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ABSTRACT

The uncorrelated bond percolation problem is studied in three

planar syétéms where there are two distinct occupancy probabilities.

We apply two different real space renormalization group approaches

(referred as the "canonical" (CRG) and the "parametric" (PRG)ones)to the

anisotropic first-neighbour square lattice, and both of them exhibit"

the expected tendency towards the exactly known phase boundary (p+g=1).

Then we iﬁtroduce, within the context of PRG calculations for

increasingly large cells, an extrapolation method which leads to

analytic proposals for the other two lattices, namely p+q = 1/2 for

the first-and second-neighbour square lattice (p and gq are}respectivelm

the first and second neighbour occupancy probabilities),and 3(p-1/2) =
[(l-q)2 A+ (l-q)3 ] (p and g are, respectively, the occupancy

probabilities of the topologlcally different bonds which are in a

1l:2 ratio) for the 4- 8 lattice.

‘



1. INTRODUCTION .

The percolation problem has been the subject of many recent works
exploring its analogies and connections with termodynamic phase
transitions (see, for instance, the reviews of Zallen 1978,Stauffer
1979 and Essam 1980). Many real-space renormalization group (RG)
approaches have been developed for bond, site and site-bond percolation.

Some authors (Harris et al 1975, Dasgupta 1976, Marland and Stinchcombe

1977,,Kun2 and Wu 1978,’Burkhardt and Southern 1978) made use of
the relationship between the percolation problem and the s-state.
Potts model in the limit s+l (Kasteleyn and Fortuin 1969). Others
(Young and Stinchcombe 1975, Kirkpatrick 1977, Reynolds et al 1977,
1978, Nakanishi and Reynolds 1979a,Shapiro 1979, Tsallis and
Schwachheim 1979, Murase and Yuge 1979, Magalhaes et al 1980) have
constructed RG transformations which act directly on the space of
occupancy probabilities. Concerning bond percolation problems where
more than one probability appear, some exact or approximate results
havé been obtained by graph theory (Sykes and Essam 1963), series
expansions (Redner and Stanley 1979, “ghost site" method (Turban
1980) and RG (Lage 1979,Ikeda 1979, Turban 1979).

In the present work we study, within a real space RG framework,
uncorrelated bond percolation in three planar lattices, namely the
anisotropic first-neighbour square lattice and the "inhomogeneous"
first-and second-neighbour square - and . 4 - 8 lattices, where the
word "inhomogeneous" stands for the fact that two different occupancy
probabilities p and g are introduced. The critical frontier in the
P - g space (as well as the connectivity critical exponent vp)
associated to the anisotropic first-neighbour square lattice is
discussed (§ 2) within two different RG approaches, to which we refer
as the canonical (CRG) and the'- paramctric (PRG) ones, Both of them cexhibit
the correct tendency towards the well known (Sykes and Essam 1963)



exact result p + g = 1. The first-and second-neighbour square
lattice (§ 3) and the 4 - 8 one (§ 4) are discussed only within

the PRG framework by using a convenient extrapolation procedure.
Finally for both critical lines we propose analytical expressions
which fit extremely well the numerical results, and might therefore

be the exact ones.



2. ANISOTROPIC FIRST-NEIGHBOUR SQUARE LATTICE

Let us consider a first-neighbour square lattice where the
independent occupation probaEilities for "vertical" and "horizon
tal" bonds are, respectively, p and g. Its exact critical line
(which separates the percolating and non—per¢olating regions) is
already known (Sykes and Essam, 1963):

p+qg=1 : (1)

- This equation has recently been confirmed by different
'approaches: series expansions (Redner and Stanley 1979), self-
consistent decimation within the context of an effective medium
theory (Lage 1979), anisotropic RG transformations using as a
starting point the isotropic square lattice (Turban 1979). In
this section, we present the already ' mentioned CRG and PRG
‘approaches*: both of them support equation (1). .

