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It is an interesting problem in Dissipative Quantum Mechanics [1], [2] to �nd a Local
Feynman path integral for the classical system of a free electron in a medium with a
frictional drag proportional to velocity.

In this note we propose a formal Path-Integral to the phenomenological Caldirola-
Kanai action by following original heuristic Feynman procedure [2] to quantize classical
systems by means of a suitable sum over paths.

Let us start our analysis by considering the Local Caldirola-Kanai Classical action
[1] of a one-dimensional free electron of mass in moving on a medium with a frictional
drag proportional to its velocity and with a positive viscosity (temperature dependent)
coe�cient �.
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In order to write a Feynman path-integral representation for the Feynman Quantum
Mechanical Propagator associated to the Lagrangean Eq. (1), we follow Feynman by
postulating the asymptotic Green Function connecting the Wave functions for in�nitesimal
di�erent times tk+1 � tk = �(t� t0)=N ! N!10

 (xk+1; tk+1) =

Z +1

�1

dxk ~G[(xk+1; tk+1); (xk; tk)] (xk; tk) (2)

where the asymptotic Green Function used to de�ne the short-time propagation is deter-
mined by the Classical action Eq. (1) with suitable pre-factors.
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Note that in order to analize anomalous pre-factors in the Feynman Path Integral for
dissipative system ([2]]), we have proposed to introduce a weighted rule (a + b = 1)
for the discretization of the damping Caldirola-Kanai term exp(�t) into the Damping
Classical action Eq. (1).

From Eq. (2) for "! 0, we can determine the pre-factor in Eq. (3) as originally done
by Feynman in his heuristic description of the Feynman measure for time independent
propagartors. Note that the origin of the above mentioned \Dissipative Anomaly" is a
consequence of the appearence of the discretized Caldirola-Kanai term in the expression
of this purely quantum object in the Feynman Path-Integral (propagator pre-factor)
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As a consequence of Eq. (2)-Eq. (4), we can write the Green Function for arbitrary
di�erent times as a Feynman Path-Integral as done originally in the �rst reference of [2].
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Now we can de�ne formally the limit in Eq. (5) as a well de�ned Feynman Measure over
paths multiplied by a general damping anomaly factor exp �

4 (t� t0)(a� b), namelly
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Note that the in�nitesimal step in the factorized Feynman measure, Eq. (8), is explicitly
given by the expression below and is independent of our original weighted time-interval
partition rule used for the dissipative term exp (�t) in the Caldirola-Kanai action.
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The above written results are simple consequence of the following evaluations
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By substituting Eq. (8) into eq. (5) we get our above displayed Eq. (6).

The propagator Eq. (5) has, thus, the Dissipative anomaly found in the second ref-
erence of [2] factored out by an overall anomaly factor which exact value depends on the
rule used to discretize, in eq. (1), the term exp (�t) and of the initial and �nal time
propagation. For the weighted rule it yields the result

~G(x; t); (x0; t0)) = e
�
4 (t�t

0)(a�b)

Z
x(t0)=x0;x(t)=x

DF [x(�)]e i�h

R t

t0
d�e��( 12m _x2(�)) (8)

Note that our main result Eq. (6)-Eq. (9) di�ers somewhat from that similar obtained
in the above cited second reference Eq. (2.16) of [2]. Another point to stress is the
similarity between the existence of a dissipative anomaly in the formal path-integral Eq.
(9) and the famous De-Witt anomaly in curved space-time propagator. Let us remark
the usefulness of our proposed Path-Integral Eq. (9) with the viscosity anomally e�ects
factored out by calling attention that the combined Green function

G(0)((x; t); (x0; t0)) = e�
�
4 (t�t

0)(a�b) ~G((x; t); (x0; t0)) (9)

satis�es now the usual time dependent Schroedinger equation initial value { problem for
t and t0 �nite times (see Eq. (7)) here
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here
lim
t!t0

G(0)((x; t); (x0; t0)) = �(x� x0) (11)

The above cited claim is a general consequence of Eq. (6) de�ning a well de�ned
Feynman product measure (see appendix A for details). At this point, we remark that
by choosing the Feynman middle point rule a = b = 1=2, in the latticized prescription for
the Caldirola-Kanai Path Integral propagator, we may suppress the anomaly into Eq. (9)
(see Ref.[5] for similar phenomena in Feynman Path-Integral for curved space-time).

A simple solution of Eq. (11)-Eq. (12) is easily obtained for non-zero initial time t0:
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The complete scheme-dependent Functional propagator will, thus, be given by the result

~G(0)((x; t); (x0; t0)) = e
�
4 (t�t

0)(a�b) � ~G(0)((x; t); (x0; t0)) (13)

It is worth point out that only for a = b = 1=2, we have that the quantum probability
~G(0)((x; t); (x0; t0))j2 decay to zero at the equilibrium limit t!1.

