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Abstract

We study Four dimensional E�ective Bosonic Field Theories for A) Massive Fermion
Field in the infrared region and B) Massive Fermion in Ultraviolet region by using an
appropriate Fermion Path Integral Chiral variable change and C) The Polyakov's Fermi-
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I Introduction

Analysis of Fermionic Quantum Models in Four-Dimensional Space-Time always have
been a very di�cult mathematical problem ([1]). Fortunatelly, non perturbative E�ective
actions have shown its usefulness to analyse new phenomena in these theories. It is the
purpose of this paper to propose a new technique to arrive at an E�ective Bosonic Action
suitable adapted from similar exact obtained results on two-dimensions. This main result
of our study is the content of section II, section III. In the section IV we present our study
of Polyakov's Fermi-Bose Transmutation in the Abelian Thirring model in detailies ([3]).

Finally in section V we comment some papers in the literature related to the topic of
higher-dimensional Bosonization.

II The Bosonic High-Energy E�ective Theory

We start this section by considering the Generating Functional for the correlations
functions generated by vectorial and axial currents in a Theory of Euclidean Abelian
Massive Fermions in a Euclidean Four-Dimensional Space-Time R4.
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where we have taken into account in a explicity way in the Functional Domain of Inte-
gration of eq. (1), the current-charge law for theory, response to phase local variable �eld
change

 (x) ! eigV �(x)eigA5!(x) (x)

 (x) ! � (x)e�igV �(x)eigA5!(x) (2)

It is worth point out that our Fermionic Functional Measures are de�ned in terms of
the spectral set (eigenfunctions and eingenvalues) associated to the Free Massless Dirac
Operator @= � i�@� instead of the Full Massive Dirac Operator @=(A;V ) +m � i�(@� +
V� + 5AV ) + m since the external sourcer (A�; V�) are not Dynamical and, leading to
the absence of the axial-anomaly piece in the chiral current law associated to these �elds.
Besides the mass term is de�ned as a perturbation of the massless case as in 2D-models
([4]). We now write the Generating Functional eq. (1) in a local way by expressing the
functional Delta constraints in Fourier Functional Domain
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At this point of our study, we implement the Phase Variable Change eq. (2) into eq.
(3) by taking into consideration the non-unity Jacobian associated to the Chiral rotation
([5]-eq. 9).
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The ratio of the functional Dirac Determinants were evaluated in ref. [5] - eq. (17) -
eq. (18) and yielding the Functional Weigth for the Chiral Dynamical Phase !(x) (with
a U.V. cut-o� �).
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By substituting eq. (4) into eq. (3) and by noting the validity of the equationZ
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we �nally obtain the searched result at the leading limit of high ultra-violet region m! 0,
which improves somewhat those models studied in the second reference of [1].
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Comments related to this E�ective High-Energy Bosonic Field Theory for the current
algebra of observables are made in section IV of this paper.
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III The Bosonic Low Energy E�ective Theory

Let us start our analysis in this section by writing the Generating Functional for the cor-
relations generated by vectorial and axial currents in a Theory of Free Massive Euclidean
Fermion Fields in R4

~Z[V�; A�] =
1

Z(0; 0)

Z
DF [ (x)]DF [ � (x)]

exp

�
�
Z
d4x

�
� ((i@=(A;V;m) 

�
(x)

�
(8)

The main point of our approximate bozonization procedure to eq. (8) is to introduce
a Massive Fermion Field Theory invariant under the Field rotation eq. (2) by elevating
the involved local (!(x); �(x)) to be Dynamical and Functionally integrating them out.
As a consequence, we propose to approximate eq. (8) in the Infrared region by means of
the Chirial Invariant Functional Integral with a mass parameter term
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where the �elds rotated in eq. (9) are given by eq. (2)

 (�;!)(x) = eigV �(x)eigA5!(x) (x)
� (�;!)(x) = � (x)e�igV �(x)eigA5!(x) (10)

We, thus, proceed in the inverse path of that followed in section II by using the inverse
�eld variable change eq. (4)
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where �F denotes the intrinsic cult-o� from the original Fermion Field Theory which
by its turn, determines the e�ective energy scale where our E�ective Bosonic Theory is
expected to be working. Another point to remark it that the E�ective Bosonic Action in
eq. (11) is exactly the inverse of that used in the ultra-violet region eq. (5).
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Let us now analyse the Fermion Functional Determinant involving the sources in this
Low Energy Limitm!1. At this limit, we can easily improve the asymptotic expansion
in terms of the inverse power of the mass parameter m of ref. [6] and approximating the
termm exp(2gA5!) by the simple mass termm (this procedure being correct only at this
limit of m!1).