Let us first of all choose a family of clusters (whose size
will be characterized by b) which completely cover the lattice
(those associated to b = 1 and b = 2 are, respectively, indicated
in Figs. (la) and (1b)). Next we associate to each cluster a
-graph by collapsing the entries and exits into two terminals and
by eliminating the irrelevant bonds .(several examples | of such
graphs appear in Fig. 1). Finally, through the deletion-contract
"ion rule (see Appendix A), we associate to each graph a poly-
nomial (noted Rb(p,q» which represents the probability of the
two terminals being connected, in particular:

R, (p,@) =p | | « (2)

2 4 2 . '
R2 (p,q) = 2p" - p + g (2p -4p3+2p4) (3)

* The CRG procedure has independently been used by  Nakanishi
and Reynolds 1979 (b).
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Ry (p.q) = 3p° - 3p° + p° + 8a(p’-p*-p +p +p°-p”) +q® (10p”-30p"+
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+12p>+18p8+24pT-60p8+26p”%) +4q> (p3-6p +ep +11p°-36p +

4 (2p3-19p*+72p°-140p8+148p7-81p8+18p)

(4)

+31p8—9p9) + g

These expressions can be reobtained by explicit counting of
all the percolating bond configurations*(young and Stinchcombe 1975,
Reynolds et al 1977) Notice that R, (p,p) and R3(p,p) reproduce '
respectively, eq(lz) of Reynolds et al (1977)and eg(5)of Magalhaes
et al(1980).

By considering "vertical” percolation and renormalizing a cell
of side b into a smaller one of side b' (therefore the ;gttice

expansion factor will be b/b') we get the following relation:
Ry, (p',q') = R (p,q) | . (5)

In order to complete the RG recursive procedure we need a second
relation (amohg p'.q',p and q) which can be obtained through the
CRG or the PRG procedures we present next.

a) Canonical RG Procedure (CRG)

Herein the second relatidon comes from consideration of percolation
along another direction; in the present case we shall choose this
direction to be the "horizontal" one,hence:

Ry (@',p')= Ry (q,p) (6)

The relations (5) and (6) define a two—parameter RG tranformation,
whose flow lines in the p-g space yield the critical frontier we

‘are looking for. The term ‘canonical' comes from the fact that this-
is the traditional procedure (Niemeyer and van Leeuwen 1974,1976 ,

Young and Stinchcombe 1975).

*For details of the method see, for instance,Magalhaes et al (1980).



Let us, now, point out some general results related to the
symmetry of this particular prablem. First of all, we notice that
the systém of recursive relations (5) and (6) leads to a flow
diagram which is symmetric.with respect to the axis p=gq (see Fig.2).
Furthermore the clusters of the family we have chosen are self -
“dual(see the last part of Appendix 2)hence:

Ry (p,q)+Ry (1-p, 1-q)= 1 ¥w  ¥(p,q) S

This relation immediately impliés a second symmetry(in the flow.
diagram) namely a punctual one with respect to (p,q)=(1/2,1/2) ,
‘which together with the first one leads to a new symmetry axis
(determined by p+g=1). o ' '

The RG transformation we are dealing with has nine fixed points
for any finite values of b and b', namely: the point (1/2, 1/2)
which corresponds to the exact result of the isotropic case, the
rtrivial points (0,0) and (1,1), the linear chain points (0,1)and
(1,0) and the four points dependent on b and b’ (po,o),(l-po,l) '

(O,po) and-(l,l—po), where Po satisfies (cf the contraction-
deletion rule)

b,b

b'yb' _ (1-p_ 1P =0 ¥ (b,b') (8)

(l-po

We verify that p_(b,b') tends towards unity if b> = (we recall
that b'< b); the quickest convergence is obtained for b'=b-1 .
This fact is illustrated with the following examples :

po(z,l)=(/§—1)/2=o.6180;p0(3,1)=o.6823;po(2o,1) ~0.8939;p_(200,1) =

0.9805;po(1000,l)=O.9948;po(20,l9)=0.9651 and po(200,199)=0.9965.

