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Abstract

The RKKY spin polarization due to a point �eld is calculated for an elec-

tron gas with a re
ectionless potential well. An approximation which uses

a space dependent Fermi wave number is introduced. It follows remarkably

well the exact result. For a class of potentials it is shown that the inte-

grated spin polarisation equals the Pauli susceptibility multiplied by the

coupling constant and the mean probability density of the electron states

of the Fermi surface at the position of the point �eld.
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I. INTRODUCTION

Experiments with layered ferromagnetic structures raised the problem of the spin

polarization of the conduction electrons in metals in inhomogeneous situations. Some

results exist for �nite metals [1] [2]. An important question is how the spin polarization

crosses a region with a di�erent metal. This problem was repeatedly adressed [3]{ [8].

The present work discusses a one-dimensional model with a particular localized potential

which lends itself to analytic treatment.

II. THE MODEL

Consider a non-interacting electron gas in unlimited one-dimensional space. The elec-

trons are subject to a localized potential of width �

V (x) = �V0 sech2(�x) (1)

V0 = 2�2 �h2=(2m); (2)

wherem is the mass of an electron. With Eq. (2) the potential has the remarkable property

of being re
ectionless [9]. It has been chosen for the simplicity of the wave-functions and

the spectrum. This consists of a continuous part

�k;s(x) =
�ik + � tanh(�x)p

k2 + �2
eikx jsi; Ek =

�h2k2

2m
; (3)

and one bound state

�b;s(x) =

s
�

2
sech(�x) jsi; Eb = ��h2�2

2m
: (4)

s = �1
2 is the spin variable. The states with jkj � kF are �lled, where kF = �n is

determined by the asymptotic particle density n of the electrons.

The perturbing Hamiltonian, which represents a point �eld at position a that acts on

the spins of the electrons with strength 
, is
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H 0 = �
 �(x� a)
�z
2
; (5)

where �z is the Pauli matrix for the z direction. The spin polarization linear in 
 can be

obtained from the �rst order perturbation of the wave functions alone without any change

of occupation, provided the singularities are handled with principle part integrations

[10]. With Eq. (5) the matrix elements are immediate, and the perturbed wave functions

become

 k;s(x) = �k;s(x)� 
 s
2m

�h2
1

2�

Z 1

�1
dk0

��k0;s(a)�k;s(a)

k2 � k02
�k0;s(x)

� 
 s
2m

�h2
��b;s(a)�k;s(a)

k2 + �2
�b;s(x) (6)

 b;s(x) = �b;s(x) + 
 s
2m

�h2
1

2�

Z 1

�1
dk0

��k0;s(a)�b;s(a)

�2 + k02
�k0;s(x): (7)

The spin polarization is given by the terms linear in 
 of

P (x; a) =
X
s

Z kF

�kF

dk  �k;s(x)
�z
2
 k;s(x) +

X
s

 �b;s(x)
�z
2
 b;s(x): (8)

In combination with Eq. (6) two integrations have to be performed. Yafet [3] has made

it clear that the singularity k = k0 = 0 requires special care in the one-dimensional case.

The result depends on the order of the integrations. The physically meaningful result is

obtained when the integration over k is done �rst. Since all expressions are diagonal in

the spin variables, these will be suppressed; the factors 1
2
in Eq. (9) stand for

P
s s

2.

P (x; a) = �2m

�h2


1

2

Z 1

�1

dk0

2�

Z kF

�kF

dk

2�

��k(x)�
�
k0(a)�k(a)�k0(x)

k2 � k02
+ c.c.

� 2m

�h2


1

2

Z kF

�kF

dk

2�

��k(x)�
�
b(a)�k(a)�b(x)

k2 + �2
+ c.c.

+
2m

�h2


1

2

Z 1

�1

dk0

2�

��b(x)�
�
k0(a)�b(a)�k0(x)

�2 + k02
+ c.c. : (9)

De�ning

Ck =
(k2 + �2T ) cos(kz)� k�S sin(kz)

k2 + �2
(10)

T = tanh(�x) tanh(�a) (11)

S = j tanh(�x)� tanh(�a) j (12)

z = jx� aj; (13)
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Eq. (9) becomes

P (x; a) = �2m

�h2



4�
fI1 + I2 + I3g (14)

I1 =
2

�

�Z 1

0
dk0

Z �

0
dk �

Z �

0
dk

Z 1

0
dk0
�

CkCk0

k2 � k02
(15)

I2 =
Z kF

0

dk

k

1

(k2 + �2)2

� ��
k2 + �2T

�2 � (k�S)2
�
sin(2kz) + 2�Sk

�
k2 + �2T

�
cos(2kz)

