2n+1).

An extra (the generalized-�5 matrix here denoted �2n+1) symmetric matrix is present
w.r.t. the previous case. It could be associated either to a time-like or to a space-like
direction according to the sign

�2n+12 = � = �1 (28)

Let as before tA be the number of antisymmetric timelike �-matrices. The computation
of the index I follows the same steps. We obtain

I = t� 2tA �
1
2
(1� �) (29)

Notice that for a �xed (s; t)-spacetime the parity of I is determined by the sign of �:

(�1)I = �(�1)t (30)

or conversely

� = (�1)t+I (31)

which implies that the timelike or spacelike character of �2n+1 cannot be reverted by
orthogonal conjugations. As before let us put m = min(s; t).

� can be arbitrary chosen unless m = 0. I can assume 2m+1 di�erent values labeling
corresponding inequivalent classes. For m 6= 0 they are given by

m� 2j � 1
2(1� �)

� = �1; j = 0; 1; :::;m� 1
2(1 + �) (32)

For m = 0 either we have I = +1 in the (2n+1; 0) case or I = �1 in the (0; 2n+1) case.
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Let us discuss now a possible application of the above construction to the Majorana
reality condition. A standard result (see [4]) states that for " = 1, i.e. the consistency
requirement for the Majorana condition, the B matrix introduced in (5) can be unitary-
transformed (10) to the identity matrix

9U s:t: U�BUy = 1 (33)

The choice B � 1 corresponds to the so-called Majorana representation ( c =  �). The
orthogonal transformations are the unitary transformations acting on B and preserving
the Majorana representation

U�

1Uy = 1 ) UUT = UTU = 1 (34)

>From (4) in the Majorana representation we have ��� = ���, so that the index I takes
the value

I = �D (35)

In this particular case the information furnished by the index I is reduced to the same in-
formation provided by �; ". The logics behind is however di�erent. �; " label inequivalent
classes under unitary transformations of a richer f��; A;B;Cg-structure, while I corre-
sponds to inequivalent classes of orthogonal transformations of just a �-structure (in the
Majorana realization). It deserves a careful investigation to determine whether for other
choices of reality conditions which can select physical �elds (such as the SU(2)-Majorana
condition on spinors) the index I can re�ne the standard classi�cation and be physically
meaningful. In a di�erent but related context we already found [10] a physical application
where the index plays a non-trivial role.

5 Free Hermitian actions.

The most general lagrangian involving free spinorial �elds is given by

� �  ��@� + � �   + 
 �  ���5@� + � �  �5 (36)

The third (pseudokinetic) and the fourth (pseudomassive) term involve the �5 matrix
de�ned in (12) and are present in even D-dimensional spacetimes only.

The transposition acting on anticommuting �elds �;  satis�es

(� �  )T = � T � �T (37)

while the hermitian conjugation can be conventionally de�ned, without losing generality,
according to

(� �  )y =  y � �y (38)

(as for the complex conjugation, it follows from (37) and (38)).
Demanding the hermiticity of the action, i.e. of the (36) lagrangian, �xes unambigu-

ously the nature, real or imaginary, of the coe�cients in (36). Straightforward computa-
tions lead to the table
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� 0 1 2 3
� R I I R

� R R I I


 I I R R

� R I I R

(39)

the columns are labeled by t mod 4; t being the number of time-like dimensions.
The table above is useful e.g. in �nding mass-shell properties. Indeed in the case of a

theory involving, let's say, massive and/or pseudomassive terms, the mass-shell condition
reads as follows

p2 =
1

�2
(�2 � �2) (40)

where �; �; � enter (36). The hermiticity requirement (39) allows to set e.g. in the (3; 1)
Minkowski spacetime � = i, � = m, � = im5, with m;m5 real, so that p2 = m2 +m5

2 is
necessarily positive. In a (2; 2)-spacetime we only need to change the de�nition of �, which
must be imaginary, by setting � = im. The mass-shell condition reads p2 = m5

2�m2. A
vanishing value can be found even for m;m5 6= 0 provided that m = m5.

6 Majorana constraints on the dynamics.

In this section we analyze the constraints put by the (9) Majorana condition on the
dynamics of free spinors.

From the (36) lagrangian we derive the equation of motion

���@� + � + 
���5@� + ��5 = 0 (41)

The above equation of motion is compatible with the (9) Majorana condition provided
the coe�cients are constrained to satisfy

�� = � � (��)

�� = � � �


� = � � (��
)

�� = � � (��) (42)

where �, � have been introduced in (4) and (6) respectively. The common factor �, as far
as the equation of motion alone is concerned, is an arbitrary phase

j � j2 = 1 (43)

The derivation of the (41) equation of motion from a lagrangian puts further constraints.
Each Majorana-constrained Li (i = 1; :::; 4) term appearing in (36), in order to be non-
vanishing, must be symmetric, i.e.