The linearization of equations(5) and(6) in the neighbourhood
of the point (1/2,1/2) leads to a Jacobian matrix whose two eigenvec
- tors. are in the directions p=q (associated to the largest eigenvalue,
. which coincides with the isotropic one, namely

dRr -1
, =] Fplep) Ryt (p,p) ).
dp ~dp ' —



and p+g=l, as can be seen in Fig. 2. The connectivity critical
exponent is given, within the present approximation, by vp(b,b')
= gn(b/b')/4n X (cf. Magalhaes et al 1980, \)p(Z,l)'2 1.428,

vp(3,1) ~ 1.380, vp(4,l) o 1.963 and the extrapolated value is

Vo= 1.351 % 8-812 ). we verify that the flow diagram associated
to b=3,4 are very similar to that of b=2 (Fig. 2). In all of
them this fixed point is unstable in all directions in particular
along the line p+g=1, contrarily to what we (and Nakanishi and
Reynolds 1979 (b)) were expecting on account of universality.
We were not able to find any other explanation for this fact
than the possibility of reversal of this tendency for sufficiently

high b.

In ng. 2 we can see that "division" lines (broken lines)
separate the p-g space into four regions (namely I,II,III and
IV), each of them associated to an attractive fixed point ((1,0,
(1,1), (0,1) and (0,0), respectively). As b increases, for let
us say fixed b', the regions (I) and (III) shrink; this fact,
together with the tendency of Pg towards unity when b + « ,

strongly suggest that the CRG frontiers coalesce onto the exact
one p+g=l.

b) Parametric RG Procedure. (PRG)

Another choice, instead of equation (6), which com-
pletes (with equation (5)) the RG recursive set of transform-
ations we are looking for, might be

Q (p'/q'") =0Q (p,q) = ¢ | ' (9)

where € is a parameter and the function Q (p,q) is an arbitrary

one. Simple examples are* :

Q (p,q) = ag/p ' (10)

Q (p,q) =g (11)
Q (p,g) =p (12)

* The choice (10) has been used for a square lattice by Ikeda
(1979) in the quasi unidimensional and nearly isotropic
cases.



It is important to remark that within the present approximative
© procedure every point of the critical line is a fixed one.
Furthermore the equation of this critical line (referred hereafter

as I' (b,b')), namely

®p' (p*, q%) = R (p*,q%) , | o (13)

independs on the choice of Q (p,g)- On the other hand, the critical
exponents (in particular v_) depend on the choice 'of Q(p,q) as this
function determines the rgcursion in the neighborhood of the critical
frontier. Moreover the approximate critical expopents exhibit, along
this frontier, an unphysical dependence on the parameter €, which ,in
order to support unlversallty, should dlsappear with increasing.
cluster sizes. . ‘

We have obtained, by using equation (13), several frontiers T (b,b"')
(2¢ bg 5" and 1§ b' ¢ 4): some of them are indicated in Fig.3. All
the frontiers fi(b,b') were derived from closed forms of eq. (13) ,
with the exception of T(5,b') (1 < b“§ 4)which were treated b& a two-
variable version of the Monte Carlo method presented.elsewhere
(Magalhées et al 1980). Throughout this paper, we have worked, for

every (b,b'), around N, nb(p) ny (q)z}07 (N, being the total number

of Monte Carlo runs and N, (p); n, (q) standing, respectively, for

the number of relevant p=-and q-bonds of the cluster characterized
by b:),

Let us notice that all the frontiers T(b,b') include the exact
isotropic point (1/2,1/2) ,and preserve,like the CRG frontiers, the
punctual symmetry with respect to this point (see equations (7) and
(13)). On the other hand, their derivatives evaluated at this point,
contrarily to what happens in the CRG,'arevnot the exact one (namely
-1), but they tend to it for increasing cluster sizeijlaj.the cases
we have examined. Let us also observe that the curves f(b b') are
not symmetric with respec; to the line p=g since equatlon (13) is



not invariant under the transformation p* «+ g* (see Fig. 3). It
is worth remarking that the point (po (b,b'),0) (see eq. (8))
belongs to T (b,b'): this is due to the fact that both sides of
equation (6) identically vanish for g=0, therefore both the CRG
and PRG treatment rely on one and the same equation (5). Let us
- finally remark that the CRG frontiers are for the same values of
(b,b'), better (though harder to work out) than the PRG ones
(see Fig. 2); nevertheless all of them tend towards the exact
line p + g = 1.