�

(16)

I3 = 2�
h
e��z(T � 1� S) + sech(�x) sech(�a)

i Z kF

0
dk

Ck

(k2 + �2)

� �

2
sech(�x) sech(�a) e��z [T + 1 + �z(T � 1� S)] : (17)

The two integrations of I1 commute everywhere exept in the neighbourhood of the singu-

larity k = k0 = 0, so that the integration over k0 can be taken from zero to an in�nitesimal

�. Ck is regular at the singularity and takes the value T . Then [3]

I1 =
T 2

�

(
f
���
�

�
� f

�
�

�

�
+ f

 ��
�

!
� f

 
�

�

!)
= ��

2
T 2; (18)

where f(x) = � R x0 dy ln(j1� yj)=y is the Dilogarithm function [12]. As a limiting case let

both x and a be on the same side of the potential and far away from it, i.e.

x; a� � or � x;�a� �: (19)

In this case T = 1 and S = 0. Thus

P (x; a) =
2m

�h2



4�

�
�

2
� Si(2kF z)

�
; (20)

which is the RKKY result for a one dimensional homogeneous space [11] [3]. Note that the

terms that were neglected were exponentionally small, in agreement with the re
ection

free property of the potential. Eq. (14) is plotted in Figs. 1{3 for di�erent situations. In

general P (a; a) = 2m
�h2




4� independent of a and �.
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III. INTEGRATED POLARIZATION

We consider now the in
uence of the potential on the integrated polarisation. This

can be done starting again with Eq. (9) and inverting the sequence of integrations

P(a) = R1
�1 P (x; a) dx (21)

=



2

2m

�h2

Z 1

�1

dk0

2�

Z kF

�kF

dk

2�

Z 1

�1
dx

��k(x)�
�
k0(a)�k(a)�k0(x)

k02 � k2
+ c.c. : (22)

The remaining terms in Eq. (9) do not contribute because of the ortogonality between �k

and �b. With

Z 1

�1
dx��k(x)�k0(x) = 2� �(k � k0) (23)

and the change of variables k0 = k + q this becomes

P(a) = 


4�

2m

�h2

Z 1

�1
dq
�(q)

q

Z kF

�kF

dk

2k + q

h
��k+q(a)�k(a) + �k+q(a)�

�
k(a)

i
: (24)

In view of the factor �(q) it is su�cient to retain up to linear terms in q, so that the

bracket can be replaced by

2 j�k(a)j2 +
"
d��k
dk

�k +
d�k
dk

��k

#
q = 2 j�k(a)j2 + d

dk
j�k(a)j2 q: (25)

Thus

P(a) = 


4�

2m

�h2
(K1 +K2); (26)

where

K1 =
Z 1

�1
dq
�(q)

q

Z kF

�kF

dk
2 j�k(a)j2
2k + q

(27)

K2 =
Z kF

�kF

dk

2k

d

dk
j�k(a)j2 : (28)

Here

j�k(a)j2 = k2 + �2U

k2 + �2
; U = tanh2(�a);

d

dk
j�kj2 = 2k

�2(1 � U)

(k2 + �2)2
: (29)
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Then

K1 =
Z 1

�1
dq
�(q)

q

Z kF

�kF

dk 2 j�k(a)j2 1

2k + q
(30)

=
Z 1

�1
dq
�(q)

q

(
�
 
1 +

4�2(U � 1)

4�2 + q2

!
ln

�����q + 2kF
q � 2kF

�����+ 4�(U � 1)q

4�2 + q2
arctan

 
kf
�

!)
(31)

=
Z 1

�1
dq �(q)

�
U

kF
+
U � 1

�
+O(q2)

�
(32)

=
U

kF
+
U � 1

�
arctan

 
kF
�

!
: (33)

The second integral K2 becomes:

K2 = �2(U � 1)
Z kF

�kF

dk

(k2 + �2)2
(34)

= (1� U)

(
kF

k2F + �2
+

1

�
arctan

 
kF
�

!)
: (35)

Combining the two terms gives

P(a) = 


4�

2m

�h2
j�kF (a)j2

kF
(36)

=



4�

2m

�h2
1

kF

"
1 � �2

k2F + �2
sech2(�a)

#
: (37)

Eq. (36) shows that the integrated polarization P(a) is proportional to the probability

density of an electron in the Fermi level to be at a. With the re
ectionless potential the

situation can arise that while a is outside the range of the potential, this overlaps with

the polarization. It is remarkable that in this situation the integrated polarization P(a)
is unchanged. In the Appendix we show that the result Eq. (36) can be generalized to a

large class of potentials and to three dimensions.