We, thus, consider the following di�erential equation for this Functional Determinant,
where parameter s ranges in the interpolating 0 � s � 1.
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By applying the saddle point technique to evaluate the Laplace Transform (see Appendix
1), we obtain the leading e�ective infrared e�ective source dependent action (the well-
know Hesenberg E�ective Lagrangean)
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Hence c1 and c2 are positive constants whose value depend on the regularization scheme
used and the Dirac Matrices representation. By substituting the Massive Abelian Gauge
Field (Source) action above into the Functional Integral eq. (11), we get our propose
IR E�ective Bosonic Theory for the Algebra generated by vectorial and axial currents
of a Massive Free Fermion Field Theory. At this point the reader should compare the
UV -E�ective action eq. (13) with IR-E�ective Action given by eq. (7).

It is instructive point out that in the important use of D � 2, all Functional Integrals
are of Gaussian Type and leading to the following result in the IR-region.
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By analyzing the Two-Dimensional E�ective Bosonic Theory we conclude that the
result is clearly not Gauge Invariant on the Source Gauge Fields as the Gauge Symmetry
is dynamically broken in two-dimensional space-time.

In the important case of the presence of a Quantized Electromagnetic Field G�(x),
we can follow our previous of the section. The main di�erence is the introduction of the
\Topological Charge" of the Electromagnetic Field in the delta function of eq. (1)

�(F )([@�( � 
�5 ) � 2im �  ])!

�(F )([@�( � 
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and the replacing of the Full Dirac Operator below in eq. (12)

@=(A;V ) +m! @=(A;V +G) +m

It is worth point the natural appereance of an \Axion Like" interaction between the Chiral
Phase Neutral Field !(x) and the Electromagnetic Field G�(x), namely

Saxion[!;G�] = exp

�
i

Z
d4x!(x)(�F��F

��)(G)(x)

�
(16)

The generalization of our study for the non-Abelian case is straightforward and leading to
the non-Abelian generalization of our previous study (see ref. [12]) where the non-Abelian
Evaluation of the chiriality rotated Jacobian eq. (4) is presented in full details).

Finally, it is instructive point out that one should explicit the \Euclideanicity" of our
approach by considering the non-unitary (Euclidean) variable change below

 (x) ! egV �(x)egV 5!(x) (x)
� (x) ! � (x)egA5!(x)e�gV �(x) (160)

instead of the Classical Unitary eq. (2), the Jacobian will be a now a Full Functional
involving the non-unitary phases (�(x); !(x)). Note that eq. (16') is allowed in Eu-
clidean Space-time since the energy density �  ; � 5 ; � 5A� are not real as � and  are
independent, anticummuniting Euclidean Fields and, thus, living in di�erent Functional
Spaces.

IV Polyakov's Fermi-Bose Transmutation in

3D-Abelian Thirring Model

The Polyakov's Fermi-Bose transmutation in the infrared regime of the Cp1 model
has became a basic phenomenon for understanding approximate bosonization in Fermion
Field Theory in Three-Dimensional Space-Time. In this section we present in details the
above cited phenomenon in the Thirring Model. This study is based on our unpublished
research ((7)).
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Let us start our study in this section by considering the Massive Three-Dimensional
Thirring Lagrangian in the Euclidean Space Time with a repulsive interaction.
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In order to analyse the Polyakov's Boson-Fermion Transmutation, we consider the
generating function
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By making use of the Hubbard-Stratonovich �eld reparametrization, we rewrite eq.
(21) in a form useful for our Bosonization purpose

Z[�; ��] =
1

Z(0; )
�
�Z

DF [ (x)]DF [ � (x)]DF [A�(x)]

� exp+

�
�1

2

Z
d3xA2

�(x)

�
�(F )[(@�A�)]

� exp

�
�
Z
d3x

�
� (i@ + gA+m) + � � +  ��

�
(x)

�
(22)

where A�(x) is an auxiliary Euclidean Abelian real vector �eld satisfying the Landau
gauge as consequence of Eq. (20), since it should concides with the vectorial current at
the operator level.