In what concerns the calculation of the approximate cri-
tical exponent v_ (b,b'; €) we observe that, for the small exam-
ined clusters (Zps b g4, 1 <b'" g 3), the artificial dependence*
of'vp on £ (for the‘three choices of ¢, namely, gq/p, 9 and p) in
creases, instead of disappearing, as we use bigger . cells; we
ignore if this tendency will be reversed for larger clusters.

Tkeda's treatment (1979) presents a similar variation of Vv
in the neighbourhood of the isotropic case p=gq=1/2. He obtains
vp(q*=ep==0.543) = 1.25 and vp(q*=ep=o.5) = 1.10; our results
on the same points (for b=2, b'=l) are, respectively, 1.40
and 1.43. All these numbers are to be compared with the
nearly exact value 1l.35.



3. "INHOMOGENEOUS" FIRST- AND SECOND-NEIGHBOUR SQUARE LATTICE

In this section, we study the bond percolation on isotropic
first- and second-neighbour square lattice where p' and q are,
respectively, the independent occupancy probabilities for the
first and second neighbour bonds. We remark that in both particular
cases g=0 and p=0 this lattice reduces to, réspectively, one and
two disconnected first-neighbour square lattices, whose critical

probability is 1/2.

We will use the same family of cells we considered (Macalhaes
et al 1980) for the p=q case (see Figs. (lc) and (1d)).Application
of the  contraction-deletion rule to their respective

graphs yields the following vertical renormélized probabilities

R, (p,q):

R (p,q) = p+2q(l-p)-q®(l-p) = e

and

R,(p,q) = 2p2+2p3-5p“+2p5+q(6p+2p2—30p3+26p“-4p6)+q2(6—4p—56p2+
92p3-2p"“~64p5+28p°)+q° (-4-38p+128p2-24p?-248p"“+270pS5-
-84p6)+q“(-8+64p-36p2-338p3+708p“—53dp5+140p5)+q5
(8-6p-198p2+690p*=942p"+588p5-140p°) +q® (2-52p+272p 2 -
-608p3+682p“-380p°>+84p®)+q’ (-4+38p~-140p2+260p°-260p"+
+134p>-28p°®) +q°®(1-8p+26p2~44p3+41p“-20p°+4p°®) ‘

(15)

These equations, respectively, reproduce, if p=q, eqgs. (7)
and (8) of Magalhaes et al (1980), as it should be. As illustrated
in the previous section, both CRG and PRG procedures tend, for
increasingly large cells, towards the exact frontiers; however,
because of its operational simplicity we shall, from now on, use
the latter.
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We notice that for g=0 expressions (14),(1l5) (and those corres
ponding to higher values of b) reduce to those associated to the
first-neighbour square lattice (Reynolds et al 1977, Magalhaes et al
1980) . Therefore, all the fronéiers I'(b,b') we are looking for will
contain the point (p,q)=(1/2,0). On the other hand, the case p=0
deserves a few comments, as here every graph Rb(O,q ) becomnes a
parallel array of a certain graph (noted G (q)) with its dual (noted
G (gq)); see Fig. 4 and Appendix A. Therefore the equation (13)

b becomes

e yaeD D _ D, _ D,
Gb,(qo)+Gb,(qo) - Gb,(qo)Gb,(qo)— Gb(qo)+Gb(qo) Gb(qo)Gb(qo) (16)

B
hence

+

G lay) = G (g , . | (16')

Furthermore we can see that Gg(q).= Gb(q) if and only if b is anodd
number, and consequently if both b and b' are odd numbers the

" equation (16') admits the root qo(b,b')=1/2 ~which is “the

exact answer. On the other hand, if b and/or b' is even, qo(b,b') is
different from 1/2 but it tends to it for increasingly large cells,

as can be seen in the Table.

