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1 Introduction

Antisymmetric tensor gauge �elds have been introduced since many years. They
are known to possess rather peculiar properties as, for instance, a highly nontriv-
ial quantization and the possibility of a topological interpretation which allows to
compute topological invariants which generalize the so called linking number [1].

In 1994 L. V. Avdeev and M. V. Chizhov [2] achieved the construction of a
renormalizable [3] four dimensional abelian gauge model in which the antisymmetric
second rank tensor �elds are introduced as matter �elds rather than gauge �elds 1.
The model, formulated in Minkowski 
at space-time, exihibits several interesting
features allowing for many applications, both from phenomenological [5] and theo-
retical [6] point of view. This motivated ourselves to pursuing further investigations
in order to generalize the model to the nonabelian case and to obtain a better under-
standing of its geometrical properties. In particular, we have been able to show [7]
that the Avdeev-Chizhov Lagrangian can be recovered in a very simple way from a
'4-like theory in which ' is a complex tensor �elds satisfying the Minkowski self-dual
condition

'�� = i ~'�� ; ~'�� =
1

2
"����'

�� ; (1.1)

"���� being the totally antisymmetric Levi-Civita tensor normalized as "1234 = 1 and

"����"���! = �2(����
�
! � ����

�
!) : (1.2)

As proven in ref. [7], the complex self-dual condition (1.1) �xes uniquely the Lorentz
contractions of the tensor '4-Lagrangian, reproducing thus the action of Avdeev-
Chizhov. In addition, the formulation of the model as a kind of '4-theory gave us
a straightforward way of obtaining its classical nonabelian generalization.

The aim of this work is to study the quantum properties of the classical non-
abelian model previously proposed. In particular we shall be able to prove that, as it
happens in the abelian case, the nonabelian generalization of the tensor matter �eld
Lagrangian turns out to be renormalizable. The proof will be done in a regulariza-
tion independent way by means of the algebraic BRS renormalization technique [8],
the use of which in the present case being motivated by the explicit presence of the
Levi-Civita tensor "���� in the Lagrangian interaction vertices as well as in the BRS
transformations of the �elds.

The paper is organized as follows. In Sect. 2 we brie
y recall the construction
of the nonabelian tensor matter Lagrangian and its BRS quantization. In Sect. 3
we discuss the stability of the model under radiative corrections. Sect. 4 is devoted
to the study of the possible gauge anomalies. In particular it will be proven that,
besides the well known nonabelian gauge-anomaly, the tensor matter �elds do not
give rise to a new anomaly.

1See also ref. [4] for the supersymmetric extension.
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2 The invariant action for tensor matter �elds

and its quantization: classical aspects

Following the construction of ref. [7], the invariant classical action describing the
coupling between tensor matter �elds and nonabelian Yang-Mills gauge �elds is
given by the following '4-like tensor Lagrangian:

Sinv = �
1

4g2

Z
d4xF a

��F
a��

�
Z
d4x

�
(D�'

��)i(D�'
�
�)

yi +
q

8
('yi��'i

��'
yj��'j

��)
�
;

(2.1)

where (g; q) are coupling constants, 'i
�� denotes a complex antisymmetric tensor

�eld constrained by the self-dual condition

'i
�� = i ~'i

��; ~'i
�� =

1

2
"����'

i�� ; (2.2)

and (D�'��)i is the covariant derivative

(D�'��)
i = @�'

i
�� � iAa

�(�
a)ij'j

�� ; (2.3)

(�a)ij denoting the hermitian generators of a semisimple gauge group G taken in a
complex representation speci�ed by the indices (ij).

As it has been discussed in ref. [7], the self-dual complex condition (2.2) com-
pletely �xes the Lorentz structure of the action (2.1). This means that, in spite of
the various possible Lorentz contractions which one could expect due to the tenso-
rial nature of the �elds ', the condition (2.2) singles out a unique term both in the
kinetic and in the self-interaction sector, yielding thus a unique action. The latter
is precisely given by the expression (2.1) which, of course, is left invariant by the
gauge transformations

�Aa
� = @�!

a + fabcAb
�!

c = (D�!)a;

�'i
�� = i!a(�a)ij'j

�� ;
(2.4)

! being an in�nitesimal parameter. The complex self-dual condition can be solved
straightforwardly, implying that the tensor �eld 'i