An integral over P(a) is the integrated spin polarization due to a homogeneous �eld 
.

Of course, this diverges for an in�nite sample. However, the integral over the di�erence

between P(a) and its asymptotic value is �nite and has the value

Z 1

�1
da

�
P(a)� 


4�

2m

�h2
1

kF

�
= � 


4�

2m

�h2
1

kF

2�

k2F + �2
: (38)

This is the change of the integrated Pauli spin polarization induced by the potential.
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IV. AN APPROXIMATION WITH A SPACE DEPENDENT FERMI VECTOR

Since in this case the exact spin polarization is known, it is tempting to compare it

with an approximation, which uses Eq. (20), however, with a local Fermi wave number.

The quantity 2kF jx� aj in Eq. (20) is replaced by

X =

����2
Z x

a
dx0 kF (x

0)

���� : (39)

In one dimension kF (x) = �n(x), where n(x) is the particle density.

From Eq. (3) and (4)

n(x) =
Z kF

�kF

dk

2�

k2 + �2 tanh2(�x)

k2 + �2
+
�

2
sech2(�x) (40)

=
kF
�

+
�

2
sech2(�x)

"
1 � 2

�
arctan

 
kF
�

!#
; (41)

where kF is the asympthotic Fermi wave number.

X = 2kF

�����x0 + �

2

1

kF
tanh(�x0)

"
1� 2

�
arctan

 
kF
�

!#�����
�����
x

x0=a

: (42)

The second term produces a phase shift �. In the limit a = �1; x =1 it amounts to

� = 2�

"
1 � 2

�
arctan

 
kF
�

!#
: (43)

Thus if kF = � then � = �. The phase shifts becomes evident in Fig. 3.

V. CONCLUSIONS

The problem of the spin susceptibility in general inhomogeneous situations is complex

even in one dimension. However, in two cases the problem was solved analytically: the

constant potential in a limited space [2], and the re
exionless potential in an unlimited

space, which is treated here. It is shown that a re
exionless potential does not modify the

spin polarization around the point �eld away from the range of the potential. This is not

so, when there is a boundary. The spin polarization on the other side of the re
exionless

potential is, however, modi�ed.
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A simple approximation is introduced based on a space dependent Fermi wave number.

It agrees well with the exact result. Hopefully it can be used as a guideline in more general

situations, when re
exions are not dominant.

APPENDIX: INTEGRATED POLARIZATION

In this appendix we shall generalize the result Eq. (36) to three dimensions and to a

large class of potentials. We consider a non-interacting degenerate electron gas acted upon

by a potential which is limited to a �nite region in such a way that the wave functions

with positive energy �k;s(x) = �k(x) �s can be labeled by an incoming wave vector k and

the spin quantum number s = �1
2
, the energy being �k = �h2k2=2m. In addition there

may be a discrete spectrum of bound states with wave functions �n;s(x) = �n(x) �s and

energies �n = ��h2�2n=2m. The Fermi surface then is a sphere with radius kF . A point

�eld of strength 
 at position a is coupled to the spins:

H 0 = �
 �(x� a) �z
2
: (A1)

The resulting spin polarization of the electron gas P (x;a) then satis�es

P(a) =
Z
d3xP (x;a) = 
 �P

D
j�k(a)j2

E
F
; (A2)

where �P is the Pauli susceptibility of the unperturbed electron gas, i.e. half the density

of states per spin at the Fermi level, and
D
j�k(a)j2

E
F
is the average over the Fermi surface

of the probability density of the wave function k at position a. The wave functions of the

continuum are normalized to a Dirac �-function.

To calculate P (x;a) in three dimensions we run through equations analogous to Eqs.

(6) to (9) with additional terms if there are several bound states. However, the terms

containing bound states vanish upon integration over x, so that

P(a) = R1
�1 P (x;a) d3x (A3)

=



2

2m

�h2

Z 1

�1

d3k0

(2�)3

Z
k�kF

d3k

(2�)3

Z 1

�1
d3x

��k(x)�
�
k0(a)�k(a)�k0(x)

k02 � k2
+ c.c.: (A4)
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Using

Z 1

�1
d3x��k(x)�k0(x) = (2�)3 �3(k � k0) (A5)

and the change of variables k0 = k + q this becomes

P(a) = 


2

2m

�h2

Z 1

�1

d3q

(2�)3
�3(q)

Z
k�kF

d3k

q�(2k + q)

h
��k+q(a)�k(a) + �k+q(a)�

�
k(a)

i
: (A6)

In view of the �{function only terms up to linear in q in the bracket must be retained.