The lines T'(b,1) for 2<bg5 (obtained through eqg. (13)) are

.indicated in Fig. 5. We shall next specify an extrapolation procedure

we have developed in order to obtain our best proposal T for the
critical line. We first cut the curves T (b,1) with let us say
straight lines parametrized by € (e.g. e=p or e=q or e€=q/p);we shall
call Y*(e) the abscissa (or equlvalently the ordinate) wvalues which
are thus obtained. Next we plot Y (e) vs. b l"/"p(where we choose for

vp the best available value), and through ‘linear extrapolation to
the origin we obtain the limit Yc(e) for that particular value of €.
The set of {Yc(e)} will be our proposal of T _ for: that particular

family of straight lines (e.g. €=p). We repeat this procedure with
other families (e.g. €=q or €=g/p). We have verified that r (e=p),

I (e=q) and T_(e=q/p) are extremely close to each other (see Fig.5).
Another test of self-consistency of the present procedure can be
performed by verifying, on a plot log [Y;(e)myc(e)]vs.]oglh that we
obtain parallel straight lines for different choices of - families
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of straight lines (e.g. e=p, etc) and of values of the parameter ¢
(see Fig. 6)— this fact supports the basic assumption . that vy
independs on such choices. Let us point out that the whole  above
procedure is nothing but a generalization,for a two-dimensional

probability space,of the finite-size scaling law (Fisher 1971, Sur
et al 1976, Suzuki 1977, Reynolds et al 1978) which is frequently

used for the one-dimensional case, i.e. we are admiting the vali

dity of an equation of the type

1/v
* - P

Y, (e) - Y (e) ~ b 17

Such a behaviour is expected to hold for very large b, never-
theless it tutns out that surprisingly small values of b already
satisfy it. Let us recall that, for the critical probability of
bond percolaﬁion on simple cubic lattice, we have obtained (Maga-
lhaes et al 1980), by using bg 7, p,=0.2526, which is extremely
close to the value pc=0.2495 obtained by Kirkpatrick (1978), by
using clusters with b g 80. : ‘

Let us now turn back to the critical line of the first- and
second neighbour square lattice. We have verified that the three

families we have chosen (namely, €=p, €=q and e€=q/p) lead to points

(see Fig. 5) which lie on straight lines within a linear correlation

coefficient of 0.99995. Furthermore we have previdusly estimated

(Magalhaes et al 1980) the critical probability for the particular
case p=q, and have found pc=0.2501 0.003. And finally we remark
that the 1:1 ratio of the numbers of p-and g-bonds for the infinite
lattice is not exactly respected for small clusters, hence the
curves T (b, 1) exhibit a little assymmetry* (with respect to the
line p=q) which disappears for increasingly large cells.'All these

reasons strongly suggest that the exact critical frontier is given

by

p+q-= %T : (18)

* .
This assymetry is evident on the Fig.6 : the lines corresponding
to let us say e=q/p=2/3 and 3/2 do not coincide (they would do
so if the curves TI'(b, 1) were symmetric with respect to the line

p=q) .
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though we have not succeeded to find a rigorous argument to prove
it.