�� can be parametrized as

'i
�� = T i

�� + i ~T i
�� ;

~T i
�� =

1

2
"����T

i�� ; (2.5)

T i
�� being an arbitrary real antisymmetric �eld. Plugging now eq.(2.5) into the
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expression (2.1), for the invariant action one gets

Sinv = �
1

4g2

Z
d4xF a

��F
a�� +

Z
d4x

�
1

2
(@�T��)

2 � 2(@�T
��)2

�
�2
Z
d4xAa

�

�
(@�T

��)�aR ~T �
� � (@� ~T

��)�aRT
�
� + (@�T

��)�aIT
�
� + (@� ~T

��)�aI ~T
�
�

�
+
Z
d4xAa

�A
b
�

�
T ���aI�

b
IT

�
� + T ���aI�

b
R
~T �

� �
~T ���aR�

b
IT

�
� �

~T ���aR�
b
R
~T �

�

�
+
Z
d4xAa

�A
b
�

�
~T ���aI�

b
I
~T �

� �
~T ���aI�

b
RT

�
� + T ���aR�

b
I
~T �

� � T ���aR�
b
RT

�
�

�

�
q

4

Z
d4x

�
2(T��T

��)2 �
1

2
(T��T

��)2
�
:

(2.6)
The quantities �aR, �

a
I in the expression (2.6) denote respectively the real and the

imaginary part of the complex hermitian generators �a, i.e.

�a = �aR + i�aI : (2.7)

From the commutation relationsh
�a; �b

i
= ifabc�c ; (2.8)

we get h
�aR; �

b
R

i
�
h
�aI ; �

b
I

i
= �fabc�cI ;h

�aR; �
b
I

i
+
h
�aI ; �

b
R

i
= fabc�cR ;

(2.9)

and from the hermiticity condition �a = �ay it follows

(�aR)
ij = (�aR)

ji ; (�aI )
ij = �(�aI )

ji : (2.10)

The quantities T�aI�
b
IT , etc.... in the expression (2.6) have to be understood in

matrix notation, i.e. as T i(�aI )
ij(�bI)

jkT k, etc....

The gauge transformations (2.4), when written in terms of T i
�� , read

�Aa
� = @�!

a + fabcAb
�!

c = (D�!)a;

�T i
�� = �!a

�
(�aR)

ij ~T j
�� + (�aI )

ijT j
��

�
;

� ~T i
�� = !a

�
(�aR)

ijT j
�� � (�aI )

ij ~T j
��

�
:

(2.11)

Notice that, due to the fact that the tensor matter representation is a complex
representation [7] (�aR 6= 0), the transformations (2.11) mix the components of the
�eld T�� with those of the dual tensor �eld ~T��, generalizing thus the chiral abelian
transformations given in [2].
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Expressions (2.6) and (2.11) will be taken as the starting point for the discussion
of the quantum properties of the model. Remark that the Levi-Civita tensor "����
is present in both the cubic ATT and the quartic AATT interaction terms of the
invariant action (2.6) as well as in the gauge transformations (2.11).

The quantization of the tensor matter action (2.6) can be done straightforwardly
by means of the standard BRS procedure. Adopting a Landau gauge, the quantized
BRS invariant action reads

S = Sinv + Sgf ; (2.12)

the gauge �xing term Sgf being given by

Sgf =
Z
d4x s

�
�ca@�Aa

�

�
=
Z
d4x

�
ba@�Aa

� � �ca@�(D�c)
a
�

(2.13)

where the �elds (c; �c; b) denote respectively the ghost, the antighost and the la-
grangian multiplier and s is the nilpotent BRS operator de�ned as

sAa
� = (D�c)a;

sT i
�� = �ca

�
(�aR)

ij ~T j
�� + (�aI )

ijT j
��

�
;

sca = �
1

2
fabccbcc ;

s�ca = ba ; sba = 0 :

(2.14)

Coupling now the nonlinear transformations of (A;T; c) to a set of external BRS
invariant sources (
; �; � )

Sext =
Z
d4x

�

a
�sA

� + � asca +
1

2
�i��sT

i��

�
; (2.15)

it is easily veri�ed that the complete action

� = Sinv + Sgf + Sext ; (2.16)

obeys the following classical Slavnov-Taylor identity

S(�) =
Z
d4x

 
��

�Aa
�

��

�
a�
+

��

�� a
��

�ca
+
1

2

��

�T i
��

��

��i��
+ ba

��

� �ca

!
= 0 : (2.17)

The ultraviolet dimensions and the ghost number of all the �elds and external sources
are displayed in the following table.