At this point, it becomes important to remark that the fermionic measures
DF [ � 1(x)]DF [ (x)] in Eq. (22) are de�ned in terms of the normalized eigenvectors of
the self-adjoint Euclidean Dirac operator i�(@� igA�) since we want to keep the model's
physical local gauge invariance in the pure fermion sector of the theory

 (x) !  (x) exp(ig
(x))
� (x) ! � (x) exp(�ig
(x))

A�(x) ! A�(x) (23)
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Note that this local Abelian gauge invariance in the fermionic parametrization Eq.
(17) is a consequence of the current conservation Eq. (20) at the quantum level of the
generating functional Eq. (21) and di�ers from the usual local gauge invariance of the
gauge models involving the shift A� ! A� + g@�
. The local invariance Eq. (23) is a
consequence of the following path integral identifyZ
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In this quantum �eld path integral framework, the infrared Polyakov's Fermi-Bose
transmutation (3) may be understood as the large fermion of the otherwise trivial 3D-
Abelian Quantum Field Thirring model ([8]).

Explicitly, we �rst, introduce an ultra-violet cutt-o� in Eq. (22) and integrate out the
Euclidean Fermi Fields. Let us, thus, consider the E�ective Path Integral.
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The fermion vacuum loops associated to the fermion functional determinant may be
easily evaluated at the limit of large mass by using the proper-time de�nition for this
functional determinant, see appendix 1
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where Tr(F ) denote the functional trace.
We have, thus the following result for the family of interpolating Dirac operator i@+
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By taking the limit of large fermion mass as in ref. [6] and appendix 1, we get the
result below, after integrating the interpolating parameter in the range 0 � s � l

log [det(i@ + gA+m)=det(i@ +m)](")
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It is worth pointing out the existence (in principle) of an induced (cutt-o� dependent)
mass term for the auxiliary vector �eld (this auxiliary vector at the quantum level coincides
with the Noetherian U(1) global current; A�(x) = ( � � )(x)).

Note that this mass term signals the dynamics breaking of the usual gauge invariance
in the pure fermionic sector of Eq. (25) which involves the gauge change A�(x) !
A�(x) +

1

g
@�
(x) as in 2D-models (see Eq. (23)).

The physical consequence of this term is a formal renormaliztion of the bare fermion
mass at one loop, as similar phenomenon happened in The Jacobian Evaluation of Eq.
(4).

mR = lim
"!0+

mBare=" (29)

The second term in the right-hand side of Eq. (28) is the Chern-Simons lagrangian.
Substituting Eq. (28) { Eq. (29) in Eq. (25) we get the result with fermions loops
integrated out at large mass
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Following closely ref. [3] now we analyse the largemR limit of the external fermion sources
by considering the Feynman path integral representation for the Feynman Green function
of the Dirac operator in the presence of A�(x).
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where the spin-factor is explicitly given by

���(x; y) =
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Here IP means the path ordenation of the 3D-� matrices along Feynman trajectory
X�(�); (0 � � � t).

At the limit of large mR, only the classical straight-line trajectory entering in the Path
Integral is leading to Eq. (31) { Eq. (32) and producing the result
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where U (1);(2)
� are usual Euclidean spinorial base associated to the free massive fermion

�elds f � (x);  �(x)g
By grouping Eq. (33) and Eq. (34), we �nally obtain our Polyakov's infrared Bosonic

Theory for the 3D-Thirring model
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Now it is a straightforward consequence of Eq. (34) the infrared (large mass) Bosoniza-
tion formulae of the 3D-Abelian Thirring model analogous to those associated to 2D-
Thirring model
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Here A�(x) is the quantum �eld associated to the \massive" Chern-Simon theory
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Equations (28) and (36) are our main result in this section about approximate Bosoniza-
tion for the Thirring Model in the large mass limit.