We have also calculated vp(b,bf;e)‘for different parame-
ters (e = p,q and q/p) and for 2 < b < 3, 1 ¢ b g 2. We observed
. the same tendency as before (§ 2), e.g., the increase of the
percentual variation of-\)p with € for increasingly large cells.
This fact shows that the PRG method is not suitable for calcul-

‘ating critical exponents.
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4. "INHOMOGENEOUS" 4-8 LATTICE

Our last calculation refers to the critical frontier of
the 4-8 lattice where the two topologically different bonds
(see Fig. (1f)) have occupancy probabilities p and q. Notice
' that for either g=1 or p=1 the system reduces to the simple
square lattice. The probability polynomials Rb(p,q) correspond
ing to the cells shown in Figs. (le) (b=1) and (1f) (b=2) are,
‘respectively:

R, (p,q) = 2pq*-pq" (19) -
<

and

Ry (psa) = q" (8p2+8p3+2p*) +q° (~4p3-6p"“~2p%) +q° (-8p?+4p>-4p"-6p°)

+q7(—10p3—12p“—14p5+4p65+q8(2p2—26p“+14p5+20p6)+
+q° (6p®+24p*+130p5-4p®) +q1 % (-2p3+42p*-58p°-108p°®) +
+ql! (18p*- 162p°+16p®)+q'? (-40p*-4p5+232p°)+
+q!%(-24p*+144p5-144p°®)+q* (12p*+32p°~112p°®)+
+q15(16p“¥1o4p5+128p6)+q16(—7p“+32p5—32p6)

(20)

Similarly to the previous section, we have applied only
the PRG method to the cells of the type mentioned just above,
obtaining the curves T(b,1l) (b=2,3,4) indicated in Fig. (7).
Since the chosen cells reduce, for g=1, to the self-dual H-
shaped clusters, all curves T'(b,b') contain the exact - point
(p,q) = (1/2,1). Furthermore, we can show (see Appendix B)
that at this particular point, due to the fact that the 4-8
lattice (as well as the clusters we have chosen) is consti-
tuted by g-bond-polygons linked to each other by p-bonds*, we
have:

dp =0 % (b,b") (21)
dq | p=1/2 _

q=1

* The "inhomogeneous" 3-12 lattice also has this topological
property, and hence eqg. (21) holds also for this lattice.
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It is also worth remarking that in the particular case
of p=1, our clusters reduce for b=2 and 3, respectively, to the
last ones drawn in Fig. 4 of our previous work (Magalhaes et al-
1980) (where they were introd&ced to illustrate a "biased" per-
colation on square lattice); we can see in Fig. 7 that g*
approaches the exact value 1/2 as b increases, as it should be.

Following the same extrapolation procedure of §3 (see
eqg. (17)), we have obtained, through three different families
of straight lines, the points shown in Fig. 7; the self-consist
enéy of the extrapolation method for this particular lattice can
be checked on Fig. 8. Extrapolation in the neighbourhood of p=1
yields the fgllowing estimate for the derivative

dg ' '
— =-0.45 + 0.10" . (22)
dp p=1 : ) .

g=1/2

In the particular case p=q, we were able to calculate

p*(b 1) for bigger clusters (b ¢ 7). From the plot of p*(b,1)

versus b A

P (see Fig. 9) we estimate that:
P = d; = 0.681 + 0.005 o (23)

which differs very little from Yc(q/p=l) =~ 0.684 (where b < 4).

Let us conclude by saying that the simple analytic re-

. lation
v = 1 (2u?+ u?) : ' (24)
3 : ’
where
v £ 2(p-1/2)
and
‘u = 2(1-q)
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determines a critical frontier which contains the exact points
(1,1/2) and (1/2,1), satisfies the property (21), leads to

dg ' .
-—_— = -3 - -0.43 (in agreement with estimate (22))
.dp p=1 7 :

p=1/2

and to P, = 9. * 0.680 (in accordance with-eq. (23)), and fits
very satisfactorily the rest of the extrapolated  points (see
Fig. 7); no doubt that eq. (24) has a good chance of being the
exact one.
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5. CONCLUSION

We have verified in the anisotropic first-neighbour
~square lattice that the canonical renormalization group (CRG) and
the parametric renormalization group (PRG) procedures we have
used yield satisfactory results in what concerns the percolation
critical line. While the convergence properties are better in
the CRG method, the PRG one is operationally much easier; how-~
ever both procedures lead to critical lines which tend, for in-
creasingly large clusters, towards the exact critical frontier

ptg=1. <

The critical frontiers corresponding to the "inhomoge-
neous" first- and second-neighbouf square and 4-8 lattices are
estimated within the PRG framework, by using an extrapolation
procedure which applies for two- (or higher) dimensional proba-
bility space and which exhibits quite satisfactory self-consist-
~ent properties. All of our extrapolated numerical results are
well fitted by the possibly exact equations p+g=1/2 for the
former and

3(p-1/2)=4 [(1-g)2 + (1-q)®] for the latter.