A� �c c b T�� ��� 
� �

dim. 1 2 0 2 1 3 3 4
gh. num. 0 �1 1 0 0 �1 �1 �2

Table Ultraviolet dimensions and ghost numbers.
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Besides the Slavnov-Taylor identity, the classical complete action is characterized
by two additional useful identities [8], namely the gauge �xing condition

��

�ba
= @�A

a� ; (2.18)

and the ghost identity, usually valid in the Landau gauge [9]

Ga� = �cl
a ; (2.19)

with Ga and �cl
a given respectively by

Ga =
Z
d4x

�
�

�ca
+ fabc�cb

�

�bc

�
; (2.20)

and

�cl
a = �

Z
d4x

�
fabc(� bcc + 
b

�A
c�)�

1

2
�i��(�

a
R)

ij eT j�� �
1

2
�i��(�

a
I )

ijT j��

�
; (2.21)

We remark that the breacking term �cl
a in the right hand side of equation (2.19),

being linear in the quantum �elds, is a classical breacking, i.e it is not a�ected by
the quantum corrections. Finally, commuting the gauge �xing condition (2.18) and
the ghost equation (2.19) with the Slavnov-Taylor identity (2.17) we get two more
conditions [8], the familiar antighost equation

��

��c

a

+ @�
��

�
�a
= 0 ; (2.22)

and the Ward identity expressing the rigid invariance of the classical action (2.16),
i.e.

Wa
rig� = 0 ; (2.23)

with

Wa
rig =

Z
d4x fabc

�
Ab

�

�

�Ac
�

+ 
b
�

�

�
c
�

+ � b
�

�� c
+ cb

�

�cc
+ �cb

�

��cc

�

+
1

2

Z
d4x (�aR)

ij

� eT i
��

�

�T
j
��

� e�i�� �

��
j
��

�

�
1

2

Z
d4x

�
(�aI )

ij

 
T i
��

�

�T
j
��

� �i��
�

��i��

�
:

(2.24)

In summary, the complete classical action � is characterized by: the Slavnov-Taylor
identity (2.17), the Landau gauge �xing condition (2.18), the ghost and antighost
equations (2.19), (2.22) and the rigid gauge invariance (2.23).
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3 Stability under radiative corrections

In order to analyse the stability [8] under radiative corrections of the classical action
� we perturb it by means of an integrated local polynomial ~�count with dimension
four and ghost number zero, depending on the sources, on the �elds and on their
derivatives;

�! (� + �~�count) ; (3.1)

and we require that, to the �rst order in �, the perturbed action (� + �~�count)
satis�es the same set of identities obeyed by the unperturbed action �, i.e. the
Slavnov-Taylor identity (2.17), the Landau gauge �xing condition (2.18), the ghost
and antighost equations (2.19), (2.22) as well as the rigid gauge invariance (2.23). As
it is well known, the perturbation ~�count represents the most general local invariant
counterterm which is compatible with the simmetries and constraints characterizing
the action and which can be freely added at each order of perturbation theory [8].

Requiring then that equations (2.17), (2.18), (2.19), (2.22) and (2.23) hold to
the �rst order in �, we get the following conditions:

B�
~�count = 0 ; (3.2)

�~�count

�ba
= 0 ; (3.3)

Ga~�
count =

Z
d4x

�
�~�count

�ca
+ fabc�cb

�~�count

�bc

�
= 0 ; (3.4)

�~�count

��c

a

+ @�
�~�count

�
�a
= 0 ; (3.5)

and
Wa

rig
~�count = 0 ; (3.6)

where B� is the so called linearized Slavnov-Taylor operator

B� =
Z
d4x

�
��

�Aa
�

�

�
a�
+

��

�
a�

�

�Aa
�

+
��

�� a
�

�ca
+

��

�ca
�

�� a

�
+
Z
d4x

1

2

�
��

�T i
��

�

��i��
+

��

��i��
�

�T i
��

�
;

(3.7)

which, as a consequence of the Slavnov-Taylor identity (2.17), turns out to be nilpo-
tent

B�B� = 0 : (3.8)