Li
T = Li (44)
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For an (s; t)-spacetime (s + t = D) this so happens when the following signs assume the
+1 value:

i) for the kinetic term the sign is � given by

� = �"�t+1(�1)
t

2
(t+ 1) (45)

ii) for the massive term, �

� = �"�t(�1)
t

2
(t� 1) (46)

iii) for the pseudokinetic term, �5

�5 = �(�1)
D

2 (47)

iv) for the pseudomassive term, �5

�5 = �(�1)
D

2 (48)

The following tables, specifying which spacetimes support the existence of non-vanishing
kinetic and massive terms, can be produced. For even-dimensional spacetimes we have

� 0 2 4 6
�S 1; 2 0; 1
�A 0; 1 1; 2
�S 2; 3 1; 2
�A 1; 2 2; 3

(49)

Some comments are in order. The columns are labeled by X = s � t mod 8. The
index S or A is referred to the corresponding charge-conjugation (either CS or CA). The
entries are evaluated only when " = 1 (Majorana consistency requirement); the ]'s in the
entries specify for which number of t time-like directions

t = ] mod 4 (50)

the sign in the associated row assumes the +1 value.
Similarly, for odd-dimensional spacetimes, we have

� 1 3 5 7
� 0,1 1; 2
� 1; 2 2; 3

(51)
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(same meaning for the symbols).
The next question to be answered is whether the action associated to the (36) la-

grangian admits a charge-conjugation which allows to consistently introduce the Majo-
rana condition. This point has been raised in [6]. The existence of a charge conjugation
requires

L� = L (52)

and is automatically guaranteed from the non-vanishing condition LT = L once assumed

the hermiticity of the action (Ly = L), i.e. when the coe�cients are chosen to satisfy the
table (39).

It turns out that the phase � appearing in (43) is no longer arbitrary now but �xed
to be

� = ��t (53)

From the (49) and (51) tables above we can extract some particular results, e.g. that
massive lagrangians for Majorana spinors exists in
i) t = 1 mod 4 spacetimes (for � = �1) when

ia) s� t = 0 mod 8 (for the CA charge-operator),
ib) s� t = 2 mod 8 (for the CS charge-operator),
ic) s� t = 1 mod 8,

as well as in
ii) t = 2 mod 4 (for � = +1) when

iia) s� t = 0 mod 8 (for the CS charge-operator),
iib) s� t = 6 mod 8 (for the CA charge-operator),
iic) s� t = 7 mod 8.
The role of s; t can be interchanged as recalled in section 2.
In the case of odd-dimensional spacetimes the table (51) provides further information.

Kinetic (K) or massive (M) terms are only allowed inD-dimensional spacetimes according
to

D = 1 mod 8 fKg

D = 3 mod 8 fK;Mg

D = 5 mod 8 fMg

D = 7 mod 8 f:::g (54)

Up to D = 11 dimensions the list of odd-dimensional spacetimes supporting Majorana
spinors is given by

fK;Mg : (2; 1); (10; 1); (9; 2); (6; 5)

fKg : (1; 0); (9; 0); (8; 1); (5; 4)

fMg : (2; 3)

f:::g : (7; 0); (4; 3) (55)

For even-dimensional spacetimes (up to D = 10) an useful table can be written
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� 2 4 6 8 10

0 S �KP A+
S+
A�K

S �KP

1
S +KP

A�KM
S �KMP A+K

S +KP

A�KM

2 A+KM
S +KMP

A�
S� A+KM

3 � A+
S+
A�

S�

4 � A+
S+
A�K

S �KP

5 � � A+K
S +KP

A�KM

6 � � S� A+KM

7 � � � A+

8 � � �
S+
A�K

S �KP

9 � � � �
S +KP

A�KM

10 � � � � A+KM

(56)

It contains the following informations. Columns are labeled byD, rows by t. Each entry is
evaluated for " = 1. The presence of S or A denotes if the corresponding charge-operator
de�nes a Majorana spinor. The sign (�) represents the corresponding value of �. The
presence of K;M;P denotes if the kinetic (K), massive (M) or pseudomassive (P ) term
in the (36) lagrangian can be non-vanishing. These last two terms have been evaluated
only when the corresponding kinetic term is nonzero. The pseudokinetic term has not
been inserted here since its physical interpretation is problematic (due to the presence
of negative-normed states, which however can be eliminated if projected out, as in the
Majorana-Weyl case discussed in the next section).

Since the same results are repeated mod 8, both in s and in t, the following compact
information can be extracted. Majorana spacetimes with a non-vanishing kinetic term
can be found in

D = 0 mod 8 : fA;Kg

D = 2 mod 8 : either fS;KPg or fA;KMg

D = 4 mod 8 : fS;KMPg (57)

In D = 2; 10; ::: either a massive or a pseudomassive term could be present, according
to the choice of the charge-conjugation operator. Simultaneous presence of massive and
pseudomassive terms is allowed in D = 4; 12; ::: dimensions only.
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7 The Majorana-Weyl conditions.