The PRG method does not give satisfactory results for
the critical exponents.
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APPENDIX A

Some useful formulae* .

- Series Configuration:

An array of n bonds in series with probabilities PyrPos =

P, is equivalent to a single bond with probability Pg given by:
Py | (a-1)

- Parallel Configuration:
4

- The equivalent probability pp for n parallel bonds with proba
bilities PysPor ey ph-satisfies:

l-p_ =

. - » (a-2)
Py (1-p;) _ _ |

nas

1

. = Deletion-Contraction Rule:

Consider a- two-terminal graph (noted G(pl, ~eer Pyr ...)) whose

bonds are present with probabilities pl,pz,,.UJH,f.. If we choose

;an.arbitrarz bond, let us say the j-th bond, the following relation

(called the "deletion-contraction rule") holds:

- (1= b ‘
ooo) - (l pj)Gj(pl’ ...’p'—l’pj"‘l, co.) +

G(pllnto,p J

jl
c o _
+ ijj(pl, ""pj-l’pj+1' ces) (a-3)

where G?(G?) is the equivalent probability of the graph obtained
from G by breaking (collapsing) its j-th bond (or in equivalent
words, by making pj=0 (pj=l))-

Let us illustrate this method on an example:

* The following properties are discussed in Tsallis 1979.
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Glp)rPyrP3rPyrPs) = Py Py = (1-po) p,/ \py *pg Py [Py =
Py 53 _ Pl p3, P P3
s o
= (1-p) b | 24T
PPy [P3Py f
« ' P1+P3~P;P;

(o]

= (Impg) (p1Py*P3Py~P1P)P3P,) *P5 (PP, PP, ) (P1+P37PP3)
(2-4)
- = Duality

The two- terminal planar graphs G and Gd are said to be dual if
they can be superimpoéed in such a way that each bond of a graph
vcfosses one and only one bond of the other, and also that each
internal (non-terminal) node of one graph is surrounded by an
elementary mesh of the other. In particular, if G is self-dual (see,

for example, Fig. lb and Fig. 4) its equivalent probability satisfies
G(pllpzl o--) + G(l-plll—pz’ ..-) = l (A"’S)

which implies, if P; =P \f i, that the graphical representation of
G against p admits the point (1/2,1/2) as a symmetry center.
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APPENDIX B

- 4-8 Lattice

In the present Appendix we prove, for all the frontiers I (b,b')

associated to the 4-8 lattice, that ’EE =0
dg | p=1/2
g=1

Every probability polynomial‘Rb(p,ql associated to a b- cluster

of any lattice can be written as:
<

® (p,)=F, ) () ¢™r; P )" -1 P o) -2 ¥ B-1

.where m is the number of relevant g- bonds. Fo(b)(p) and Fl(b)(p)

stand for the probabilities that a b-cluster with, respectively, m
and (m-1) unblocked g- bonds (and any number of present p- bonds)

- percolates.

