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Abstract

We show that the Polyakov's con�ning string Nucl. Phys. B486, (1997) 23, is

the author's previously proposed self-avoiding extrinsic strings (Luiz C.L. Botelho,

Rev. Bras. Fis. 16, 279, (1986); CALTECH{preprint 68, 1444, (1987); J. Math.

Phys. 30 (9), (1989), 2160).
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The more important problem in the present days of theoretical and mathematical

physics is how to quantize correctly Non-Abelian Gauge Field Theories de�ned on the

physical continuum space-time. The only result in this direction still remains an formal

Ansatz from the experimental and theoretical point of view: the use of the Higgs mech-

anism in order to prevent (already at the classical level of the Weinberg-Scalar theory),

the \infrared disaster" of the on-shell theories scattering matrix by given classically mass

parameters for gauge bosons. Probably, this Ansatz is wrong from a strict quantum �eld

theoretic point of view since it makes heavier use of a probably trivial ��4-�eld theory

in four dimensions and of the somewhat unphysical gauges of t'Hooft for the Yang-Mills

Fields ([1]) (see the comments on pag. 38 the J.C. Taylor book \Gauge theories of weak

interactions { Cambride Monographs on Mathematical Physics). However, it was real-

ized by K. Wilson ([2]) that in the Ising like euclidean path integral crude approximation

framework (Lattice Gauge Theory) theses non-abelian gauge �eld theories in the lat-

tice at a bare strong coupling regime are naturally expressed in terms of the Euclidean

([3]) Wilson Loops de�ned by the matter content trajectories C = fX�(�); 0 � � � 1;

� =proper-time parameters

W [C] = Tr IP
�
exp

�
�
I
C
A�dX

�

��
(1)

It is worth remark that eq. (1) is not invariant under the reverse trajectories reparame-

trization X�(�) = X�(��) in the Euclidean world, although W [C]W [�C] = 1 still holds

true. (Note that typical interaction energy densities, such as �  , � 
s , � 
� A� which are

real function (distributions) in the Minkowski space-time are complex on the Euclidean

world).

It was argued on ref. [4] by A.M. Polyakov, a euclidean string functional integral

Ansatz for eq. (1) based on a coupling of a abelian rank-two antisymmetric tensor �eld

B��(x) (the Polyakov's axion �eld) with the string orientation area tensor previously

proposed by this author (see [5]) but with an important di�erence: This rank-two anti-

symmetric tensor �eld B has a non trivial dynamic content. Namelly (see eq. ((12)-(15))
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- ref. [4])

W [C] =

R
DF [B�� ]e�S[B��]e

�
i
RP

c

Bd�

�
R
DF [B��]e�S[B�� ]

(2)

where the axion action is given by

S(B) =
1

4e2

Z
d2x

 
B2
�� + dB � arsen dB

m2
�
q
m4 � (dB)2

!
(3)

At this point we point out that the functional integral weight eq. (3) makes sense only

for those �eld con�gurations which makes eq. (3) a real number, namelly:

sup
x2R�

jdB(x)j � m2.

Unfortunately this bound on the kinetic energy of the axion �eld is impossible for those

distributional �elds con�gurations making the domain of the axion functional integral eq.

(2), unless m2 ! 1 [6] and comments below eq. (40) of ref. [4]. (A quantum �eld may

be bounded but not its kinetic energy!).

In this situation, eq. (19) of ref. [4], A.M. Polyakov must turn into a pure White-

Gaussian action for the axion �eld B

S[B] =
1

4e2

Z
B2(x)d2x (4)

One has, thus, the following correct formulae instead of those of ref. [4]

W [C] � exp[�F (C;X
C

)] (5)

where the surface functional weight is given by the self-avoiding extrinsic action �rstly

proposed in a minimal area context solution for the Q.C.D-Loop wave equation in second

ref. of [5]

F (C;
X
C

) =
Z
P d���(x)(�

�������(x� y))d���(y) (6)

It is straightforward to see that for �xed constant e2, the limit m2 ! 1 leads to a

pure Nambu-Goto action strongly coupled ([4]) (see refs. [8] and Appendix for a di�erent

result)

F (C;
X
C

) � lim
m2!1

c1(e
2m)

Z
d2�
p
g(�) + lim

m2!1
c2(e

2=m)
Z
d2�(rt��)2pg

+O
�
1

m

�
� 1

2��0

Z
d2�

p
g(�) (7)
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Here the Regge slope e�ective parameter is given by
1

2��0
= c1(e

2m).