It is important to remark that the presence of time-dependent potentials does not
modify the Path-Integral representation above displayed
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Let us exemplify Eq. (14) by applying it to the case of existence of a constant magnetic
�eld perpendicular to the plane containing the particle trajectory ([4])
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2
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�
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2
Hx

�
~j (15)

Here, the particle vector positron is

~r(t) = x(t)~i+ y(t)~j (16)

In this two-dimensional case we have the following structure for the scheme dependent
propagator

~G((~r; t); (~r; t0)) = e
�
2 (t�t

0)(a�b) ~G((~r; t); (~r; t0)) (17)

with G((~r; t); (~r; t0)) satisfying now the Schroedinger time-dependent problem in view of
our previous reslts Eq. (6){Eq. (9).
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with
lim
t!t0

G((~r; t); (~r; t0)) = �(2)(~r � ~r) (19)

In order to solve exactly Eq. (10)-Eq. (20), we perform the following transformation to
map the above written Green Functions in a free function ([3]). Namelly

x = (�(�)cos�(�))u+ (�(�)sin�(�))�

y = �(�(�)sin�(�))u+ (�(�)cos�(�))�

sigma = f(t)� f(0) (20)
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and under the classical damped condition�
eH

mc

�2

> �2 (22)

The Green function Eq. (19)-Eq. (20) is, thus, given explicitly by

G((~r; t); (~r; t0)) = eiF (u(t;x;y);v(t;x;y);�(t)) m

2�i�h(�(t)� �(t0))
�

e
im

2�h(�(t)��(t0))
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e�iF (u(t0;x0;y0);v(t0;x0;y0);�(t0)) (23)

Note that in Eq. (24), we have used the fact that the Jacobian of the spatial coordi-
nates Eq. (21) is the unity and the functions u(t; x; y) and v(t; x; y) are explicitly given
by inverting Eq. (21) and Eq. (22). The complex phase function F (u; v; �) is explicitly
given by

F (u; v; �) =
1

2
mevt �

f[�(t)sin(�(t)) +
d

dt
(�(t)sin(�(t))) + �(t)cos(�(t)) +

d

dt
�(t)cos(�(t))]

times(u2(t; x; y) + v2(t; x; y) + iln�(t))g (24)

For a general procedure to solve time-dependent harmonic oscilator in any dimension see
appendix C.

Work on the introduction of non-linearity �x4 in these phenomenological dissipative
quantum systems to understand quantum chaos are in progress.
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Appendix A

The FeynmanPath-Integral with a Pure Product Mea-

sure Leads to the Schroedinger Equation

In this appendix we give a simple argument that if one de�nes the Feynman path measure
by the (formal) in�nite product

DF [x(�)] = lim
N!1

NY
k=1

dxk; (A.1)

where

x� k = x(t0 +
t� t0)

N
k) (A.2)

the Feynman propagator

G((~r; t); (~r; t0)) =

Z
x(t0)=x0;x(t)=x

D[x(�)]e
i
�hS[x(�)] (A.3)

satis�es the Schroedinger equation

i�h
@G((x; t); (x0; t0))

@t
=

�
�

�h2

2mdx2
+ V (x)

�
G((x; t); (x0; t0)) (A.4)

In order to show this in an elementary way, we have make a general trajectory end
point variation of Eq. (A-2) (x(t) =)

�xG((x; t); (x
0; t0)) =

@G

@x
�x+

@G

@x
� _x+

@G

@x
�t =

@G

@x
�t; (A.5)

since the Feynman propagator does not depends on the end point velocity and �x is zero
as the x-points is �xed.

At this point we note that

�x

�Z
x(t0)=y;x(t)=x

DF [x(�)]e
i
�hS[x(�)]

�

=

Z
x(t0)=y;x(t)=x

DF [x(�)](
i

�h
�x)e

i
�hS[x(�)]

=
i

�h

Z
x(t0)=y;x(t)=x

DF [x(�)](H�t)e
i
�hS[x(�)] (A.6)

As a consequence of the commutation relation

[Px; x] = i�h (A.7)

which holds true only for Feynman product measures of the form Eq. (A-1), we get the
following result

i�h
@G

@t
((x; t); (x0; t0)) = H(i�h

@

@x
; x)G((x; t);x0; t0)) (A.8)
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Appendix B

In Ref. Phys. Rev. E56, 1230 (1997), A.B. Nassar et al has proposed the following time

non-local Caldirola-Kanai action as a physical classical action which should be associated
to their proposed quantum hydrodynamical propagator in one-dimension

~S[x(�)] =

Z t

0

d�ev(��t)

 
1

2
m

�
dx

d�

�2

� V (x(�))

!
: (B.1)

One can, in principle, apply the same procedure of this paper to analyse the associated
dissipative anomally factor. Unfortunately, Eq. (B.1) can be mapped in the following
negative viscosity non-local Caldirola-Kanai action

~S[x(�)] =

Z t

0

d�e��

 
1

2
m

�
dx

d�

�2

� V (x(t� �))

!
: (B.2)

which, by its turn, has the problem of a potential involving all derivatives of the path
x(�), namelly,

V (x(t� �)) = V

 
1X
k=0

1

k!