From eq. (B-1l) it follows that

(b)
1

2 Cmp ®

mF (p) - F (p) Vb, ¥p (B-2)
Le

(o]

g=1

Now it is easy to see that, due to the fact that the "inhomo-
geneous" 4-8 lattice (as well as the clusters we have chosen for it)
'is constituted by g- bond- polygons 1linked among them by p- bonds
(the same topological property appears in the 3-12 lattice, for
instance), if a given configuration percolates (does not percolate)
when all the g- bonds are present, it continues percolating ( not
percolating) if we block one of them. As we have m such possibi-

lities we conclude that

F, ) (p) = mp P (p) ¥b, ¥p (B-3)



Rl it

which substituted in eq. (B-2) leads to:

o,

g

=0 " ¥b, ¥p (B-4)
g=1

Furthermore, we knéw from eq. (13) that, along . the curve
'b,b'), it holds ' '

-1
dp . Ry 3Ry ) (3R, Ry

3q 9q ap 9p

(B-5)

* *
(p +9)

- Although we did not succeed to rigorously prove that, in general,

3R, | 3R,

o o— , it was so in all the cases we examined.
p q=1 op g=1

' ) . *
Therefore we conclude that the expression (B-5) evaluated at g =1

is always zero for every (b;b'):"
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CAPTION FOR FIGURES AND TABLE

Fig.

Fig.

Fig.

Fig.

Fig.

1 -

2 -

3 -

4 -

5 -

Examples of clusters (b=1,2) and their associated graphs,
used for the treatment of the anisotropic first-neighbour
square lattice ((a) and (b)) and the "inhomogeneous" first-
and second-neighbour sguare ((c) and (d)) and 4-8((e) and
(£)) lattices. The arrows indicate the entries and exits

of the clusters. Open (full) circles denote the terminal

(internal) nodes of the graphs.

An example (b=2,b'=1) of flow diagram in the p—q space for
the anisotropic first-neighbour square lattice. Each full line
represents a CRG trajectory followed by some arbitrary
initial point in the neighbourhood of the fixed point
(1/2, 1/2). The successive points exhibit the velocity of
convergence within flow lines. The broken and chain lines
respectively indicate the CRG and PRG critical frontiers.
The fixed points can be fully stable (m), fully unstable
() and partially stable (®).

Examples of PRG critical frontiers for the first-neighbour
square lattice ("E" refers to closed form frontiers; the
other is a Monte Carlo one).. The g=0 points, namely
p(2,1) < p(3,1) < p(4,1) < p(5,1) ~ p(3,2) <p(4,2) <p(5,2) <
p(4,3) <p(5,3) <p(5,4) and their respective symmetric g=1
points are also indicated. The dashed line répresents the exact
critical line.

Example of a cluster with odd b (b=3), associated to the
case p=0 of the first- and second-neighbour square lattice;
it can be decomposed into a self-dual graph in parallel
with itself.

PRG critical frontiers and extrapolated points for the
first- and second-neighbour square lattice ("E" refers to
closed form frontiers; the others are Monte Carlo ones).



The extrapolated points were obtained through three
different families of straight lines, where, because of
universality, the nearly exact value 1.35 has been
adopted for vp. The proposal p+g=1/2 is indicated by
the dashed line.

*
Fig. 6 Log-log plot of [?b(e)—Yc(e)] as a function of b for
the first- and second-neighbour square lattice (for
simplicity only a few examples are shown). A straight

-1
chain line with slope equal to -(1.35) is indicated.

Fig. 7 - PRG critical frontiers and extrapolated points (with
vp=l.35) for the 4-8 lattice ("E" refers to a closed
form frontier; the other two are Monte Carlo ones).

The dashed line represents our analytic proposal (eg.(22)).

Fig. 8 - Log-log plot of [?é(e)-Yc(e) as a function of b for
the 4-8 lattice
shown) .. A straight chain line with slope equal to
-(1.35)"% is indicated.

for simplicity only a few examples are

* *
Fig. 9 - The approximate critical probability p (b,1l)l=q (b,1)
for the 4-8 lattice as a function of b—l/vp with vp=l.35
("E" denotes a closed form point; the others are Monte

Carlo ones).

TABLE -  RG closed foxrm values of qo(b,b') associated to the p=0
bond percolation on the first- and second-neighbour

square lattice.
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TABILE

b 2 3 4 5
0.4923 1/2 0.4997 1/2

- 0.5090 | 0.5042 | 0.5032
- - 0.4989 ,| 1,2

0.5011
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