In the important case for high Tc-superconductivity, modeled by by the Thirring Model
coupled to an external divergence free current

W ( � ; ; J�) = L( ; ) +
Z
d3xJ�(x)( � � )(x) (37)

we can proceed as exposed above and obtain the associated Polyakov's full bosonized
generating functional for correlations functions involving vectorial currents from the 3D-
Thirring Model Ewq. (17).
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Finally, we point out that we have neglected in Eq. (25) the zero modes of the 3D-Dirac
Operator which will be a subject of a particular paper on this problem.

V E�ectives Four-Dimensional Bosonic Actions

The e�ective Bosonic Action obtained in section II, III are higher-order Four Dimen-
sional Bosonic Field Theories and, this, should be considered only as an approximate and
e�ective action as it shares all drawbacks and usefulness as all E�ective Action proposed
in the Literature ([9], [12]). However, there are some hints that Theories of the kind
obtained in this my be given a meaning by a non-perturbative procedure as proposed
in ref. [10] and this point may be advantageous for implement realizable approximate
calculations usefull for realistic 4D-Field Theories.

In Three-Dimensions, we disagree from similar studies presented in ref. ([11]), since
in this reference it was used the Deser-Jackiw interpolating Field to rewrite the E�ective
Action in terms of on Maxwell-Chern-Simon Field Theory which do not hold true when
one is analysing observables and leads to a cumbersome theory in the Non-Abelian case (a
theory in the strong limit g2phy !1). Finally, the Wilson Loops of ref. ([11]) are unclear
since the Non-Abelian Stokes Theorem was proved only in R2, namelly for R�(� > 2) it
was not unambigously proved that

TrsP (exp

I
c

; A�a
0X�) = TrS

��
exp

Z
�

d���Trt

�
�

����
�W [ ~CSWt]

���
(39)

where ~CS
t are closed trajectories in the surface � (see ref. [13] for the notation) in R3.
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As an alternative for the study of ref. [11] one should write Loop Wave Equation for
the Wilson Loops eq. (39) and solve them by means of e�ective Theory of Chern-Simons
String exposed in ref. ([14]).

We start this �nal part of our paper by considering the fermionic determinant of the
self-adjoint Dirac Operator in L2(R3)

log det (D=(A)m) = Seff (A
0; s)

= �1

2
lim
"!0+

Z
1

"

dt

t
T r(F )

�
e[�t(D=D(A)+m)2

�
(40)

where we have introduced a non-parameter family of Dirac Operators interpolating the
free Operator and that one in presence of a external gauge �eld.

D=S (A) +m = i�(@� � sigA�) +m (41)

We have regulated the fermion determinant by the proper-timemethod. At this we remark
that Seff (A; s) satis�es the di�erential equation

d

ds
Seff (A; s) =

lim
"!0+

Z
1

"

dt Tr(F )[g(
�A�) � (D=S(A) +m)

� ��tD= 2
S (A) +m2 + 2mD=S(A))

�
] (42)

Since we are interested at the large fermion mass limit m!1, we neglect the term
exp(�2mD=S(A)) � 1 inside the trace operation of Eq. (3-A). We have, thus the result at
large m;

lim
m!

d

ds
Seff(A; s)

m�1� lim
"!0+

Z
1

"

dt e�tm
2
Tr(F )[+(g(A) �

�D=S(A) +m) � exp(�t)D=S(A)))]
m�1� � g

(4�)
3
2

1X
`0

�Z
1

0

dte�tm
2 � t`� 3

2

�

�
Z
d3Tr(F ) ((A) [D=s(A) +m)b`(x; x;A; s)]) (43)

where we have introduced a one-parameter family of Dirac Operators interpolating the
free Operator and that on in presence of a external gauge �eld.