In order to analyse the conditions (3.2){(3.6) let us begin with the equation (3.3)
which implies that ~�count does not depend on the lagrangian multiplier b. Moreover,
from the antighost condition (3.5) it follows that the variables �c and 
 enter only
through the combination


� = 
� + @��c : (3.9)
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Turning now to the homogeneous ghost condition (3.4) and taking into account
eq.(3.3), it is easily seen that ~�count depends on the ghost �eld c only through its
space-time derivatives. Hence ~�count can be parametrized in the following way:

~�count = �c(A) + �c(A;T ) + �c(T ) + �

Z
d4x 
a�@�c

a ; (3.10)

where � is an arbitrary parameter and �c(A), �c(T ) depend respectively only from
the gauge �eld A and the tensor �elds T , while �c(A;T ) collects both contributions.

Finally, conditions (3.2), (3.6) can be easily worked out along the same line used
in the standard case of Yang-Mills coupled to ordinary spinor �elds [8], yielding the
following result:

�c(A) = �
1

4g2

Z
d4x

�
(� � 2�)F a

��F
a�� � 2�fabcF

a��Ab
�A

c
�

�

�c(T ) = �
�

2

Z
d4x

�
1

2
(@�T��)

2 � 2(@�T
��)2

�

�
(�� �)

4

Z
d4x

�
2(T��T

��)2 �
1

2
(T��T

��)2
�

�c(A;T ) = (2� + �)
Z
d4xAa

�

�
(@�T

��)�aR
eT �

� � (@� eT ��)�aRT
�
�

�

+(2� + �)
Z
d4xAa

�

�
(@�T

��)�aIT
�
� + (@� eT ��)�aI

eT �
�

�

�(2� +
�

2
)
Z
d4xAa

�A
b
�

�
T ���aI�

b
IT

�
� + T ���aI�

b
R
eT �

�

�

+(2� +
�

2
)
Z
d4xAa

�A
b
�

� eT ���aR�
b
IT

�
� +

eT ���aR�
b
R
eT �

�

�

�(2� +
�

2
)
Z
d4xAa

�A
b
�

� eT ���aI�
b
I
eT �

� �
eT ���aI�

b
RT

�
�

�

�(2� +
�

2
)
Z
d4xAa

�A
b
�

�
T ���aR�

b
I
eT �

� � T ���aR�
b
RT

�
�

�
;

(3.11)

with (�; �; �) arbitrary coe�cients. One sees thus that the most general local BRS
invariant counterterms contains four arbitrary parameters. The latters are easily
seen to correspond to a renormalization of the coupling constants, of the �eld am-



{ 8 { CBPF-NF-013/96

plitudes and of the sources. Indeed, making the following rede�nitions:

g0 = (1� "
�

2
)g ; q0 = (1 + "�)q ;

A�
0 = (1� "�)A� ; 
�

0 = (1 + "�)
� ;

�c0 = (1 + "�)�c ; b0 = (1 + "�)b ;

T
��
0 = (1 � "

�

4
)T �� ; �

��
0 = (1 + "

�

4
)��� ;

c0 = c ; �0 = � ;

(3.12)

one easily checks that

� + "~�count = �(g0; q0; A0; c0; �c0; b0; T0;
0; �0; �0) +O("2) : (3.13)

The above equation states that the most general local BRS invariant counterterms
can be reabsorbed through a rede�nition of the parameters, of the �elds and of the
sources of the initial action, showing thus that the complite classical action � is
stable under radiative corrections.

Let us conclude this section by remarking that the nonrenormalization of the
ghost �eld c and of the related external source � , as expressed by eqs.(3.12), is due
to ghost condition (3.4), i.e to the choice of the Landau gauge [9].

4 Anomalies

We face now the problem of �nding the possible anomalies wchich may a�ect the
Slavnov-Taylor identity (2.17) at the quantum level. Taking into account that the
gauge-�xing condition (2.18), the ghost equation (2.19) as well as the antighost
equation (2.22) and the rigid invariance (2.23) can be easily proven to hold at the
quantum level [8], it follows that the breaking �1 corresponding to the extension
of the Slavnov-Taylor identity (2.17) is an integrated local polynomial of dimension
four and ghost number one which has to satis�es the following constraints:

��1

�ba
= 0 ;

��1

��c

a

+ @�
��1

�
�a
= 0 ; (4.1)

Ga�
1 = 0 ; Wa

rig�
1 = 0 ; (4.2)