In order to make this paper self-consistent we review in this section the status of Majorana-
Weyl spinors and present a complete list of results.

In D = 2n even-dimensional spacetimes the projectors

PR;L � (
1� �5

2
) (58)

(where �5 has been introduced in (12)) allow de�ning chiral (Weyl) spinors  R;L as

 R;L = PR;L (59)

Majorana-Weyl spinors, satisfying both the condition (9) and the projection (59), can be
consistently de�ned (see [4]) in spacetimes such that

s� t = 0 mod 8 (60)

therefore in particular in all (n; n) spacetimes. Up to 10 dimensions the remaining
spacetimes supporting Majorana-Weyl spinors are the euclidean (8; 0) space and the
minkowskian (9; 1) spacetime.

In any spacetime satisfying (60) Majorana-Weyl spinors can be introduced for both
CS and CA charge-conjugation operators. The list of results presented below holds in
both cases.

Let us �rst recall that  =  TC under the condition (9) and that moreover the CS;A

charge-operator is respectively block-diagonal or block-antidiagonal according if n is even
or odd. As a consequence kinetic (K) and massive (M) terms can either mix (denoted in
such case as Kxy;Mxy) chiralities or not (Kxx;Mxx). We can write

Kxx �  R;L
TC��@� R;L

Mxx �  R;L
TC R;L (61)

and

Kxy �  R
TC��@� L + � L

TC��@� R

Mxy �  R
TC L + � L

TC R (62)

The \mixed" terms Kxy;Mxy can always be chosen to be non-vanishing. It is su�cient
for this purpose to conveniently �x the relative sign between the two terms in the r.h.s.
of (62). This is done in (62), the two signs � and � coincide with their values given in
(45) and (46) respectively.
Conversely the Kxx and Mxx terms could be identically zero according to the (anti-
)symmetry properties of C.

Let us now introduce � = (�1)n. From the previous remarks on the block-character
of C we have that

K�=+1 � Kxy ; M�=+1 �Mxx

K�=�1 � Kxx ; M�=�1 �Mxy (63)
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The most general free lagrangian for Majorana-Weyl spinors in D = 2n dimensions can
be expressed as

L = �K� + �M� (64)

The formula (63) speci�es which kind of kinetic and which kind of massive term could
appear in D = 2n. The coe�cients �; � are either real or imaginary according to the
table (39).

The last feature to be computed is in which dimensions the Kxx, Mxx terms are
not identically vanishing. The �nal results can be summarized in the following table,
which presents the types of allowed kinetic and massive terms in accordance with the
dimensionality D of the spacetime

D = 0 mod 8; fKxyg

D = 2 mod 8; fKxx;Mxyg

D = 4 mod 8; fKxy;Mxxg

D = 6 mod 8; fMxyg (65)

The list of results presented in this section removes any possible ambiguities and com-
pletely determines all features of the free actions for Majorana-Weyl spinors in any space-
time.

8 Conclusions.

This paper has been devoted to discuss real structures in Cli�ord algebras and Majorana
conditions in any space-time. The Weyl representation for Cli�ord algebras has been em-
ployed to analyze �-structures and Majorana spinors. An index, which to our knowledge
has not been discussed before at least in the physicists' literature, has been introduced.
It classi�es �-structures up to orthogonal conjugations.

For what concerns Majorana spinors, some of the issues here discussed have not been
considered in previous papers. We can mention e.g. the interplay between the hermiticity
condition, the charge-conjugation and the non-vanishing condition for the (36) lagrangian.
The di�erent role played by the even-dimensional charge operators CS , CA (15), invariant
under Wick rotations, is another example.

We have furnished a series of tables presenting an exhaustive list of results concern-
ing Majorana and Majorana-Weyl spinors. They include in particular the non-vanishing
conditions in any given space-time for kinetic, massive and pseudomassive terms, in as-
sociation with each charge operator CS, CA (in even dimensions), as well as the type
of coe�cients (39) and the kind of terms (in the Majorana-Weyl case) entering the free
lagrangian (36).

One of our main motivations for presenting here such a systematic list of results con-
cerns their relevance in analyzing supersymmetries in generic pseudoeuclidean spacetimes.
Their connection with supergravities, strings, brane dynamics, etc., could be explored
(for a recent review of this topic in standard Minkowskian spacetimes see e.g. [11]). In
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the introduction we mentioned why this issue could be important. Problems like Kaluza-
Klein compacti�cations, dimensional reductions, analytical continuations to the euclidean
spaces, are among those which have to be addressed.
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