�
dkx

d�

�
j��t

k

!
= V

�
x((��) + x0(��)t+

x00(��)

2
t2 + : : :

�
:

(B.3)
This result leads to the fact the approximations involved in the Nassar et al work is
meaningless as a quantization process.

Appendix C

The Exact Solubility of the Path-Integral of the Gen-

eral Harmonic Oscillator

In this paper we have faced the problem of determining the Feynman propagator of
a general harmonic oscillator with time dependent variable mass and a time dependent
frequency

i�h
@G(x; x0; t)

@t
=

�
�

1

2m(t)dx2
d2

dx2
+ !2(t)x2

�
G(x; x0; t) (C.1)

with the initial condition
G(x; x0; t) = �(x� x0) (C.2)

where we have considered the one-dimensional case solubility for simplicity.
In order to solve Eq. (C1) by pure Feynman path-integral techniques straightfowardly

generalizable to the three-dimensional case, we consider �rst the following pure time
transformation on Eq. (C1).

x = x

� = f(t) =

Z t

0

d�

m(�)
(C.3)



{ 9 { CBPF-NF-012/98

The propagator equation takes, thus, the simple form below, where the time dependence
of the mass is not present anymore.

i�h
@G(x; x0; t)

@�
=

�
�
1

2

d2

2dx2
+ �!2(�)x2

�
G(x; x0; �) (C.4)

The above propagator has a representation in terms of the usual Feynman path-integral
(see appendix A of this paper), after considering the decomposition of the quantum tra-
jectories in terms of classical and purely quantum paths entering into functional measure.

As a consequence, we should evaluate only the pure quantum path-integral

G(0; 0; �) =

Z
xq(0)=0;xq(�)=0

DF [xq(�)]e
i
�h

R �

0
d�[ 12 ( _x

q)2(�)��!2(�)(xq)(�)]: (C.5)

Let us, thus, consider the following change of variable in Eq. (C5)

_xq(�)�
_k(�)

k(�)
xq(�) = _yq(�) (C.6)

where k(�) is a classical trajectory of the system with �xed end point zero velocities

d2

d�2
k(�) + �!(�)k(�) = 0

_k(0) = _k(�) = 0: (C.7)

One can easily see that

DF [xq(�)] = DF [yq(�)]det

"
1 �

�
d

dt

�
�1
 
_k

k

!#
= DF [yq(�)] (C.8)

Since the above written functional determinant is expressed in terms of loops with propa-

gators of the form
�
d
dt

�
�1

(t; t0) = �(t�t0) and we have considered the prescription �(0) = 0
to evaluate the above equation.

We have additionally the following path-integral new end points to the transformed
path-integral

0 = yq(�) ; 0 = yq(0) (C.9)

together with the compatibility condition (constraint) to be imposed on the Feynman
path measure DF [yq(�)]

Z �

0

d�yq(�)

"
_k(�)

k(�)

#
+

Z �

0

d�
_k(�)

k(�)

Z �

0

d�0

 
_k

k2

!
(�0)yq(�0) = 0 (C.10)

By grouping together Eq. (C6) and Eq. (C10), we are able to write the quantum
prefactor of the harmonic oscillator into a straightforward Feynman path integral of a



{ 10 { CBPF-NF-012/98

free particle in the presence of a external source

~G(0; 0; �) =

Z +1

�1

d�"Z
yq(0)=0=yq(�)

DF [yq(�)]ei
R �

0
d� 1

2 ( _y
q(�))2e

i�[
R �

0
d�yq(�)

�
_k(�)
k(�)

�

+

Z �

0

_k(�)

k(�)

Z �

0

d�0

 
_k

k2

!
(�0)yq(�0)]

#
(C.11)

which, by its turn, may easily evaluated.
In the general 3D-case below,

~G(0; 0; �) =

3Y
i=1

Z
xq(0)=0;xq(�)=0

DF [xqi (�)]e
i
�h (
R �

0
d�[ 12 ( _x

q
i
)2(�)��!2

ij
(�)( _xq

j
)2(�)]); (C.12)

the transformation, Eq. (C5), takes the 3-D form

( _xqi (
_kk�1)i`x

q
`(�) = _yqi (�): (C.13)

with
d2

d�2
kij(�) = �!i`(�)k`i(�): (C.14)

with
_kij(0) = _kij(0) (C.15)

and, thus, leading to analogous exact solubility of the resulting 3-D path-integral.
Note that the above expused procedure is an alternative to the formal procedure of

ref.[3] which, by its turn is heavily based on the existence of global solutions of ordinary
di�erential equations with variable coe�cients.