D=(A) +m = �(@� � sigA�) +m (44)

We have regulated the fermion determinant by the proper-time method. At ths point we
remark that Seff(A; s) satis�es the di�erential

d

ds
Sself (A; s) =
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lim
"0+

Z
1

"

dt Tr(F ) [(g(
�A�) � (D=(A) +m)

� exp
��t(D=2S(A) +m2 + 2mD=S (A))

��
(45)

Since we are interested at the large fermion mass limitm!1, we neglected the term
exp(�2mD=(A)) � 1 inside the trace operation of Eq. (3-A). We have, thus at large m;

lim
m!1

d

ds
Seff (A; s)

m�1� lim
"!0+

Z
1

"

dt e�tm
2
Tr(F )[+g(A) �

�D=(A) +m) � exp(�t)D=S(A))]
m�1� � g

(4�)
3
2

1X
`=0

�Z
1

0

dte�tm
2 � t`� 3

2

�

�
Z
d3xTr(F ) ((A) [D=S (A) +m� b`(x; x;A; s])

(46)

where b`(x; x;A; s) are the Seeley-De Witt coe�cients associated to the asymptotic short-
time � ! 0+ of eq. (2.A) since we are considering the asymptotic limit of m ! 1
means of the Laplace method for handling Saddle-Points of integrals (ref. [6]). Explicitly
expressions for these coe�cients are easily are easily calculated ([5]). At large fermion
mass limit, in R3 only the 2 �rst's. Seeley De Witt coe�cients will be needed.

b0(x; x;A; s) = 11idem (47)

and
b1(x; x;A; s) = �gs

2
[�; �]F��(A) + g2A2

� + ig(@�A�) (48)

After substituting eq. (5-1) and Eq. (6-A) into Eq. (4-A) and solving the S-di�erential
equation we get Eq. (28) displayed in the text.

We point out that similar procedure may be used to evaluate the Fermion Propagator
at large mass limit. However this evaluation is of no help in deducing infrared bosonization
formulae of the kind of Eq. (25).

Finally we remark that the same procedure now involving the Seeley De Witt coe�-
cient b2(x; xA; s) was used to deduce eq. ((13)).

Appendix A

Let us write a Formal Path Integral for Dirac Particles by using only Bosonic trajectories
X�(�) instead od super symmetric trajectories of Ref. [8].

By using the usual Plane Wave Euclidean spinor basis

jx; � > = eipxU (1)
� (p)

< g; �j = U
(2)
� (p)eips (A.1)
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where the spinors
n
U
(1)
� (p); U (2)

� (p)
o
satisfy the free Dirac equation and the completeness

relation
U (1)
� (p) � U (2)

� (p) = ��� (A.2)

one can write the Fermion Propagator in the present of a external �eld in the following
form (see Ref. [3]).

S��(x� y) =

Z
1

0

dt < x; �j exp(�T (�i@ + gA+m))jy; � >Z
1

0

dT e�mT

Z
X�(0)=x
X�(t)=y

DF [X�(�)]

Z
[p�(�)]

exp

�
i

Z T

0

d�pu � _X�(�)

�

Dirac

�
exp

�
i

Z T

0

�(p�(�) + gA�(x(�)d�

��
(A.3)

WhereDirac means the ordenation along the bosonic trajectorie of the Dirac indexes coming
the �-exponential involving the external Gauge Fields A�(X). Note that the P�(�) Path
Integral is free at this ends points.

Let us now consider the formal variable change in the Path Integral in Eq. (4-A)

P�(�) + gA�(X(�)) = ��(�) (A.4)

As a consequence of Eq. (5-A), we get the more Transport expression used in Eq. (23) of
the text.

S��(x� y) =

Z
1

0

dT e�mT

Z
X�(p)=x
X�(t)=y

DF [X�(�)]

�
Z
DF [��(�)]� exp

�
i

Z T

0

d���(�) � _X�

�

� exp

�
�ig

Z T

0

d�A�(X(�) _X(�))

�

�Dirac

�
exp i

Z T

0

d�(��)(�)

�
(A.5)
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