It is worth remark that the expected extrinsic action will come from the existence of

intrinsic fermionic �elds in the non-abelian case ([7]). As a general conclusion, one can

says that the charged El�n Extrinsinc Self-Avoiding strings ([7]) still remains the only

available candidate to quantize non-abelian gauge �elds at the quantum average decoupling

t'Hoot limit.
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Appendix A

In this Appendix we present some related comments on eq. (7) for the author proposal

of a self-avoiding extrinsic reparametrization string for Q.C.D (SU(1)j in RD, namelly

A[X�(�)] = �
Z
�

q
h(�)

Z
�0

q
h(�0)(���(X(�))��� (X(�0))� 1)�(D)(X�(�)�X�(�

0))

(A.1)

Here, the surface area tensor responsable by the extrinsic properties of Q.C.D string

(and explaining the asymptotic freedom of the underline Q.C.D �eld theory) is given by

���(X(�)) = "ab@aX
�@bX

�

�q
h(�) (A.2)

and

q
h(�) =

q
detf@aX�@bX�g(�) (A.3)

By considering eq. (A-1) in a regularized form for the delta-function interaction

�
(D)
� (X(�) �X(�0) =

Z
jkj<�

dDk exp(ik�(X�(�) �X�(�
0)) (A.4)

namelly,

A(�)[X�(�)] �
1X
p=0

(�1)p
p!22p�(p + D

2 )

 
�D+2p

D + 2p

! Z
�

Z
�0�q

h(�)
q
h(�0)[(@a���@

b���)(�)(� � �0)a(� � �0)b + � � � ](X�(�) �X�(�
0)2p

�

At one-loop order (p � 1) one has explicitly the bare counter-terms:

A1 � �(�)4
Z
�

q
h(�)(@a�

��@a���)(�)

A2 � �(�)4
Z
�

q
h(�)[(@a�

��)(@a���)(@bX�)(@
bX�)(�)

A3 � �(�)0
Z
�

q
h(�)f(@2���)(@2���)g(�) etc... (A.5)

Note the absence of a pure Nambu-Goto counter-term due to the fact of our \nor-

malized" form of interaction eq. (A-1), otherwise one has a counter-term associated to

it.
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At this point we consider the Extrinsic U.V. divergence X�(�) = X�(�0) but with

� 6= �0.

In the physical situation of line of self-intersections (where the equation X�(�) =

X�(�
0) always de�nes a sub-manifold of dimensiona 1). (Note that the Q.C.D'string

world-sheet is generically described by the union of vertical surfaces cylinders locally in

contact along the self-intersecting vertical lines passing through the points �j = f�1j ; �g
with X�(�1j ; �) = X�(�1j+1; �)); the object ���(X(�j))���(X(�j+1)) = cos �(�1j ; �

1
j+1); the

cosinus of the constant angle between the extrinsic surface tangent plane both possessing

in common the vertical line X�(�1j ; �) (0 � � � 1). In this situation eq. A-1 reduces to a

pure (intrinsic) self-avoiding action of the cylinder surface's branche with the associated

tangent plane above cited. The renormalizability is consequence of the last reference [8].

Anothert important remark to be pointed out is that the usual concepts of Di�erential

Geometry do not apply to the Quantum Geometry of surfaces since the quantum surfaces

are \distributional" and not Ck-di�erentiable objects. As a consequence, di�erential-

topological concepts are meaningless here (Chern class, etc...) ([9] - chapter 13).

Related to others works, we call the reader attention that the above exposed results

have nothing to do with the non-sense and wrong studies presented by H. Kleinert (Phys.

Lett. 174B, 335 (1986)).

Finally, we conjecture (as Maldacena did!) that the simplest supersymmetric ver-

sion of the self-avoiding extrinsic string \solves" the supersymmetric Q.C.D. (SU(1)) if

supersymmetry makes sense in quantum �eld theory.