B��
1 = 0 : (4.3)

Conditions (4.1), (4.2) imply that �1 is independent from b, that the �elds �c and

� enter through the combination (3.9), and that �1 depends on the ghost �eld c

only through its space-time derivatives.
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It follows then that, as done in the previous section, the breaking �1 can be
parametrized as

�1 = �1(A; c) + �1(T; c) + �1(A;T; c) ; (4.4)

where �1(A; c) and �1(T; c) depend respectively only from the gauge �eld A and
the tensor �eld T, while �1(A;T; c) collects both contributions. Of course, all the
three terms of eq. (4.4) contain the Faddeev-Popov ghost c2. Concerning now the
equation (4.3), it is easily seen to split into the three conditions

Z
d4x

 
(D�c

a)
��1(A; c)

�Aa
�

�
1

2
fabcc

bcc
��1(A; c)

�ca

!
= 0 ; (4.5)

Z
d4x

 
1
2
fabcc

bcc
��1(T; c)

�ca
+ @�c

a
��1(A;T; c)

�Aa
�

�1
2
ca
��1(T; c)

�T ��

�
�aR

eT �� + �aIT
��
�!

= 0 ;

(4.6)

Z
d4x

 
fabcA

b
�c

c
��1(A;T; c)

�Aa
�

� 1
2
fabcc

bcc
��1(A;T; c)

�ca

�1
2
ca
��1(A;T; c)

�T ��

�
�aR

eT �� + �aIT
��
�!

= 0 :

(4.7)

The �rst equation (4.5) is recognized to be the well known consistency condition
for the pure gauge anomaly, meaning that �1(A; c) can be identi�ed, modulo trivial
BRS cocycles, with the usual nonabelian gauge anomaly [10, 11].

Finally, from the equations (4.6), (4.7) for �1(T; c) and �1(A;T; c) one easily
gets

�1(T; c) + �1(A;T; c) =
Z
d4x@�c

a

�
@� eT��aaT �� � @�T��a

a eT �� + @�T��b
aT ��

+@� eT��ba eT �� +Ab
�T

��Mab
1 T �

� +Ab
�
eT ��Mab

1
eT �
�

+Ab
�
eT ��Mab

2 T �
� �Ab

�T
��Mab

2
eT �
�

�
;

(4.8)
where the matrices aa and ba obey the relations,

[�aI ; a
b]� [�aR; b

b]� fabca
c = 0 ;

[�aR; a
b] + [�aI ; b

b]� fabcb
c = 0 ;

(4.9)

2The fact that the expression (4.4) does not depend on the external sources is easily seen to be
a consequence of the power-counting and of the homogeneous ghost condition of eq. (4.2).
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and Mab
1 and Mab

2 are given respectively by

Mab
1 =

 
�aRa

b + �aIb
b

!
;

Mab
2 =

 
�aIa

b � �aRb
b

!
:

(4.10)

It turns out however that the expression (4.8), although solution of the BRS consis-
tency condition (4.3), can be actually written as a pure B�-cocycle, i.e.

�1(T; c) + �1(A;T; c) = B��̂ (4.11)

with

�̂ =
Z
d4xAa

�

�
@� eT��aaT �� � @�T��a

a eT �� + @�T��b
aT �� + @� eT��ba eT ��

�
; (4.12)

meaning that �1(T; c) and �1(A;T; c) can be reabsorbed as local counterterms.

This shows that the tensor matter �elds do not introduce new anomalies, the only
possible nontrivial breaking being the nonabelian gauge anomaly [10, 11]. Moreover,
due to the Adler{Bardeen theorem [11, 12], the latter is de�nitively absent if its
numerical coe�cient is adjusted in such a way that it vanishes at one loop order,
guarantying then that the model is anomaly free.

5 Conclusion

The nonabelian generalization of the model proposed by Avdeev and Chizhov [2]
has been proven to be renormalizable. This property has to be understood as a �rst
step towards a correct physical interpretation of the tensor matter �elds. Of course,
many aspects of this model remain to be clari�ed . Let us mention, for instance,
the construction of a unitary scattering operator (see also ref. [6] for a discussion
on the positivity of the tensor matter Hamiltonian and on the corresponding Fock
space) and the consistent introduction of the couplings among the tensor �elds and
the ordinary scalar or spinor matter �elds [3]. We hope to report soon on these
questions.
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