Thus

P(a) = 


2

2m

�h2

Z 1

�1

d3q

(2�)3
�3(q)

Z
k�kF

d3k

q�(2k + q)

h
2j�k(a)j2 + gradkj�k(a)j2�q

i
: (A7)

With the identity

�
gradkj�kj2

�
� q

2k � q + q2
= divk

 
j�kj2 q

2k � q + q2

!
+ j�kj2 2q2

(2k � q + q2)2
(A8)

P(a) can be written as a sum of two terms:

P(a) = G1 +G2 (A9)

G1 =



2

2m

�h2

Z 1

�1
d3q �3(q)

Z
k�kF

d3k

(2�)3
2j�k(a)j2

"
1

2k � q + q2
+

q2

(2k � q + q2)2

#
(A10)

G2 =



2

2m

�h2

Z 1

�1
d3q �3(q)

Z
k�kF

d3k

(2�)3
divk

 
j�k(a)j2 q

2k � q + q2

!
: (A11)

We shall show that G1 = 0. This is somewhat delicate, since q cannot just be put

equal to zero in the bracket. We invert the order of integrations and perform the angular

integration of q �rst, using k as the polar axis. Using k � q = kq cos � and

�3(q) d3q =
1

4�
�(q) dq d(cos(�)) d� (A12)

G1 becomes

G1 =
1

2




2

2m

�h2

Z
k�kF

d3k

(2�)3
j�k(a)j2

Z 1

�1
dq �(q)

(
1

2kq
ln

�����q + 2k

q � 2k

�����+ 2

q2 � 4k2

)
: (A13)

The bracket vanishes for q! 0.
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G2, Eq. (A11), is

G2 =



2

2m

�h2
k2F

Z 1

�1

d3q

(2�)3
�(q)

Z
SF

d
kj�k(a)j2 q � k̂

2k � q + q2
(A14)

=



2

2m

�h2
kF

(2�)2

Z
SF

d
k

4�
j�k(a)j2; (A15)

where SF is the spherical Fermi surface, so that dS = k2F d
k k̂, with the unit vector k̂.

kF
(2�)2

2m
�h2

is the density of states per spin at the Fermi level. Hence Eq. (A15) coincides

with Eq. (A2).

The corresponding result can also be established for one or two dimensional systems.

Further explicit examples for these equations are given in [2] for in�nite potentials outside

a half space or a slab in one and in three dimensions. Actually the notation has to be

adapted to these cases. For the slab in three dimensions the wave functions (Eq. (28) of

[2]) are normalized as

Z
dx
Z
d2R��n;K(x;R)�m;K0(x;R) = (2�)2 �(K �K0) �n;m (A16)

Then the theorem reads

P(a) = 


8�

2m

�h2
nF

1

nF

nFX
n=1

D
j�n;K(a; 0)j2

E
n;KF

(A17)

where
D
j�n;K(a; 0)j2

E
n;KF

is the average probability density of the wave functions which

belong to n and to the Fermi energy, so that their K vector is situated on a circle of

radius KF =
q
k2F � (n�=L)2.

The Pauli susceptibility is obtained from the change in occupation due to the Zeeman

shift in a homogeneous �eld. A point �eld modi�es the wave functions and produces

Zeeman shifts. The polarization, however, can be calculated from the changes of the

wave functions alone, if the singularities are treated by principle part integration [10].

The integrated polarization represents the contribution of the point �eld to the Pauli

susceptibility. The theorem states that this is obtained from the average Zeeman shift in

the point �eld times the density of states.
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FIGURES

FIG. 1. Spin polarization due to a point �eld at a = 4 in the presence of a potential well

of strength � = 1. Units are such that kF = 1 and 

4�

2m
�h2

= 1. Lower dotted line: potential

well in arbitrary units. Full line: spin polarization, Eq. (14). Stars: approximation with space

dependent kF (x), Eq. (39). Dots: polarization in the absence of a potential well.

FIG. 2. Spin polarization due to a point �eld within the potential well. a = �0:25; � = 3.

Units and symbols as in Fig. 1.

FIG. 3. Spin polarization on one side of the potential well due to a point �eld on the opposite

side ( a = �6) for several strengths � of the potential well. Full lines display the exact solutions,

Eq. (14). The corresponding approximations, Eq. (39), are given by the following symbols: stars:

� = 0; squares: � = 0:5; triangles: � = 1; lozenges: � = 2.
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